void __rw_rlock(volatile uintptr_t *c, const char *file, int line) { struct rwlock *rw; struct turnstile *ts; #ifdef ADAPTIVE_RWLOCKS volatile struct thread *owner; int spintries = 0; int i; #endif #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif uintptr_t v; #ifdef KDTRACE_HOOKS uintptr_t state; uint64_t spin_cnt = 0; uint64_t sleep_cnt = 0; int64_t sleep_time = 0; int64_t all_time = 0; #endif if (SCHEDULER_STOPPED()) return; rw = rwlock2rw(c); KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread), ("rw_rlock() by idle thread %p on rwlock %s @ %s:%d", curthread, rw->lock_object.lo_name, file, line)); KASSERT(rw->rw_lock != RW_DESTROYED, ("rw_rlock() of destroyed rwlock @ %s:%d", file, line)); KASSERT(rw_wowner(rw) != curthread, ("rw_rlock: wlock already held for %s @ %s:%d", rw->lock_object.lo_name, file, line)); WITNESS_CHECKORDER(&rw->lock_object, LOP_NEWORDER, file, line, NULL); #ifdef KDTRACE_HOOKS all_time -= lockstat_nsecs(&rw->lock_object); state = rw->rw_lock; #endif for (;;) { /* * Handle the easy case. If no other thread has a write * lock, then try to bump up the count of read locks. Note * that we have to preserve the current state of the * RW_LOCK_WRITE_WAITERS flag. If we fail to acquire a * read lock, then rw_lock must have changed, so restart * the loop. Note that this handles the case of a * completely unlocked rwlock since such a lock is encoded * as a read lock with no waiters. */ v = rw->rw_lock; if (RW_CAN_READ(v)) { /* * The RW_LOCK_READ_WAITERS flag should only be set * if the lock has been unlocked and write waiters * were present. */ if (atomic_cmpset_acq_ptr(&rw->rw_lock, v, v + RW_ONE_READER)) { if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR4(KTR_LOCK, "%s: %p succeed %p -> %p", __func__, rw, (void *)v, (void *)(v + RW_ONE_READER)); break; } continue; } #ifdef KDTRACE_HOOKS spin_cnt++; #endif #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&rw->lock_object, &contested, &waittime); #ifdef ADAPTIVE_RWLOCKS /* * If the owner is running on another CPU, spin until * the owner stops running or the state of the lock * changes. */ if ((v & RW_LOCK_READ) == 0) { owner = (struct thread *)RW_OWNER(v); if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, rw, owner); KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", rw->lock_object.lo_name); while ((struct thread*)RW_OWNER(rw->rw_lock) == owner && TD_IS_RUNNING(owner)) { cpu_spinwait(); #ifdef KDTRACE_HOOKS spin_cnt++; #endif } KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); continue; } } else if (spintries < rowner_retries) { spintries++; KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", rw->lock_object.lo_name); for (i = 0; i < rowner_loops; i++) { v = rw->rw_lock; if ((v & RW_LOCK_READ) == 0 || RW_CAN_READ(v)) break; cpu_spinwait(); } #ifdef KDTRACE_HOOKS spin_cnt += rowner_loops - i; #endif KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); if (i != rowner_loops) continue; } #endif /* * Okay, now it's the hard case. Some other thread already * has a write lock or there are write waiters present, * acquire the turnstile lock so we can begin the process * of blocking. */ ts = turnstile_trywait(&rw->lock_object); /* * The lock might have been released while we spun, so * recheck its state and restart the loop if needed. */ v = rw->rw_lock; if (RW_CAN_READ(v)) { turnstile_cancel(ts); continue; } #ifdef ADAPTIVE_RWLOCKS /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the turnstile * chain lock. If so, drop the turnstile lock and try * again. */ if ((v & RW_LOCK_READ) == 0) { owner = (struct thread *)RW_OWNER(v); if (TD_IS_RUNNING(owner)) { turnstile_cancel(ts); continue; } } #endif /* * The lock is held in write mode or it already has waiters. */ MPASS(!RW_CAN_READ(v)); /* * If the RW_LOCK_READ_WAITERS flag is already set, then * we can go ahead and block. If it is not set then try * to set it. If we fail to set it drop the turnstile * lock and restart the loop. */ if (!