void AF_DCMotor::setSpeed(uint8_t speed) {
  switch (motornum) {
  case 1:
    setPWM1(speed); break;
  case 2:
    setPWM2(speed); break;
  case 3:
    setPWM3(speed); break;
  case 4:
    setPWM4(speed); break;
  }
}
AF_Stepper::AF_Stepper(uint16_t steps, uint8_t num) {
  MC.enable();

  revsteps = steps;
  steppernum = num;

  if (steppernum == 1) {
    latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B) &
      ~_BV(MOTOR2_A) & ~_BV(MOTOR2_B); // all motor pins to 0
    MC.latch_tx();
    
    // enable both H bridges
    pinMode(11, OUTPUT);
    pinMode(3, OUTPUT);
    digitalWrite(11, HIGH);
    digitalWrite(3, HIGH);

#ifdef MICROSTEPPING
    // use PWM for microstepping support
    initPWM1(MOTOR12_64KHZ);
    initPWM2(MOTOR12_64KHZ);
    setPWM1(255);
    setPWM2(255);
#endif

  } else if (steppernum == 2) {
    latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B) &
      ~_BV(MOTOR4_A) & ~_BV(MOTOR4_B); // all motor pins to 0
    MC.latch_tx();

    // enable both H bridges
    pinMode(5, OUTPUT);
    pinMode(6, OUTPUT);
    digitalWrite(5, HIGH);
    digitalWrite(6, HIGH);

#ifdef MICROSTEPPING    
    // use PWM for microstepping support
    // use PWM for microstepping support
    initPWM3(1);
    initPWM4(1);
    setPWM3(255);
    setPWM4(255);
#endif
  }
}
AF_Stepper::AF_Stepper(uint16_t steps, uint8_t num) {
  MC.enable();

  revsteps = steps;
  steppernum = num;
  currentstep = 0;

  if (steppernum == 1) {
    latch_state &= ~_BV(MOTOR1_A) & ~_BV(MOTOR1_B) &
      ~_BV(MOTOR2_A) & ~_BV(MOTOR2_B); // all motor pins to 0
    MC.latch_tx();

    // enable both H bridges
    pinMode(11, OUTPUT);
    pinMode(3, OUTPUT);
    digitalWrite(11, HIGH);
    digitalWrite(3, HIGH);

    // use PWM for microstepping support
    initPWM1(STEPPER1_PWM_RATE);
    initPWM2(STEPPER1_PWM_RATE);
    setPWM1(255);
    setPWM2(255);

  } else if (steppernum == 2) {
    latch_state &= ~_BV(MOTOR3_A) & ~_BV(MOTOR3_B) &
      ~_BV(MOTOR4_A) & ~_BV(MOTOR4_B); // all motor pins to 0
    MC.latch_tx();

    // enable both H bridges
    pinMode(5, OUTPUT);
    pinMode(6, OUTPUT);
    digitalWrite(5, HIGH);
    digitalWrite(6, HIGH);

    // use PWM for microstepping support
    // use PWM for microstepping support
    initPWM3(STEPPER2_PWM_RATE);
    initPWM4(STEPPER2_PWM_RATE);
    setPWM3(255);
    setPWM4(255);
  }
}
uint8_t AF_Stepper::onestep(uint8_t dir, uint8_t style) {
  uint8_t a, b, c, d;
  uint8_t ocrb, ocra;

  ocra = ocrb = 255;

  if (steppernum == 1) {
    a = _BV(MOTOR1_A);
    b = _BV(MOTOR2_A);
    c = _BV(MOTOR1_B);
    d = _BV(MOTOR2_B);
  } else if (steppernum == 2) {
    a = _BV(MOTOR3_A);
    b = _BV(MOTOR4_A);
    c = _BV(MOTOR3_B);
    d = _BV(MOTOR4_B);
  } else {
    return 0;
  }

  // next determine what sort of stepping procedure we're up to
  if (style == SINGLE) {
    if ((currentstep/(MICROSTEPS/2)) % 2) { // we're at an odd step, weird
      if (dir == FORWARD) {
	currentstep += MICROSTEPS/2;
      }
      else {
	currentstep -= MICROSTEPS/2;
      }
    } else {           // go to the next even step
      if (dir == FORWARD) {
	currentstep += MICROSTEPS;
      }
      else {
	currentstep -= MICROSTEPS;
      }
    }
  } else if (style == DOUBLE) {
    if (! (currentstep/(MICROSTEPS/2) % 2)) { // we're at an even step, weird
      if (dir == FORWARD) {
	currentstep += MICROSTEPS/2;
      } else {
	currentstep -= MICROSTEPS/2;
      }
    } else {           // go to the next odd step
      if (dir == FORWARD) {
	currentstep += MICROSTEPS;
      } else {
	currentstep -= MICROSTEPS;
      }
    }
  } else if (style == INTERLEAVE) {
    if (dir == FORWARD) {
       currentstep += MICROSTEPS/2;
    } else {
       currentstep -= MICROSTEPS/2;
    }
  }

