/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
  int dr;

  /* modulus P must be positive */
  if (P->sign == MP_NEG) {
     return MP_VAL;
  }

  /* if exponent X is negative we have to recurse */
  if (X->sign == MP_NEG) {
     mp_int tmpG, tmpX;
     int err;

     /* first compute 1/G mod P */
     if ((err = mp_init(&tmpG)) != MP_OKAY) {
        return err;
     }
     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }

     /* now get |X| */
     if ((err = mp_init(&tmpX)) != MP_OKAY) {
        mp_clear(&tmpG);
        return err;
     }
     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
        mp_clear_multi(&tmpG, &tmpX, NULL);
        return err;
     }

     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
     err = mp_exptmod(&tmpG, &tmpX, P, Y);
     mp_clear_multi(&tmpG, &tmpX, NULL);
     return err;
  }

  /* is it a DR modulus? */
  dr = mp_dr_is_modulus(P);

  /* if not, is it a uDR modulus? */
  if (dr == 0) {
     dr = mp_reduce_is_2k(P) << 1;
  }
    
  /* if the modulus is odd or dr != 0 use the fast method */
#ifndef NO_FAST_EXPTMOD
  if (mp_isodd (P) == 1 || dr !=  0) {
    return mp_exptmod_fast (G, X, P, Y, dr);
  }
  else
#endif
  {
    /* otherwise use the generic Barrett reduction technique */
    return s_mp_exptmod (G, X, P, Y);
  }
}
Example #2
0
/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
   int dr;

   /* modulus P must be positive */
   if (P->sign == MP_NEG) {
      return MP_VAL;
   }

   /* if exponent X is negative we have to recurse */
   if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
      mp_int tmpG, tmpX;
      int err;

      /* first compute 1/G mod P */
      if ((err = mp_init(&tmpG)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }

      /* now get |X| */
      if ((err = mp_init(&tmpX)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }
      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
         mp_clear_multi(&tmpG, &tmpX, NULL);
         return err;
      }

      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
      err = mp_exptmod(&tmpG, &tmpX, P, Y);
      mp_clear_multi(&tmpG, &tmpX, NULL);
      return err;
#else
      /* no invmod */
      return MP_VAL;
#endif
   }

   /* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
   if (mp_reduce_is_2k_l(P) == MP_YES) {
      return s_mp_exptmod(G, X, P, Y, 1);
   }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
   /* is it a DR modulus? */
   dr = mp_dr_is_modulus(P);
#else
   /* default to no */
   dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
   /* if not, is it a unrestricted DR modulus? */
   if (dr == 0) {
      dr = mp_reduce_is_2k(P) << 1;
   }
#endif

   /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
   if ((mp_isodd(P) == MP_YES) || (dr !=  0)) {
      return mp_exptmod_fast(G, X, P, Y, dr);
   } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
      /* otherwise use the generic Barrett reduction technique */
      return s_mp_exptmod(G, X, P, Y, 0);
#else
      /* no exptmod for evens */
      return MP_VAL;
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
   }
#endif
}
Example #3
0
mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent, 
		  const mp_int *modulus, mp_int *result)
{
  const mp_int *base;
  mp_size bits_in_exponent, i, window_bits, odd_ints;
  mp_err  res;
  int     nLen;
  mp_int  montBase, goodBase;
  mp_mont_modulus mmm;
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
  static unsigned int max_window_bits;
#endif

  /* function for computing n0prime only works if n0 is odd */
  if (!mp_isodd(modulus))
    return s_mp_exptmod(inBase, exponent, modulus, result);

  MP_DIGITS(&montBase) = 0;
  MP_DIGITS(&goodBase) = 0;

  if (mp_cmp(inBase, modulus) < 0) {
    base = inBase;
  } else {
    MP_CHECKOK( mp_init(&goodBase) );
    base = &goodBase;
    MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) );
  }

  nLen  = MP_USED(modulus);
  MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) );

  mmm.N = *modulus;			/* a copy of the mp_int struct */

  /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX
  **		where n0 = least significant mp_digit of N, the modulus.
  */
  mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) );

  MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );

  bits_in_exponent = mpl_significant_bits(exponent);
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
  if (mp_using_cache_safe_exp) {
    if (bits_in_exponent > 780)
	window_bits = 6;
    else if (bits_in_exponent > 256)
	window_bits = 5;
    else if (bits_in_exponent > 20)
	window_bits = 4;
       /* RSA public key exponents are typically under 20 bits (common values 
        * are: 3, 17, 65537) and a 4-bit window is inefficient
        */
    else 
	window_bits = 1;
  } else
#endif
  if (bits_in_exponent > 480)
    window_bits = 6;
  else if (bits_in_exponent > 160)
    window_bits = 5;
  else if (bits_in_exponent > 20)
    window_bits = 4;
  /* RSA public key exponents are typically under 20 bits (common values 
   * are: 3, 17, 65537) and a 4-bit window is inefficient
   */
  else 
    window_bits = 1;

#ifdef MP_USING_CACHE_SAFE_MOD_EXP
  /*
   * clamp the window size based on
   * the cache line size.
   */
  if (!max_window_bits) {
    unsigned long cache_size = s_mpi_getProcessorLineSize();
    /* processor has no cache, use 'fast' code always */
    if (cache_size == 0) {
      mp_using_cache_safe_exp = 0;
    } 
    if ((cache_size == 0) || (cache_size >= 64)) {
      max_window_bits = 6;
    } else if (cache_size >= 32) {
      max_window_bits = 5;
    } else if (cache_size >= 16) {
      max_window_bits = 4;
    } else max_window_bits = 1; /* should this be an assert? */
  }

  /* clamp the window size down before we caclulate bits_in_exponent */
  if (mp_using_cache_safe_exp) {
    if (window_bits > max_window_bits) {
      window_bits = max_window_bits;
    }
  }
#endif

  odd_ints = 1 << (window_bits - 1);
  i = bits_in_exponent % window_bits;
  if (i != 0) {
    bits_in_exponent += window_bits - i;
  } 

#ifdef MP_USING_MONT_MULF
  if (mp_using_mont_mulf) {
    MP_CHECKOK( s_mp_pad(&montBase, nLen) );
    res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen, 
		     bits_in_exponent, window_bits, odd_ints);
  } else
#endif
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
  if (mp_using_cache_safe_exp) {
    res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen, 
		     bits_in_exponent, window_bits, 1 << window_bits);
  } else
#endif
  res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen, 
		     bits_in_exponent, window_bits, odd_ints);

CLEANUP:
  mp_clear(&montBase);
  mp_clear(&goodBase);
  /* Don't mp_clear mmm.N because it is merely a copy of modulus.
  ** Just zap it.
  */
  memset(&mmm, 0, sizeof mmm);
  return res;
}