(v & RW_LOCK_READ_WAITERS)) { if (!atomic_cmpset_ptr(&rw->rw_lock, v, v | RW_LOCK_READ_WAITERS)) { turnstile_cancel(ts); continue; } if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set read waiters flag", __func__, rw); } /* * We were unable to acquire the lock and the read waiters * flag is set, so we must block on the turnstile. */ if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__, rw); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(&rw->lock_object); #endif turnstile_wait(ts, rw_owner(rw), TS_SHARED_QUEUE); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(&rw->lock_object); sleep_cnt++; #endif if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from turnstile", __func__, rw); } #ifdef KDTRACE_HOOKS all_time += lockstat_nsecs(&rw->lock_object); if (sleep_time) LOCKSTAT_RECORD4(rw__block, rw, sleep_time, LOCKSTAT_READER, (state & RW_LOCK_READ) == 0, (state & RW_LOCK_READ) == 0 ? 0 : RW_READERS(state)); /* Record only the loops spinning and not sleeping. */ if (spin_cnt > sleep_cnt) LOCKSTAT_RECORD4(rw__spin, rw, all_time - sleep_time, LOCKSTAT_READER, (state & RW_LOCK_READ) == 0, (state & RW_LOCK_READ) == 0 ? 0 : RW_READERS(state)); #endif /* * TODO: acquire "owner of record" here. Here be turnstile dragons * however. turnstiles don't like owners changing between calls to * turnstile_wait() currently. */ LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(rw__acquire, rw, contested, waittime, file, line, LOCKSTAT_READER); LOCK_LOG_LOCK("RLOCK", &rw->lock_object, 0, 0, file, line); WITNESS_LOCK(&rw->lock_object, 0, file, line); curthread->td_locks++; curthread->td_rw_rlocks++; }
/* * This function is called when we are unable to obtain a write lock on the * first try. This means that at least one other thread holds either a * read or write lock. */ void __rw_wlock_hard(volatile uintptr_t *c, uintptr_t tid, const char *file, int line) { struct rwlock *rw; struct turnstile *ts; #ifdef ADAPTIVE_RWLOCKS volatile struct thread *owner; int spintries = 0; int i; #endif uintptr_t v, x; #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif #ifdef KDTRACE_HOOKS uintptr_t state; uint64_t spin_cnt = 0; uint64_t sleep_cnt = 0; int64_t sleep_time = 0; int64_t all_time = 0; #endif if (SCHEDULER_STOPPED()) return; rw = rwlock2rw(c); if (rw_wlocked(rw)) { KASSERT(rw->lock_object.lo_flags & LO_RECURSABLE, ("%s: recursing but non-recursive rw %s @ %s:%d\n", __func__, rw->lock_object.lo_name, file, line)); rw->rw_recurse++; if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p recursing", __func__, rw); return; } if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, rw->lock_object.lo_name, (void *)rw->rw_lock, file, line); #ifdef KDTRACE_HOOKS all_time -= lockstat_nsecs(&rw->lock_object); state = rw->rw_lock; #endif while (!_rw_write_lock(rw, tid)) { #ifdef KDTRACE_HOOKS spin_cnt++; #endif #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&rw->lock_object, &contested, &waittime); #ifdef ADAPTIVE_RWLOCKS /* * If the lock is write locked and the owner is * running on another CPU, spin until the owner stops * running or the state of the lock changes. */ v = rw->rw_lock; owner = (struct thread *)RW_OWNER(v); if (!