  if (style == MICROSTEP) {
    if (dir == FORWARD) {
      currentstep++;
    } else {
      // BACKWARDS
      currentstep--;
    }

    currentstep += MICROSTEPS*4;
    currentstep %= MICROSTEPS*4;

    ocra = ocrb = 0;
    if ( (currentstep >= 0) && (currentstep < MICROSTEPS)) {
      ocra = microstepcurve[MICROSTEPS - currentstep];
      ocrb = microstepcurve[currentstep];
    } else if  ( (currentstep >= MICROSTEPS) && (currentstep < MICROSTEPS*2)) {
      ocra = microstepcurve[currentstep - MICROSTEPS];
      ocrb = microstepcurve[MICROSTEPS*2 - currentstep];
    } else if  ( (currentstep >= MICROSTEPS*2) && (currentstep < MICROSTEPS*3)) {
      ocra = microstepcurve[MICROSTEPS*3 - currentstep];
      ocrb = microstepcurve[currentstep - MICROSTEPS*2];
    } else if  ( (currentstep >= MICROSTEPS*3) && (currentstep < MICROSTEPS*4)) {
      ocra = microstepcurve[currentstep - MICROSTEPS*3];
      ocrb = microstepcurve[MICROSTEPS*4 - currentstep];
    }
  }

  currentstep += MICROSTEPS*4;
  currentstep %= MICROSTEPS*4;

#ifdef MOTORDEBUG
  Serial.print("current step: "); Serial.println(currentstep, DEC);
  Serial.print(" pwmA = "); Serial.print(ocra, DEC);
  Serial.print(" pwmB = "); Serial.println(ocrb, DEC);
#endif

  if (steppernum == 1) {
    setPWM1(ocra);
    setPWM2(ocrb);
  } else if (steppernum == 2) {
    setPWM3(ocra);
    setPWM4(ocrb);
  }


  // release all
  latch_state &= ~a & ~b & ~c & ~d; // all motor pins to 0

  //Serial.println(step, DEC);
  if (style == MICROSTEP) {
    if ((currentstep >= 0) && (currentstep < MICROSTEPS))
      latch_state |= a | b;
    if ((currentstep >= MICROSTEPS) && (currentstep < MICROSTEPS*2))
      latch_state |= b | c;
    if ((currentstep >= MICROSTEPS*2) && (currentstep < MICROSTEPS*3))
      latch_state |= c | d;
    if ((currentstep >= MICROSTEPS*3) && (currentstep < MICROSTEPS*4))
      latch_state |= d | a;
  } else {
    switch (currentstep/(MICROSTEPS/2)) {
    case 0:
      latch_state |= a; // energize coil 1 only
      break;
    case 1:
      latch_state |= a | b; // energize coil 1+2
      break;
    case 2:
      latch_state |= b; // energize coil 2 only
      break;
    case 3:
      latch_state |= b | c; // energize coil 2+3
      break;
    case 4:
      latch_state |= c; // energize coil 3 only
      break;
    case 5:
      latch_state |= c | d; // energize coil 3+4
      break;
    case 6:
      latch_state |= d; // energize coil 4 only
      break;
    case 7:
      latch_state |= d | a; // energize coil 1+4
      break;
    }
  }


  MC.latch_tx();
  return currentstep;
}
uint8_t AF_Stepper::onestep(uint8_t dir, uint8_t style) {
  uint8_t a, b, c, d;
  uint8_t step;
  uint8_t mstep = 0;
#ifdef MICROSTEPPING
  uint8_t ocrb, ocra;
#endif
  if (steppernum == 1) {
    a = _BV(MOTOR1_A);
    b = _BV(MOTOR2_A);
    c = _BV(MOTOR1_B);
    d = _BV(MOTOR2_B);

#ifdef MICROSTEPPING
#if defined(__AVR_ATmega8__) || \
    defined(__AVR_ATmega48__) || \
    defined(__AVR_ATmega88__) || \
    defined(__AVR_ATmega168__) || \
    defined(__AVR_ATmega328P__)
    ocra = OCR2A;
    ocrb = OCR2B;
#elif defined(__AVR_ATmega1280__) 
    ocra = OCR1A;
    ocrb = OCR3C;
#endif

    if (style == MICROSTEP) {
      //TCCR2B = _BV(CS21);
    }
#endif
  } else if (steppernum == 2) {
    a = _BV(MOTOR3_A);
    b = _BV(MOTOR4_A);
    c = _BV(MOTOR3_B);
    d = _BV(MOTOR4_B);

