Example #1
0
void PathBase::performTask(){
  // Calculate the distance from the frame
  double val=calculateDistanceFunction( getCurrentTask(), true );
  // Put the element value in element zero
  setElementValue( 0, val ); setElementValue( 1, 1.0 );
  return;
}
BulgePatchDialog::BulgePatchDialog() :
	gtkutil::Dialog(_(WINDOW_TITLE), GlobalMainFrame().getTopLevelWindow())
{
	_noiseHandle = addEntryBox(_(LABEL_NOISE));

	setElementValue(_noiseHandle, string::to_string(NOISE));
}
Vector BridgedMultiColvarFunction::retrieveCentralAtomPos(){
  if( atomsWithCatomDer.getNumberActive()==0 ){
      Vector cvec = mycolv->retrieveCentralAtomPos();

      // Copy the value and derivatives from the MultiColvar
      atomsWithCatomDer.emptyActiveMembers();
      for(unsigned i=0;i<3;++i){
         setElementValue( getCentralAtomElementIndex() + i, mycolv->getElementValue( mycolv->getCentralAtomElementIndex() + i ) );
         unsigned nbase = ( getCentralAtomElementIndex() + i)*getNumberOfDerivatives();
         unsigned nbas2 = ( mycolv->getCentralAtomElementIndex() + i )*mycolv->getNumberOfDerivatives();
         for(unsigned j=0;j<mycolv->atomsWithCatomDer.getNumberActive();++j){
             unsigned n=mycolv->atomsWithCatomDer[j], nx=3*n; atomsWithCatomDer.activate(n);
             addElementDerivative(nbase + nx + 0, mycolv->getElementDerivative(nbas2 + nx + 0) );
             addElementDerivative(nbase + nx + 1, mycolv->getElementDerivative(nbas2 + nx + 1) );
             addElementDerivative(nbase + nx + 2, mycolv->getElementDerivative(nbas2 + nx + 2) ); 
         } 
      }
      for(unsigned j=0;j<mycolv->atomsWithCatomDer.getNumberActive();++j) atomsWithCatomDer.updateIndex( mycolv->atomsWithCatomDer[j] );
      atomsWithCatomDer.sortActiveList();
      return cvec;
  }
  Vector cvec;
  for(unsigned i=0;i<3;++i) cvec[i]=getElementValue(1+i);
  return cvec;
}
void BridgedMultiColvarFunction::clearDerivativesAfterTask( const unsigned& ider ){
  unsigned vstart=getNumberOfDerivatives()*ider;
  if( derivativesAreRequired() ){
     // Clear atom derivatives
     for(unsigned i=0;i<atoms_with_derivatives.getNumberActive();++i){
        unsigned iatom=vstart+3*atoms_with_derivatives[i];
        setElementDerivative( iatom, 0.0 ); iatom++;
        setElementDerivative( iatom, 0.0 ); iatom++;
        setElementDerivative( iatom, 0.0 );
     }
     // Clear virial contribution
     unsigned nvir=vstart+3*mycolv->getNumberOfAtoms();
     for(unsigned j=0;j<9;++j){
        setElementDerivative( nvir, 0.0 ); nvir++;
     }
     // Clear derivatives of local atoms
     for(unsigned j=0;j<getNumberOfAtoms();++j){
        setElementDerivative( nvir, 0.0 ); nvir++;
        setElementDerivative( nvir, 0.0 ); nvir++;
        setElementDerivative( nvir, 0.0 ); nvir++;
     }
     plumed_dbg_assert( (nvir-vstart)==getNumberOfDerivatives() );
  }
  // Clear values
  thisval_wasset[ider]=false; setElementValue( ider, 0.0 ); thisval_wasset[ider]=false;
}
Example #5
0
Vector MultiColvarBase::retrieveCentralAtomPos(){
  if( atomsWithCatomDer.getNumberActive()==0 ){
      Vector cvec = calculateCentralAtomPosition();
      for(unsigned i=0;i<3;++i) setElementValue( getCentralAtomElementIndex()+i, cvec[i] );
      return cvec;
  }
  Vector cvec; 
  for(unsigned i=0;i<3;++i) cvec[i]=getElementValue( 2+i );
  return cvec;
}
Example #6
0
void MultiColvarBase::quotientRule( const unsigned& uder, const unsigned& vder, const unsigned& iout ){
  unsigned ustart=uder*getNumberOfDerivatives();
  unsigned vstart=vder*getNumberOfDerivatives();
  unsigned istart=iout*getNumberOfDerivatives();
  double weight = getElementValue( vder ), pref = getElementValue( uder ) / (weight*weight);
  if( !doNotCalculateDerivatives() ){
      for(unsigned i=0;i<atoms_with_derivatives.getNumberActive();++i){
          unsigned n=3*atoms_with_derivatives[i], nx=n, ny=n+1, nz=n+2;
          setElementDerivative( istart + nx, getElementDerivative(ustart+nx) / weight - pref*getElementDerivative(vstart+nx) );
          setElementDerivative( istart + ny, getElementDerivative(ustart+ny) / weight - pref*getElementDerivative(vstart+ny) );
          setElementDerivative( istart + nz, getElementDerivative(ustart+nz) / weight - pref*getElementDerivative(vstart+nz) );
      }
      unsigned vbase=3*getNumberOfAtoms();
      for(unsigned i=0;i<9;++i){ 
          setElementDerivative( istart + vbase + i, getElementDerivative(ustart+vbase+i) / weight - pref*getElementDerivative(vstart+vbase+i) );
      }
  }
  thisval_wasset[iout]=false; setElementValue( iout, getElementValue(uder) / weight );
}
Example #7
0
void MultiColvarBase::performTask(){
  // Currently no atoms have derivatives so deactivate those that are active
  atoms_with_derivatives.deactivateAll();
  // Currently no central atoms have derivatives so deactive them all
  atomsWithCatomDer.deactivateAll();
  // Retrieve the atom list
  if( !setupCurrentAtomList( getCurrentTask() ) ) return;