(v & RW_LOCK_READ) && TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, rw, owner); KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", rw->lock_object.lo_name); while ((struct thread*)RW_OWNER(rw->rw_lock) == owner && TD_IS_RUNNING(owner)) { cpu_spinwait(); #ifdef KDTRACE_HOOKS spin_cnt++; #endif } KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); continue; } if ((v & RW_LOCK_READ) && RW_READERS(v) && spintries < rowner_retries) { if (!(v & RW_LOCK_WRITE_SPINNER)) { if (!atomic_cmpset_ptr(&rw->rw_lock, v, v | RW_LOCK_WRITE_SPINNER)) { continue; } } spintries++; KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", rw->lock_object.lo_name); for (i = 0; i < rowner_loops; i++) { if ((rw->rw_lock & RW_LOCK_WRITE_SPINNER) == 0) break; cpu_spinwait(); } KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); #ifdef KDTRACE_HOOKS spin_cnt += rowner_loops - i; #endif if (i != rowner_loops) continue; } #endif ts = turnstile_trywait(&rw->lock_object); v = rw->rw_lock; #ifdef ADAPTIVE_RWLOCKS /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the turnstile * chain lock. If so, drop the turnstile lock and try * again. */ if (!(v & RW_LOCK_READ)) { owner = (struct thread *)RW_OWNER(v); if (TD_IS_RUNNING(owner)) { turnstile_cancel(ts); continue; } } #endif /* * Check for the waiters flags about this rwlock. * If the lock was released, without maintain any pending * waiters queue, simply try to acquire it. * If a pending waiters queue is present, claim the lock * ownership and maintain the pending queue. */ x = v & (RW_LOCK_WAITERS | RW_LOCK_WRITE_SPINNER); if ((v & ~x) == RW_UNLOCKED) { x &= ~RW_LOCK_WRITE_SPINNER; if (atomic_cmpset_acq_ptr(&rw->rw_lock, v, tid | x)) { if (x) turnstile_claim(ts); else turnstile_cancel(ts); break; } turnstile_cancel(ts); continue; } /* * If the RW_LOCK_WRITE_WAITERS flag isn't set, then try to * set it. If we fail to set it, then loop back and try * again. */ if (!(v & RW_LOCK_WRITE_WAITERS)) { if (!atomic_cmpset_ptr(&rw->rw_lock, v, v | RW_LOCK_WRITE_WAITERS)) { turnstile_cancel(ts); continue; } if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set write waiters flag", __func__, rw); } /* * We were unable to acquire the lock and the write waiters * flag is set, so we must block on the turnstile. */ if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__, rw); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(&rw->lock_object); #endif turnstile_wait(ts, rw_owner(rw), TS_EXCLUSIVE_QUEUE); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(&rw->lock_object); sleep_cnt++; #endif if (LOCK_LOG_TEST(&rw->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from turnstile", __func__, rw); #ifdef ADAPTIVE_RWLOCKS spintries = 0; #endif } #ifdef KDTRACE_HOOKS all_time += lockstat_nsecs(&rw->lock_object); if (sleep_time) LOCKSTAT_RECORD4(rw__block, rw, sleep_time, LOCKSTAT_WRITER, (state & RW_LOCK_READ) == 0, (state & RW_LOCK_READ) == 0 ? 0 : RW_READERS(state)); /* Record only the loops spinning and not sleeping. */ if (spin_cnt > sleep_cnt) LOCKSTAT_RECORD4(rw__spin, rw, all_time - sleep_time, LOCKSTAT_READER, (state & RW_LOCK_READ) == 0, (state & RW_LOCK_READ) == 0 ? 0 : RW_READERS(state)); #endif LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(rw__acquire, rw, contested, waittime, file, line, LOCKSTAT_WRITER); }
