Example #1
0
STATIC MYBOOL finalize_scaling(lprec *lp, REAL *scaledelta)
{
  int i;

  /* Check if we should equilibrate */
  if(is_scalemode(lp, SCALE_EQUILIBRATE) && !is_scaletype(lp, SCALE_CURTISREID)) {
    int oldmode;

    oldmode = lp->scalemode;
    lp->scalemode = SCALE_LINEAR + SCALE_EXTREME;
    scale(lp, scaledelta);
    lp->scalemode = oldmode;
  }

  /* Check if we should prevent rounding errors */
  if(is_scalemode(lp, SCALE_POWER2)) {
    REAL *scalars;
    if(scaledelta == NULL)
      scalars = lp->scalars;
    else
      scalars = scaledelta;

    for(i = 0; i <= lp->sum; i++)
      scalars[i] = roundPower2(scalars[i]);
  }

  /* Then transfer the scalars to the model's data */
  return( scale_rows(lp, scaledelta) && scale_columns(lp, scaledelta) );

}
Example #2
0
template <typename T, typename X>    bool scaler<T, X>::scale_with_log_balance() {
    T balance = get_balance();
    T balance_before_scaling = balance;
    // todo : analyze the scale order : rows-columns, or columns-rows. Iterate if needed
    for (int i = 0; i < 10; i++) {
        scale_rows();
        scale_columns();
        T nb = get_balance();
        if (nb < T(0.9) * balance) {
            balance = nb;
        } else {
            balance = nb;
            break;
        }
    }
    return balance <= balance_before_scaling;
}
Example #3
0
    void scale_columns (
        tensor& out,
        const tensor& m,
        const tensor& v
    )
    {
        DLIB_CASSERT(have_same_dimensions(out,m));
        DLIB_CASSERT(is_vector(v));
        if (m.size() == 0 && v.size() == 0)
            return;
        DLIB_CASSERT(m.size() != 0);
        DLIB_CASSERT(m.size()/m.num_samples() == v.size());

#ifdef DLIB_USE_CUDA
        cuda::scale_columns(out, m, v);
#else
        DLIB_CASSERT(false, "shouldn't be called right now");
        out = scale_columns(mat(m), mat(v));
#endif
    }