#ifdef MICROSTEPPING
#if defined(__AVR_ATmega8__) || \
    defined(__AVR_ATmega48__) || \
    defined(__AVR_ATmega88__) || \
    defined(__AVR_ATmega168__) || \
    defined(__AVR_ATmega328P__)
    ocra = OCR0A;
    ocrb = OCR0B;
#elif defined(__AVR_ATmega1280__) 
    ocra = OCR4A;
    ocrb = OCR3A;
#endif

    if (style == MICROSTEP) {
      //TCCR0B = _BV(CS00);
    }   
#endif

  } else {
    return 0;
  }

#ifdef MOTORDEBUG
  Serial.print("a = "); Serial.print(ocra, DEC);
  Serial.print(" b = "); Serial.print(ocrb, DEC);
  Serial.print("\t");
#endif

  // OK next determine what step we are at 
  if ((latch_state & (a | b)) == (a | b))
    step = 1 * MICROSTEPS; 
  else if ((latch_state & (b | c)) == (b | c))
    step = 3 * MICROSTEPS; 
  else if ((latch_state & (c | d)) == (c | d))
    step = 5 * MICROSTEPS;
  else if ((latch_state & (d | a)) == (d | a))
    step = 7 * MICROSTEPS;
  else if (latch_state & a)
    step = 0;
  else if (latch_state & b)
    step = 2 * MICROSTEPS;
  else if (latch_state & c)
    step = 4 * MICROSTEPS;
  else
    step = 6 * MICROSTEPS;

  //Serial.print("step "); Serial.print(step, DEC); Serial.print("\t");
  // next determine what sort of stepping procedure we're up to
  if (style == SINGLE) {
    if ((step/MICROSTEPS) % 2) { // we're at an odd step, weird
      if (dir == FORWARD)
	step = (step + MICROSTEPS) % (8*MICROSTEPS);
      else
	step = (step + 7*MICROSTEPS) % (8*MICROSTEPS);
    } else {           // go to the next even step
      if (dir == FORWARD)
	step = (step + 2*MICROSTEPS) % (8*MICROSTEPS);
      else
	step = (step + 6*MICROSTEPS) % (8*MICROSTEPS);  

    }
#ifdef MICROSTEPPING
    ocra = 255;
    ocrb = 255;
#endif

  } else if (style == DOUBLE) {
    if (! (step/MICROSTEPS % 2)) { // we're at an even step, weird
      if (dir == FORWARD)
	step = (step + MICROSTEPS) % (8*MICROSTEPS);
      else
	step = (step + 7*MICROSTEPS) % (8*MICROSTEPS);
    } else {           // go to the next odd step
      if (dir == FORWARD)
	step = (step + 2*MICROSTEPS) % (8*MICROSTEPS);
      else
	step = (step + 6*MICROSTEPS) % (8*MICROSTEPS);
    }
#ifdef MICROSTEPPING
    ocra = 255;
    ocrb = 255;
#endif
  } else if (style == INTERLEAVE) {
     if (dir == FORWARD)
       step = (step + 1*MICROSTEPS) % (8*MICROSTEPS);
     else
       step = (step + 7*MICROSTEPS) % (8*MICROSTEPS);
#ifdef MICROSTEPPING
    ocra = 255;
    ocrb = 255;
#endif
  } 
#ifdef MICROSTEPPING
  else if (style == MICROSTEP) {

    //Serial.print("Step #"); Serial.print(step/MICROSTEPS, DEC); Serial.print("\t");
    if (dir == FORWARD) {

      // if at even step, make sure its 'odd'
      if (! (step/MICROSTEPS) % 2) {
	step = (step + MICROSTEPS) % (8*MICROSTEPS);
      }

      // fix hiccups from changing direction
      if (((ocra == 255) && ((step/MICROSTEPS)%4 == 3)) ||
	  ((ocrb == 255) && ((step/MICROSTEPS)%4 == 1))) {
	step += 2*MICROSTEPS;
	step %= 8*MICROSTEPS;
      }