/* * This function represents the so-called 'hard case' for sx_slock * operation. All 'easy case' failures are redirected to this. Note * that ideally this would be a static function, but it needs to be * accessible from at least sx.h. */ int _sx_slock_hard(struct sx *sx, int opts, const char *file, int line) { GIANT_DECLARE; #ifdef ADAPTIVE_SX volatile struct thread *owner; #endif #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif uintptr_t x; int error = 0; #ifdef KDTRACE_HOOKS uintptr_t state; uint64_t spin_cnt = 0; uint64_t sleep_cnt = 0; int64_t sleep_time = 0; int64_t all_time = 0; #endif if (SCHEDULER_STOPPED()) return (0); #ifdef KDTRACE_HOOKS state = sx->sx_lock; all_time -= lockstat_nsecs(&sx->lock_object); #endif /* * As with rwlocks, we don't make any attempt to try to block * shared locks once there is an exclusive waiter. */ for (;;) { #ifdef KDTRACE_HOOKS spin_cnt++; #endif x = sx->sx_lock; /* * If no other thread has an exclusive lock then try to bump up * the count of sharers. Since we have to preserve the state * of SX_LOCK_EXCLUSIVE_WAITERS, if we fail to acquire the * shared lock loop back and retry. */ if (x & SX_LOCK_SHARED) { MPASS(!(x & SX_LOCK_SHARED_WAITERS)); if (atomic_cmpset_acq_ptr(&sx->sx_lock, x, x + SX_ONE_SHARER)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR4(KTR_LOCK, "%s: %p succeed %p -> %p", __func__, sx, (void *)x, (void *)(x + SX_ONE_SHARER)); break; } continue; } #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&sx->lock_object, &contested, &waittime); #ifdef ADAPTIVE_SX /* * If the owner is running on another CPU, spin until * the owner stops running or the state of the lock * changes. */ if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { x = SX_OWNER(x); owner = (struct thread *)x; if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, sx, owner); KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", sx->lock_object.lo_name); GIANT_SAVE(); while (SX_OWNER(sx->sx_lock) == x && TD_IS_RUNNING(owner)) { #ifdef KDTRACE_HOOKS spin_cnt++; #endif cpu_spinwait(); } KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); continue; } } #endif /* * Some other thread already has an exclusive lock, so * start the process of blocking. */ sleepq_lock(&sx->lock_object); x = sx->sx_lock; /* * The lock could have been released while we spun. * In this case loop back and retry. */ if (x & SX_LOCK_SHARED) { sleepq_release(&sx->lock_object); continue; } #ifdef ADAPTIVE_SX /* * If the owner is running on another CPU, spin until * the owner stops running or the state of the lock * changes. */ if (!(x & SX_LOCK_SHARED) && (sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { owner = (struct thread *)SX_OWNER(x); if (TD_IS_RUNNING(owner)) { sleepq_release(&sx->lock_object); continue; } } #endif /* * Try to set the SX_LOCK_SHARED_WAITERS flag. If we * fail to set it drop the sleep queue lock and loop * back. */ if (!(x & SX_LOCK_SHARED_WAITERS)) { if (!atomic_cmpset_ptr(&sx->sx_lock, x, x | SX_LOCK_SHARED_WAITERS)) { sleepq_release(&sx->lock_object); continue; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set shared waiters flag", __func__, sx); } /* * Since we have been unable to acquire the shared lock, * we have to sleep. */ if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", __func__, sx); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(&sx->lock_object); #endif GIANT_SAVE(); sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? SLEEPQ_INTERRUPTIBLE : 0), SQ_SHARED_QUEUE); if (!