Example #1
0
File: node.c Project: jthatch12/STi
/* register memory section under specified node if it spans that node */
int register_mem_sect_under_node(struct memory_block *mem_blk, int nid)
{
	int ret;
	unsigned long pfn, sect_start_pfn, sect_end_pfn;

	if (!mem_blk)
		return -EFAULT;
	if (!node_online(nid))
		return 0;

	sect_start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
	sect_end_pfn = section_nr_to_pfn(mem_blk->end_section_nr);
	sect_end_pfn += PAGES_PER_SECTION - 1;
	for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
		int page_nid;

		page_nid = get_nid_for_pfn(pfn);
		if (page_nid < 0)
			continue;
		if (page_nid != nid)
			continue;
		ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
					&mem_blk->dev.kobj,
					kobject_name(&mem_blk->dev.kobj));
		if (ret)
			return ret;

		return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
				&node_devices[nid]->dev.kobj,
				kobject_name(&node_devices[nid]->dev.kobj));
	}
	/* mem section does not span the specified node */
	return 0;
}
/**
 * alloc_bootmem_section - allocate boot memory from a specific section
 * @size: size of the request in bytes
 * @section_nr: sparse map section to allocate from
 *
 * Return NULL on failure.
 */
void * __init alloc_bootmem_section(unsigned long size,
				    unsigned long section_nr)
{
	unsigned long pfn, goal, limit;

	pfn = section_nr_to_pfn(section_nr);
	goal = pfn << PAGE_SHIFT;
	limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;

	return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
					 SMP_CACHE_BYTES, goal, limit);
}
Example #3
0
/* unregister memory section under all nodes that it spans */
int unregister_mem_sect_under_nodes(struct memory_block *mem_blk)
{
	nodemask_t unlinked_nodes;
	unsigned long pfn, sect_start_pfn, sect_end_pfn;

	if (!mem_blk)
		return -EFAULT;
	nodes_clear(unlinked_nodes);
	sect_start_pfn = section_nr_to_pfn(mem_blk->phys_index);
	sect_end_pfn = sect_start_pfn + PAGES_PER_SECTION - 1;
	for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
		int nid;

		nid = get_nid_for_pfn(pfn);
		if (nid < 0)
			continue;
		if (!node_online(nid))
			continue;
		if (node_test_and_set(nid, unlinked_nodes))
			continue;
		sysfs_remove_link(&node_devices[nid].sysdev.kobj,
			 kobject_name(&mem_blk->sysdev.kobj));
	}
	return 0;
}
Example #4
0
static int pseries_add_memory(struct device_node *np)
{
    const char *type;
    const unsigned int *my_index;
    const unsigned int *regs;
    u64 start_pfn;
    int ret = -EINVAL;

    /*
     * Check to see if we are actually adding memory
     */
    type = of_get_property(np, "device_type", NULL);
    if (type == NULL || strcmp(type, "memory") != 0)
        return 0;

    /*
     * Find the memory index and size of the added section
     */
    my_index = of_get_property(np, "ibm,my-drc-index", NULL);
    if (!my_index)
        return ret;

    regs = of_get_property(np, "reg", NULL);
    if (!regs)
        return ret;

    start_pfn = section_nr_to_pfn(*my_index & 0xffff);

    /*
     * Update memory region to represent the memory add
     */
    lmb_add(start_pfn << PAGE_SHIFT, regs[3]);
    return 0;
}
Example #5
0
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct page *first_page;
	struct zone *zone;

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;
	first_page = pfn_to_page(start_pfn);

	/* The block contains more than one zone can not be offlined. */
	if (!test_pages_in_a_zone(start_pfn, end_pfn))
		return sprintf(buf, "none\n");

	zone = page_zone(first_page);

	if (zone_idx(zone) == ZONE_MOVABLE - 1) {
		/*The mem block is the last memoryblock of this zone.*/
		if (end_pfn == zone_end_pfn(zone))
			return sprintf(buf, "%s %s\n",
					zone->name, (zone + 1)->name);
	}

	if (zone_idx(zone) == ZONE_MOVABLE) {
		/*The mem block is the first memoryblock of ZONE_MOVABLE.*/
		if (start_pfn == zone->zone_start_pfn)
			return sprintf(buf, "%s %s\n",
					zone->name, (zone - 1)->name);
	}

	return sprintf(buf, "%s\n", zone->name);
}
Example #6
0
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
{
	struct memory_block *mem;
	unsigned long start_pfn;
	int scn_nr;
	int ret = 0;