      if ((step == MICROSTEPS) || (step == 5*MICROSTEPS)) {
	// get the current microstep
	if (ocrb == 255)
	  mstep = MICROSTEPS;
	else
	  mstep = ocrb / (256UL / MICROSTEPS);
#ifdef MOTORDEBUG
	Serial.print("uStep = "); Serial.print(mstep, DEC);
#endif
	// ok now go to next step
	mstep++;
	mstep %= (MICROSTEPS+1);
	if (mstep == MICROSTEPS)
	  ocrb = 255;
	else 
	  ocrb = mstep * (256UL / MICROSTEPS);
	ocra = 255 - ocrb;
#ifdef MOTORDEBUG
	Serial.print(" -> "); Serial.println(mstep, DEC);
#endif
	if (mstep == MICROSTEPS)
	  step = (step + 2*MICROSTEPS) % (8*MICROSTEPS);
      } else {
	// get the current microstep
	if (ocrb == 255)
	  mstep = MICROSTEPS;
	else
	  mstep = ocrb / (256UL / MICROSTEPS);
#ifdef MOTORDEBUG
	Serial.print("uStep = "); Serial.print(mstep, DEC);
#endif
	// ok now go to next step
	mstep += MICROSTEPS;
	mstep %= (MICROSTEPS+1);
	if (mstep == MICROSTEPS)
	  ocrb = 255;
	else 
	  ocrb = mstep * (256UL / MICROSTEPS);
	ocra = 255 - ocrb;
#ifdef MOTORDEBUG
	Serial.print(" +> "); Serial.println(mstep, DEC);
#endif
	if (mstep == 0)
	  step = (step + 2*MICROSTEPS) % (8*MICROSTEPS);
      }
    } else {

      // fix hiccups from changing direction
      if (((ocra == 255) && ((step/MICROSTEPS)%4 == 1)) ||
	  ((ocrb == 255) && ((step/MICROSTEPS)%4 == 3))) {
	step = (step + 6*MICROSTEPS);
	step %= (8*MICROSTEPS);
      }

      // if at even step, make sure its 'odd'
      if (! (step/MICROSTEPS % 2)) {
	step = (step + 7*MICROSTEPS) % (8*MICROSTEPS);
      }
      if ((step == MICROSTEPS) || (step == 5*MICROSTEPS)) {
	// get the current microstep
	if (ocrb == 255)
	  mstep = MICROSTEPS;
	else
	  mstep = ocrb / (256UL / MICROSTEPS);
#ifdef MOTORDEBUG
	Serial.print(" uStep = "); Serial.print(mstep, DEC);
#endif
	// ok now go to next step
	mstep += MICROSTEPS;
	mstep %= (MICROSTEPS+1);
	if (mstep == MICROSTEPS)
	  ocrb = 255;
	else
	  ocrb = mstep * (256UL / MICROSTEPS);
	ocra = 255 - ocrb;
#ifdef MOTORDEBUG
	Serial.print(" !> "); Serial.println(mstep, DEC);
#endif
	if (mstep == 0)
	  step = (step + 6*MICROSTEPS) % (8*MICROSTEPS);
      } else {
	// get the current microstep
	if (ocrb == 255)
	  mstep = MICROSTEPS;
	else
	  mstep = ocrb / (256UL / MICROSTEPS);
#ifdef MOTORDEBUG
	Serial.print("uStep = "); Serial.print(mstep, DEC);
#endif
	// ok now go to next step
	mstep++;
	mstep %= (MICROSTEPS + 1);
	if (mstep == MICROSTEPS)
	  ocrb = 255;
	else 
	  ocrb = mstep * (256UL / MICROSTEPS);
	ocra = 255 - ocrb;
#ifdef MOTORDEBUG
	Serial.print(" *> "); Serial.println(mstep, DEC);
#endif
	if (mstep == MICROSTEPS)
	  step = (step + 6*MICROSTEPS) % (8*MICROSTEPS);
      }
    }
  }


  //Serial.print(" -> step = "); Serial.print(step/MICROSTEPS, DEC); Serial.print("\t");

  if (steppernum == 1) {
    setPWM1(ocra);
     setPWM2(ocrb);
  } else if (steppernum == 2) {
    setPWM3(ocra);
    setPWM4(ocrb);
  }

#endif  // microstepping

  // release all
  latch_state &= ~a & ~b & ~c & ~d; // all motor pins to 0

  //Serial.println(step, DEC);

  switch (step/MICROSTEPS) {
  case 0:
    latch_state |= a; // energize coil 1 only
    break;
  case 1:
    latch_state |= a | b; // energize coil 1+2
    break;
  case 2:
    latch_state |= b; // energize coil 2 only
    break;
  case 3:
    latch_state |= b | c; // energize coil 2+3
    break;
  case 4:
    latch_state |= c; // energize coil 3 only
    break; 
  case 5:
    latch_state |= c | d; // energize coil 3+4
    break;
  case 6:
    latch_state |= d; // energize coil 4 only
    break;
  case 7:
    latch_state |= d | a; // energize coil 1+4
    break;
  }
  MC.latch_tx();
  return mstep;
}