(opts & SX_INTERRUPTIBLE)) sleepq_wait(&sx->lock_object, 0); else error = sleepq_wait_sig(&sx->lock_object, 0); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(&sx->lock_object); sleep_cnt++; #endif if (error) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: interruptible sleep by %p suspended by signal", __func__, sx); break; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", __func__, sx); } #ifdef KDTRACE_HOOKS all_time += lockstat_nsecs(&sx->lock_object); if (sleep_time) LOCKSTAT_RECORD4(sx__block, sx, sleep_time, LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0, (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state)); if (spin_cnt > sleep_cnt) LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time, LOCKSTAT_READER, (state & SX_LOCK_SHARED) == 0, (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state)); #endif if (error == 0) LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx, contested, waittime, file, line, LOCKSTAT_READER); GIANT_RESTORE(); return (error); }
/* * This function represents the so-called 'hard case' for sx_xlock * operation. All 'easy case' failures are redirected to this. Note * that ideally this would be a static function, but it needs to be * accessible from at least sx.h. */ int _sx_xlock_hard(struct sx *sx, uintptr_t tid, int opts, const char *file, int line) { GIANT_DECLARE; #ifdef ADAPTIVE_SX volatile struct thread *owner; u_int i, spintries = 0; #endif uintptr_t x; #ifdef LOCK_PROFILING uint64_t waittime = 0; int contested = 0; #endif int error = 0; #ifdef KDTRACE_HOOKS uintptr_t state; uint64_t spin_cnt = 0; uint64_t sleep_cnt = 0; int64_t sleep_time = 0; int64_t all_time = 0; #endif if (SCHEDULER_STOPPED()) return (0); /* If we already hold an exclusive lock, then recurse. */ if (sx_xlocked(sx)) { KASSERT((sx->lock_object.lo_flags & LO_RECURSABLE) != 0, ("_sx_xlock_hard: recursed on non-recursive sx %s @ %s:%d\n", sx->lock_object.lo_name, file, line)); sx->sx_recurse++; atomic_set_ptr(&sx->sx_lock, SX_LOCK_RECURSED); if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p recursing", __func__, sx); return (0); } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__, sx->lock_object.lo_name, (void *)sx->sx_lock, file, line); #ifdef KDTRACE_HOOKS all_time -= lockstat_nsecs(&sx->lock_object); state = sx->sx_lock; #endif while (!atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED, tid)) { #ifdef KDTRACE_HOOKS spin_cnt++; #endif #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&sx->lock_object, &contested, &waittime); #ifdef ADAPTIVE_SX /* * If the lock is write locked and the owner is * running on another CPU, spin until the owner stops * running or the state of the lock changes. */ x = sx->sx_lock; if ((sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { if ((x & SX_LOCK_SHARED) == 0) { x = SX_OWNER(x); owner = (struct thread *)x; if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, sx, owner); KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", sx->lock_object.lo_name); GIANT_SAVE(); while (SX_OWNER(sx->sx_lock) == x && TD_IS_RUNNING(owner)) { cpu_spinwait(); #ifdef KDTRACE_HOOKS spin_cnt++; #endif } KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); continue; } } else if (SX_SHARERS(x) && spintries < asx_retries) { KTR_STATE1(KTR_SCHED, "thread", sched_tdname(curthread), "spinning", "lockname:\"%s\"", sx->lock_object.lo_name); GIANT_SAVE(); spintries++; for (i = 0; i < asx_loops; i++) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR4(KTR_LOCK, "%s: shared spinning on %p with %u and %u", __func__, sx, spintries, i); x = sx->sx_lock; if ((x & SX_LOCK_SHARED) == 0 || SX_SHARERS(x) == 0) break; cpu_spinwait(); #ifdef KDTRACE_HOOKS spin_cnt++; #endif } KTR_STATE0(KTR_SCHED, "thread", sched_tdname(curthread), "running"); if (i != asx_loops) continue; } } #endif sleepq_lock(&sx->lock_object); x = sx->sx_lock; /* * If the lock was released while spinning on the * sleep queue chain lock, try again. */ if (x == SX_LOCK_UNLOCKED) { sleepq_release(&sx->lock_object); continue; } #ifdef ADAPTIVE_SX /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the sleep queue * chain lock. If so, drop the sleep queue lock and try * again. */ if (!