  // Do a quick check on the size of this contribution  
  calculateWeight(); // printf("HELLO WEIGHT %f \n",getElementValue(1) );
  if( getElementValue(1)<getTolerance() ){
     updateActiveAtoms();
     return;   
  }

  // Compute everything
  double vv=doCalculation();
  // Set the value of this element in ActionWithVessel
  setElementValue( 0, vv );
  return;
}
Example #8
0
void MultiColvarBase::clearDerivativesAfterTask( const unsigned& ider ){
  unsigned vstart=getNumberOfDerivatives()*ider;
  thisval_wasset[ider]=false; setElementValue( ider, 0.0 );
  thisval_wasset[ider]=false;
  if( ider>1 && ider<5 && derivativesAreRequired() ){
     for(unsigned i=0;i<atomsWithCatomDer.getNumberActive();++i){
        unsigned iatom=vstart+3*atomsWithCatomDer[i];
        setElementDerivative( iatom, 0.0 ); iatom++;
        setElementDerivative( iatom, 0.0 ); iatom++;
        setElementDerivative( iatom, 0.0 );
     }  
  } else if( derivativesAreRequired() ) {
     for(unsigned i=0;i<atoms_with_derivatives.getNumberActive();++i){
        unsigned iatom=vstart+3*atoms_with_derivatives[i];
        setElementDerivative( iatom, 0.0 ); iatom++;
        setElementDerivative( iatom, 0.0 ); iatom++;
        setElementDerivative( iatom, 0.0 );
     }   
     unsigned nvir=vstart+3*getNumberOfAtoms();
     for(unsigned j=0;j<9;++j){
        setElementDerivative( nvir, 0.0 ); nvir++;
     }
  }
}
Example #9
0
void Steinhardt::calculateVector(){
  double dfunc, dpoly_ass, md, tq6, itq6, real_z, imag_z; 
  Vector distance, dz, myrealvec, myimagvec, real_dz, imag_dz;
  // The square root of -1
  std::complex<double> ii( 0.0, 1.0 ), dp_x, dp_y, dp_z;

  double sw, poly_ass, dlen, nbond=0.0; std::complex<double> powered;
  for(unsigned i=1;i<getNAtoms();++i){
     distance=getSeparation( getPosition(0), getPosition(i) );
     dlen=distance.modulo(); sw = switchingFunction.calculate( dlen, dfunc );
     if( sw>=getTolerance() ){   
         nbond += sw;  // Accumulate total number of bonds
         double dlen3 = dlen*dlen*dlen;

         // Store derivatives of weight
         MultiColvarBase::addAtomsDerivatives( 0, getAtomIndex(0), (-dfunc)*distance );
         MultiColvarBase::addAtomsDerivatives( 0, getAtomIndex(i), (+dfunc)*distance );
         MultiColvarBase::addBoxDerivatives( 0, (-dfunc)*Tensor( distance,distance ) ); 