	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
	if (!mem)
		return -ENOMEM;

	scn_nr = __section_nr(section);
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
	mem->state = state;
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

	ret = register_memory(mem);

	*memory = mem;
	return ret;
}
Example #7
0
int ehea_create_busmap( void )
{
	u64 vaddr = EHEA_BUSMAP_START;
	unsigned long high_section_index = 0;
	int i;

	/*
	 * Sections are not in ascending order -> Loop over all sections and
	 * find the highest PFN to compute the required map size.
	*/
	ehea_bmap.valid_sections = 0;

	for (i = 0; i < NR_MEM_SECTIONS; i++)
		if (valid_section_nr(i))
			high_section_index = i;

	ehea_bmap.entries = high_section_index + 1;
	ehea_bmap.vaddr = vmalloc(ehea_bmap.entries * sizeof(*ehea_bmap.vaddr));

	if (!ehea_bmap.vaddr)
		return -ENOMEM;

	for (i = 0 ; i < ehea_bmap.entries; i++) {
		unsigned long pfn = section_nr_to_pfn(i);

		if (pfn_valid(pfn)) {
			ehea_bmap.vaddr[i] = vaddr;
			vaddr += EHEA_SECTSIZE;
			ehea_bmap.valid_sections++;
		} else
			ehea_bmap.vaddr[i] = 0;
	}

	return 0;
}
Example #8
0
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 * Must already be protected by mem_hotplug_begin().
 */
static int
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
{
	unsigned long start_pfn;
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct page *first_page;
	int ret;

	start_pfn = section_nr_to_pfn(phys_index);
	first_page = pfn_to_page(start_pfn);

	switch (action) {
	case MEM_ONLINE:
		if (!pages_correctly_reserved(start_pfn))
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
	}

	return ret;
}
Example #9
0
File: node.c Project: jthatch12/STi
/* unregister memory section under all nodes that it spans */
int unregister_mem_sect_under_nodes(struct memory_block *mem_blk,
				    unsigned long phys_index)
{
	NODEMASK_ALLOC(nodemask_t, unlinked_nodes, GFP_KERNEL);
	unsigned long pfn, sect_start_pfn, sect_end_pfn;

	if (!mem_blk) {
		NODEMASK_FREE(unlinked_nodes);
		return -EFAULT;
	}
	if (!unlinked_nodes)
		return -ENOMEM;
	nodes_clear(*unlinked_nodes);

	sect_start_pfn = section_nr_to_pfn(phys_index);
	sect_end_pfn = sect_start_pfn + PAGES_PER_SECTION - 1;
	for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
		int nid;

		nid = get_nid_for_pfn(pfn);
		if (nid < 0)
			continue;
		if (!node_online(nid))
			continue;
		if (node_test_and_set(nid, *unlinked_nodes))
			continue;
		sysfs_remove_link(&node_devices[nid]->dev.kobj,
			 kobject_name(&mem_blk->dev.kobj));
		sysfs_remove_link(&mem_blk->dev.kobj,
			 kobject_name(&node_devices[nid]->dev.kobj));
	}
	NODEMASK_FREE(unlinked_nodes);
	return 0;
}
/* register memory section under specified node if it spans that node */
int register_mem_sect_under_node(struct memory_block *mem_blk, int nid)
{
	int ret;
	unsigned long pfn, sect_start_pfn, sect_end_pfn;

	if (!mem_blk)
		return -EFAULT;
	if (!node_online(nid))
		return 0;

	sect_start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
	sect_end_pfn = section_nr_to_pfn(mem_blk->end_section_nr);
	sect_end_pfn += PAGES_PER_SECTION - 1;
	for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
		int page_nid;

		/*
		 * memory block could have several absent sections from start.
		 * skip pfn range from absent section
		 */
		if (!pfn_present(pfn)) {
			pfn = round_down(pfn + PAGES_PER_SECTION,
					 PAGES_PER_SECTION) - 1;
			continue;
		}

		page_nid = get_nid_for_pfn(pfn);
		if (page_nid < 0)
			continue;
		if (page_nid != nid)
			continue;
		ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
					&mem_blk->dev.kobj,
					kobject_name(&mem_blk->dev.kobj));
		if (ret)
			return ret;

		return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
				&node_devices[nid]->dev.kobj,
				kobject_name(&node_devices[nid]->dev.kobj));
	}
	/* mem section does not span the specified node */
	return 0;
}
Example #11
0
static int pseries_remove_memory(struct device_node *np)
{
    const char *type;
    const unsigned int *my_index;
    const unsigned int *regs;
    u64 start_pfn, start;
    struct zone *zone;
    int ret = -EINVAL;