(x & SX_LOCK_SHARED) && (sx->lock_object.lo_flags & SX_NOADAPTIVE) == 0) { owner = (struct thread *)SX_OWNER(x); if (TD_IS_RUNNING(owner)) { sleepq_release(&sx->lock_object); continue; } } #endif /* * If an exclusive lock was released with both shared * and exclusive waiters and a shared waiter hasn't * woken up and acquired the lock yet, sx_lock will be * set to SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS. * If we see that value, try to acquire it once. Note * that we have to preserve SX_LOCK_EXCLUSIVE_WAITERS * as there are other exclusive waiters still. If we * fail, restart the loop. */ if (x == (SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS)) { if (atomic_cmpset_acq_ptr(&sx->sx_lock, SX_LOCK_UNLOCKED | SX_LOCK_EXCLUSIVE_WAITERS, tid | SX_LOCK_EXCLUSIVE_WAITERS)) { sleepq_release(&sx->lock_object); CTR2(KTR_LOCK, "%s: %p claimed by new writer", __func__, sx); break; } sleepq_release(&sx->lock_object); continue; } /* * Try to set the SX_LOCK_EXCLUSIVE_WAITERS. If we fail, * than loop back and retry. */ if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) { if (!atomic_cmpset_ptr(&sx->sx_lock, x, x | SX_LOCK_EXCLUSIVE_WAITERS)) { sleepq_release(&sx->lock_object); continue; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p set excl waiters flag", __func__, sx); } /* * Since we have been unable to acquire the exclusive * lock and the exclusive waiters flag is set, we have * to sleep. */ if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p blocking on sleep queue", __func__, sx); #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(&sx->lock_object); #endif GIANT_SAVE(); sleepq_add(&sx->lock_object, NULL, sx->lock_object.lo_name, SLEEPQ_SX | ((opts & SX_INTERRUPTIBLE) ? SLEEPQ_INTERRUPTIBLE : 0), SQ_EXCLUSIVE_QUEUE); if (!(opts & SX_INTERRUPTIBLE)) sleepq_wait(&sx->lock_object, 0); else error = sleepq_wait_sig(&sx->lock_object, 0); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(&sx->lock_object); sleep_cnt++; #endif if (error) { if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: interruptible sleep by %p suspended by signal", __func__, sx); break; } if (LOCK_LOG_TEST(&sx->lock_object, 0)) CTR2(KTR_LOCK, "%s: %p resuming from sleep queue", __func__, sx); } #ifdef KDTRACE_HOOKS all_time += lockstat_nsecs(&sx->lock_object); if (sleep_time) LOCKSTAT_RECORD4(sx__block, sx, sleep_time, LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0, (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state)); if (spin_cnt > sleep_cnt) LOCKSTAT_RECORD4(sx__spin, sx, all_time - sleep_time, LOCKSTAT_WRITER, (state & SX_LOCK_SHARED) == 0, (state & SX_LOCK_SHARED) == 0 ? 0 : SX_SHARERS(state)); #endif if (!error) LOCKSTAT_PROFILE_OBTAIN_RWLOCK_SUCCESS(sx__acquire, sx, contested, waittime, file, line, LOCKSTAT_WRITER); GIANT_RESTORE(); return (error); }
/* * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock. * * This is only called if we need to actually spin for the lock. Recursion * is handled inline. */ void _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t tid, int opts, const char *file, int line) { struct mtx *m; struct lock_delay_arg lda; #ifdef LOCK_PROFILING int contested = 0; uint64_t waittime = 0; #endif #ifdef KDTRACE_HOOKS int64_t spin_time = 0; #endif if (SCHEDULER_STOPPED()) return; lock_delay_arg_init(&lda, &mtx_spin_delay); m = mtxlock2mtx(c); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m); KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "spinning", "lockname:\"%s\"", m->lock_object.lo_name); #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime); #ifdef KDTRACE_HOOKS spin_time -= lockstat_nsecs(&m->lock_object); #endif for (;;) { if (m->mtx_lock == MTX_UNOWNED && _mtx_obtain_lock(m, tid)) break; /* Give interrupts a chance while we spin. */ spinlock_exit(); while (m->mtx_lock != MTX_UNOWNED) { if (lda.spin_cnt < 10000000) { lock_delay(&lda); continue; } lda.spin_cnt++; if (lda.spin_cnt < 60000000 || kdb_active || panicstr != NULL) DELAY(1); else _mtx_lock_spin_failed(m); cpu_spinwait(); } spinlock_enter(); } #ifdef KDTRACE_HOOKS spin_time += lockstat_nsecs(&m->lock_object); #endif if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m); KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "running"); #ifdef KDTRACE_HOOKS LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m, contested, waittime, file, line); if (spin_time != 0) LOCKSTAT_RECORD1(spin__spin, m, spin_time); #endif }
/* * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock. * * We call this if the lock is either contested (i.e. we need to go to * sleep waiting for it), or if we need to recurse on it. */ void __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t tid, int opts, const char *file, int line) { struct mtx *m; struct turnstile *ts; uintptr_t v; #ifdef ADAPTIVE_MUTEXES volatile struct thread *owner; #endif #ifdef KTR int cont_logged = 0; #endif #ifdef LOCK_PROFILING int contested = 0; uint64_t waittime = 0; #endif #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS) struct lock_delay_arg lda; #endif #ifdef KDTRACE_HOOKS u_int sleep_cnt = 0; int64_t sleep_time = 0; int64_t all_time = 0; #endif if (SCHEDULER_STOPPED()) return; #if defined(ADAPTIVE_MUTEXES) lock_delay_arg_init(&lda, &mtx_delay); #elif defined(KDTRACE_HOOKS) lock_delay_arg_init(&lda, NULL); #endif m = mtxlock2mtx(c); if (mtx_owned(m)) { KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 || (opts & MTX_RECURSE) != 0, ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n", m->lock_object.lo_name, file, line)); opts &= ~MTX_RECURSE; m->mtx_recurse++; atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m); return; } opts &= ~MTX_RECURSE; #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR4(KTR_LOCK, "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d", m->lock_object.lo_name, (void *)m->mtx_lock, file, line); #ifdef KDTRACE_HOOKS all_time -= lockstat_nsecs(&m->lock_object); #endif for (;;) { if (m->mtx_lock == MTX_UNOWNED && _mtx_obtain_lock(m, tid)) break; #ifdef KDTRACE_HOOKS lda.spin_cnt++; #endif #ifdef ADAPTIVE_MUTEXES /* * If the owner is running on another CPU, spin until the * owner stops running or the state of the lock changes. */ v = m->mtx_lock; if (v != MTX_UNOWNED) { owner = (struct thread *)(v & ~MTX_FLAGMASK); if (TD_IS_RUNNING(owner)) { if (LOCK_LOG_TEST(&m->lock_object, 0)) CTR3(KTR_LOCK, "%s: spinning on %p held by %p", __func__, m, owner); KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "spinning", "lockname:\"%s\"", m->lock_object.lo_name); while (mtx_owner(m) == owner && TD_IS_RUNNING(owner)) lock_delay(&lda); KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "running"); continue; } } #endif ts = turnstile_trywait(&m->lock_object); v = m->mtx_lock; /* * Check if the lock has been released while spinning for * the turnstile chain lock. */ if (v == MTX_UNOWNED) { turnstile_cancel(ts); continue; } #ifdef ADAPTIVE_MUTEXES /* * The current lock owner might have started executing * on another CPU (or the lock could have changed * owners) while we were waiting on the turnstile * chain lock. If so, drop the turnstile lock and try * again. */ owner = (struct thread *)(v & ~MTX_FLAGMASK); if (TD_IS_RUNNING(owner)) { turnstile_cancel(ts); continue; } #endif /* * If the mutex isn't already contested and a failure occurs * setting the contested bit, the mutex was either released * or the state of the MTX_RECURSED bit changed. */ if ((v & MTX_CONTESTED) == 0 && !