Example #1
0
    inline bool segments_intersect(const coordinate& first_segment_a, const coordinate& first_segment_b,
                                   const coordinate& second_segment_a, const coordinate& second_segment_b)
    {
        auto params = segment_intersection(first_segment_a, first_segment_b, second_segment_a, second_segment_b);
        auto u = params.first_param;
        auto t = params.second_param;
        if (params.colinear)
        {
            return false;
        }

        return (u >= 0 && u <= 1.0) && (t >= 0 && t <= 1.0);
    }
Example #2
0
void LineBuilder::build() {

	// Need at least 2 points to draw a line
	if (points.size() < 2) {
		clear_output();
		return;
	}

	const float hw = width / 2.f;
	const float hw_sq = hw * hw;
	const float sharp_limit_sq = sharp_limit * sharp_limit;
	const int len = points.size();

	// Initial values

	Vector2 pos0 = points[0];
	Vector2 pos1 = points[1];
	Vector2 f0 = (pos1 - pos0).normalized();
	Vector2 u0 = rotate90(f0);
	Vector2 pos_up0 = pos0 + u0 * hw;
	Vector2 pos_down0 = pos0 - u0 * hw;

	Color color0;
	Color color1;

	float current_distance0 = 0.f;
	float current_distance1 = 0.f;
	float total_distance;
	_interpolate_color = gradient != NULL;
	bool distance_required = _interpolate_color || texture_mode == LINE_TEXTURE_TILE;
	if (distance_required)
		total_distance = calculate_total_distance(points);
	if (_interpolate_color)
		color0 = gradient->get_color(0);
	else
		colors.push_back(default_color);

	float uvx0 = 0.f;
	float uvx1 = 0.f;

	// Begin cap
	if (begin_cap_mode == LINE_CAP_BOX) {
		// Push back first vertices a little bit
		pos_up0 -= f0 * hw;
		pos_down0 -= f0 * hw;
		// The line's outer length will be a little higher due to begin and end caps
		total_distance += width;
		current_distance0 += hw;
		current_distance1 = current_distance0;
	} else if (begin_cap_mode == LINE_CAP_ROUND) {
		if (texture_mode == LINE_TEXTURE_TILE) {
			uvx0 = 0.5f;
		}
		new_arc(pos0, pos_up0 - pos0, -Math_PI, color0, Rect2(0.f, 0.f, 1.f, 1.f));
		total_distance += width;
		current_distance0 += hw;
		current_distance1 = current_distance0;
	}

	strip_begin(pos_up0, pos_down0, color0, uvx0);

	//  pos_up0 ------------- pos_up1 --------------------
	//     |                     |
	//   pos0 - - - - - - - - - pos1 - - - - - - - - - pos2
	//     |                     |
	// pos_down0 ------------ pos_down1 ------------------
	//
	//   i-1                     i                      i+1

	// http://labs.hyperandroid.com/tag/opengl-lines
	// (not the same implementation but visuals help a lot)

	// For each additional segment
	for (int i = 1; i < len - 1; ++i) {

		pos1 = points[i];
		Vector2 pos2 = points[i + 1];

		Vector2 f1 = (pos2 - pos1).normalized();
		Vector2 u1 = rotate90(f1);

		// Determine joint orientation
		const float dp = u0.dot(f1);
		const Orientation orientation = (dp > 0.f ? UP : DOWN);

		Vector2 inner_normal0, inner_normal1;
		if (orientation == UP) {
			inner_normal0 = u0 * hw;
			inner_normal1 = u1 * hw;
		} else {
			inner_normal0 = -u0 * hw;
			inner_normal1 = -u1 * hw;
		}

		// ---------------------------
		//                        /
		// 0                     /    1
		//                      /          /
		// --------------------x------    /
		//                    /          /    (here shown with orientation == DOWN)
		//                   /          /
		//                  /          /
		//                 /          /
		//                     2     /
		//                          /

		// Find inner intersection at the joint
		Vector2 corner_pos_in, corner_pos_out;
		SegmentIntersectionResult intersection_result = segment_intersection(
				pos0 + inner_normal0, pos1 + inner_normal0,
				pos1 + inner_normal1, pos2 + inner_normal1,
				&corner_pos_in);

		if (intersection_result == SEGMENT_INTERSECT)
			// Inner parts of the segments intersect
			corner_pos_out = 2.f * pos1 - corner_pos_in;
		else {
			// No intersection, segments are either parallel or too sharp
			corner_pos_in = pos1 + inner_normal0;
			corner_pos_out = pos1 - inner_normal0;
		}

		Vector2 corner_pos_up, corner_pos_down;
		if (orientation == UP) {
			corner_pos_up = corner_pos_in;
			corner_pos_down = corner_pos_out;
		} else {
			corner_pos_up = corner_pos_out;
			corner_pos_down = corner_pos_in;
		}