         // Do stuff for m=0
         poly_ass=deriv_poly( 0, distance[2]/dlen, dpoly_ass );
         // Derivatives of z/r wrt x, y, z
         dz = -( distance[2] / dlen3 )*distance; dz[2] += (1.0 / dlen);
         // Derivative wrt to the vector connecting the two atoms
         myrealvec = (+sw)*dpoly_ass*dz + poly_ass*(+dfunc)*distance;
         // Accumulate the derivatives
         addAtomsDerivative( tmom, 0, -myrealvec );      
         addAtomsDerivative( tmom, i, myrealvec ); 
         addBoxDerivatives( tmom, Tensor( -myrealvec,distance ) );
         // And store the vector function
         addComponent( tmom, sw*poly_ass );

         // The complex number of which we have to take powers
         std::complex<double> com1( distance[0]/dlen ,distance[1]/dlen );

         // Do stuff for all other m values
         for(unsigned m=1;m<=tmom;++m){
             // Calculate Legendre Polynomial
             poly_ass=deriv_poly( m, distance[2]/dlen, dpoly_ass );
             // Calculate powe of complex number
             powered=pow(com1,m-1); md=static_cast<double>(m);
             // Real and imaginary parts of z
             real_z = real(com1*powered); imag_z = imag(com1*powered );
 
             // Calculate steinhardt parameter
             tq6=poly_ass*real_z;   // Real part of steinhardt parameter
             itq6=poly_ass*imag_z;  // Imaginary part of steinhardt parameter

             // Derivatives wrt ( x/r + iy )^m
             dp_x = md*powered*( (1.0/dlen)-(distance[0]*distance[0])/dlen3-ii*(distance[0]*distance[1])/dlen3 );
             dp_y = md*powered*( ii*(1.0/dlen)-(distance[0]*distance[1])/dlen3-ii*(distance[1]*distance[1])/dlen3 );
             dp_z = md*powered*( -(distance[0]*distance[2])/dlen3-ii*(distance[1]*distance[2])/dlen3 );

             // Derivatives of real and imaginary parts of above
             real_dz[0] = real( dp_x ); real_dz[1] = real( dp_y ); real_dz[2] = real( dp_z );
             imag_dz[0] = imag( dp_x ); imag_dz[1] = imag( dp_y ); imag_dz[2] = imag( dp_z );  

             // Complete derivative of steinhardt parameter
             myrealvec = (+sw)*dpoly_ass*real_z*dz + (+dfunc)*distance*tq6 + (+sw)*poly_ass*real_dz; 
             myimagvec = (+sw)*dpoly_ass*imag_z*dz + (+dfunc)*distance*itq6 + (+sw)*poly_ass*imag_dz;

             // Real part
             addComponent( tmom+m, sw*tq6 );
             addAtomsDerivative( tmom+m, 0, -myrealvec );
             addAtomsDerivative( tmom+m, i, myrealvec );
             addBoxDerivatives( tmom+m, Tensor( -myrealvec,distance ) );
             // Imaginary part 
             addImaginaryComponent( tmom+m, sw*itq6 );
             addImaginaryAtomsDerivative( tmom+m, 0, -myimagvec );
             addImaginaryAtomsDerivative( tmom+m, i, myimagvec );
             addImaginaryBoxDerivatives( tmom+m, Tensor( -myimagvec,distance ) );
             // Store -m part of vector
             double pref=pow(-1.0,m); 
             // -m part of vector is just +m part multiplied by (-1.0)**m and multiplied by complex
             // conjugate of Legendre polynomial
             // Real part
             addComponent( tmom-m, pref*sw*tq6 );
             addAtomsDerivative( tmom-m, 0, -pref*myrealvec );
             addAtomsDerivative( tmom-m, i, pref*myrealvec );
             addBoxDerivatives( tmom-m, pref*Tensor( -myrealvec,distance ) );
             // Imaginary part
             addImaginaryComponent( tmom-m, -pref*sw*itq6 );
             addImaginaryAtomsDerivative( tmom-m, 0, pref*myimagvec );
             addImaginaryAtomsDerivative( tmom-m, i, -pref*myimagvec );
             addImaginaryBoxDerivatives( tmom-m, pref*Tensor( myimagvec,distance ) );
         }
     } else {
         removeAtomRequest( i, sw );
     }
  } 

  // Normalize 
  setElementValue(0, nbond ); updateActiveAtoms();
  for(unsigned i=0;i<2*getNumberOfComponentsInVector();++i) quotientRule( 5+i, 0, 5+i ); 
  // Clear tempory stuff
  clearDerivativesAfterTask(0);
}
Example #10
0
void OrientationSphere::calculateWeight(){
  weightHasDerivatives=true;   // The weight has no derivatives really
  setElementValue(1,1.0);
}