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) { turnstile_cancel(ts); continue; } /* * We definitely must sleep for this lock. */ mtx_assert(m, MA_NOTOWNED); #ifdef KTR if (!cont_logged) { CTR6(KTR_CONTENTION, "contention: %p at %s:%d wants %s, taken by %s:%d", (void *)tid, file, line, m->lock_object.lo_name, WITNESS_FILE(&m->lock_object), WITNESS_LINE(&m->lock_object)); cont_logged = 1; } #endif /* * Block on the turnstile. */ #ifdef KDTRACE_HOOKS sleep_time -= lockstat_nsecs(&m->lock_object); #endif turnstile_wait(ts, mtx_owner(m), TS_EXCLUSIVE_QUEUE); #ifdef KDTRACE_HOOKS sleep_time += lockstat_nsecs(&m->lock_object); sleep_cnt++; #endif } #ifdef KDTRACE_HOOKS all_time += lockstat_nsecs(&m->lock_object); #endif #ifdef KTR if (cont_logged) { CTR4(KTR_CONTENTION, "contention end: %s acquired by %p at %s:%d", m->lock_object.lo_name, (void *)tid, file, line); } #endif LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested, waittime, file, line); #ifdef KDTRACE_HOOKS if (sleep_time) LOCKSTAT_RECORD1(adaptive__block, m, sleep_time); /* * Only record the loops spinning and not sleeping. */ if (lda.spin_cnt > sleep_cnt) LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time); #endif }
void _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v) #endif { struct mtx *m; struct lock_delay_arg lda; uintptr_t tid; #ifdef LOCK_PROFILING int contested = 0; uint64_t waittime = 0; #endif #ifdef KDTRACE_HOOKS int64_t spin_time = 0; #endif #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) int doing_lockprof; #endif tid = (uintptr_t)curthread; m = mtxlock2mtx(c); if (__predict_false(v == MTX_UNOWNED)) v = MTX_READ_VALUE(m); if (__predict_false(v == tid)) { m->mtx_recurse++; return; } if (SCHEDULER_STOPPED()) return; lock_delay_arg_init(&lda, &mtx_spin_delay); if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m); KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "spinning", "lockname:\"%s\"", m->lock_object.lo_name); #ifdef HWPMC_HOOKS PMC_SOFT_CALL( , , lock, failed); #endif lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime); #ifdef LOCK_PROFILING doing_lockprof = 1; #elif defined(KDTRACE_HOOKS) doing_lockprof = lockstat_enabled; if (__predict_false(doing_lockprof)) spin_time -= lockstat_nsecs(&m->lock_object); #endif for (;;) { if (v == MTX_UNOWNED) { if (_mtx_obtain_lock_fetch(m, &v, tid)) break; continue; } /* Give interrupts a chance while we spin. */ spinlock_exit(); do { if (lda.spin_cnt < 10000000) { lock_delay(&lda); } else { lda.spin_cnt++; if (lda.spin_cnt < 60000000 || kdb_active || panicstr != NULL) DELAY(1); else _mtx_lock_spin_failed(m); cpu_spinwait(); } v = MTX_READ_VALUE(m); } while (v != MTX_UNOWNED); spinlock_enter(); } if (LOCK_LOG_TEST(&m->lock_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m); KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid), "running"); #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING) if (__predict_true(!doing_lockprof)) return; #endif #ifdef KDTRACE_HOOKS spin_time += lockstat_nsecs(&m->lock_object); #endif LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m, contested, waittime, file, line); #ifdef KDTRACE_HOOKS if (lda.spin_cnt != 0) LOCKSTAT_RECORD1(spin__spin, m, spin_time); #endif }