    /*
     * Check to see if we are actually removing memory
     */
    type = of_get_property(np, "device_type", NULL);
    if (type == NULL || strcmp(type, "memory") != 0)
        return 0;

    /*
     * Find the memory index and size of the removing section
     */
    my_index = of_get_property(np, "ibm,my-drc-index", NULL);
    if (!my_index)
        return ret;

    regs = of_get_property(np, "reg", NULL);
    if (!regs)
        return ret;

    start_pfn = section_nr_to_pfn(*my_index & 0xffff);
    zone = page_zone(pfn_to_page(start_pfn));

    /*
     * Remove section mappings and sysfs entries for the
     * section of the memory we are removing.
     *
     * NOTE: Ideally, this should be done in generic code like
     * remove_memory(). But remove_memory() gets called by writing
     * to sysfs "state" file and we can't remove sysfs entries
     * while writing to it. So we have to defer it to here.
     */
    ret = __remove_pages(zone, start_pfn, regs[3] >> PAGE_SHIFT);
    if (ret)
        return ret;

    /*
     * Update memory regions for memory remove
     */
    lmb_remove(start_pfn << PAGE_SHIFT, regs[3]);

    /*
     * Remove htab bolted mappings for this section of memory
     */
    start = (unsigned long)__va(start_pfn << PAGE_SHIFT);
    ret = remove_section_mapping(start, start + regs[3]);
    return ret;
}
Example #12
0
/*
 * Show whether the section of memory is likely to be hot-removable
 */
static ssize_t show_mem_removable(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
{
	unsigned long start_pfn;
	int ret;
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);

	start_pfn = section_nr_to_pfn(mem->phys_index);
	ret = is_mem_section_removable(start_pfn, PAGES_PER_SECTION);
	return sprintf(buf, "%d\n", ret);
}
Example #13
0
/*
 * Show whether the section of memory is likely to be hot-removable
 */
static ssize_t show_mem_removable(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
{
	unsigned long i, pfn;
	int ret = 1;
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);

	for (i = 0; i < sections_per_block; i++) {
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

	return sprintf(buf, "%d\n", ret);
}
Example #14
0
/*
 * Show whether the section of memory is likely to be hot-removable
 */
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
{
	unsigned long i, pfn;
	int ret = 1;
	struct memory_block *mem = to_memory_block(dev);

	for (i = 0; i < sections_per_block; i++) {
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

	return sprintf(buf, "%d\n", ret);
}
Example #15
0
static struct page *sparse_early_mem_map_alloc(unsigned long pnum)
{
	struct page *map;
	int nid = early_pfn_to_nid(section_nr_to_pfn(pnum));

	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

	map = alloc_bootmem_node(NODE_DATA(nid),
			sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
	mem_section[pnum].section_mem_map = 0;
	return NULL;
}
Example #16
0
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct page *first_page;
	struct zone *zone;
	int zone_shift = 0;

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;
	first_page = pfn_to_page(start_pfn);

	/* The block contains more than one zone can not be offlined. */
	if (!test_pages_in_a_zone(start_pfn, end_pfn))
		return sprintf(buf, "none\n");

	zone = page_zone(first_page);

	/* MMOP_ONLINE_KEEP */
	sprintf(buf, "%s", zone->name);

	/* MMOP_ONLINE_KERNEL */
	zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_NORMAL);
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
	}

	/* MMOP_ONLINE_MOVABLE */
	zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_MOVABLE);
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
	}

	strcat(buf, "\n");

	return strlen(buf);
}
Example #17
0
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
{
	struct memory_block *mem;
	unsigned long start_pfn;
	int scn_nr;
	int ret = 0;

	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
	if (!mem)
		return -ENOMEM;

	scn_nr = __section_nr(section);
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
	mem->state = state;
	mem->section_count++;
	mutex_init(&mem->state_mutex);
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

	ret = register_memory(mem);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
	if (!ret)
		ret = mem_create_simple_file(mem, end_phys_index);
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
	if (!ret)
		ret = mem_create_simple_file(mem, removable);

	*memory = mem;
	return ret;
}
Example #18
0
/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}
Example #19
0
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}