		LineJointMode current_joint_mode = joint_mode;

		Vector2 pos_up1, pos_down1;
		if (intersection_result == SEGMENT_INTERSECT) {
			// Fallback on bevel if sharp angle is too high (because it would produce very long miters)
			if (current_joint_mode == LINE_JOINT_SHARP && corner_pos_out.distance_squared_to(pos1) / hw_sq > sharp_limit_sq) {
				current_joint_mode = LINE_JOINT_BEVEL;
			}
			if (current_joint_mode == LINE_JOINT_SHARP) {
				// In this case, we won't create joint geometry,
				// The previous and next line quads will directly share an edge.
				pos_up1 = corner_pos_up;
				pos_down1 = corner_pos_down;
			} else {
				// Bevel or round
				if (orientation == UP) {
					pos_up1 = corner_pos_up;
					pos_down1 = pos1 - u0 * hw;
				} else {
					pos_up1 = pos1 + u0 * hw;
					pos_down1 = corner_pos_down;
				}
			}
		} else {
			// No intersection: fallback
			pos_up1 = corner_pos_up;
			pos_down1 = corner_pos_down;
		}

		// Add current line body quad
		// Triangles are clockwise
		if (distance_required) {
			current_distance1 += pos0.distance_to(pos1);
		}
		if (_interpolate_color) {
			color1 = gradient->get_color_at_offset(current_distance1 / total_distance);
		}
		if (texture_mode == LINE_TEXTURE_TILE) {
			uvx0 = current_distance0 / width;
			uvx1 = current_distance1 / width;
		}

		strip_add_quad(pos_up1, pos_down1, color1, uvx1);

		// Swap vars for use in the next line
		color0 = color1;
		u0 = u1;
		f0 = f1;
		pos0 = pos1;
		current_distance0 = current_distance1;
		if (intersection_result == SEGMENT_INTERSECT) {
			if (current_joint_mode == LINE_JOINT_SHARP) {
				pos_up0 = pos_up1;
				pos_down0 = pos_down1;
			} else {
				if (orientation == UP) {
					pos_up0 = corner_pos_up;
					pos_down0 = pos1 - u1 * hw;
				} else {
					pos_up0 = pos1 + u1 * hw;
					pos_down0 = corner_pos_down;
				}
			}
		} else {
			pos_up0 = pos1 + u1 * hw;
			pos_down0 = pos1 - u1 * hw;
		}
		// From this point, bu0 and bd0 concern the next segment

		// Add joint geometry
		if (current_joint_mode != LINE_JOINT_SHARP) {

			// ________________ cbegin
			//               / \
			//              /   \
			// ____________/_ _ _\ cend
			//             |     |
			//             |     |
			//             |     |

			Vector2 cbegin, cend;
			if (orientation == UP) {
				cbegin = pos_down1;
				cend = pos_down0;
			} else {
				cbegin = pos_up1;
				cend = pos_up0;
			}

			if (current_joint_mode == LINE_JOINT_BEVEL) {
				strip_add_tri(cend, orientation);
			} else if (current_joint_mode == LINE_JOINT_ROUND) {
				Vector2 vbegin = cbegin - pos1;
				Vector2 vend = cend - pos1;
				strip_add_arc(pos1, vend.angle_to(vbegin), orientation);
			}

			if (intersection_result != SEGMENT_INTERSECT)
				// In this case the joint is too f****d up to be re-used,
				// start again the strip with fallback points
				strip_begin(pos_up0, pos_down0, color1, uvx1);
		}
	}

	// Last (or only) segment

	pos1 = points[points.size() - 1];

	Vector2 pos_up1 = pos1 + u0 * hw;
	Vector2 pos_down1 = pos1 - u0 * hw;

	// End cap (box)
	if (end_cap_mode == LINE_CAP_BOX) {
		pos_up1 += f0 * hw;
		pos_down1 += f0 * hw;
	}

	if (distance_required) {
		current_distance1 += pos0.distance_to(pos1);
	}
	if (_interpolate_color) {
		color1 = gradient->get_color(gradient->get_points_count() - 1);
	}
	if (texture_mode == LINE_TEXTURE_TILE) {
		uvx1 = current_distance1 / width;
	}

	strip_add_quad(pos_up1, pos_down1, color1, uvx1);

	// End cap (round)
	if (end_cap_mode == LINE_CAP_ROUND) {
		// Note: color is not used in case we don't interpolate...
		Color color = _interpolate_color ? gradient->get_color(gradient->get_points_count() - 1) : Color(0, 0, 0);
		new_arc(pos1, pos_up1 - pos1, Math_PI, color, Rect2(uvx1 - 0.5f, 0.f, 1.f, 1.f));
	}
}