//main method to train the decision treee
void Dectree_class::train(const cv::Mat& training_data, const cv::Mat& labels, int depth_thresh, unsigned int samples_thresh, int vars_per_node)
{
	//---(1)initialize random generator if no external is given---//
	if(!is_ext_rng)
	{
		rng = cv::RNG(time(NULL));
		//std::cout << "No ext rng" << std::endl;
	}

	//---(2)determine the number of classes based on the training data---//
	set_classes(labels);
	//std::cout << "Classes:\n" << classes << std::endl;

	//---(3)make a vector giving an id to each attribute---//
	set_attributes(training_data);
	//for debbugging
	/*
	for(std::vector<int>::iterator it = attributes.begin(); it != attributes.end(); ++it)
		std::cout << *it << " ";
	std::cout << std::endl;
	*/

	//---(4)verify constraints---//
	//maximum depth
	if(depth_thresh < 0)
		depth_limit = std::numeric_limits<int>::max();
	else
		depth_limit = depth_thresh;
	//minimum samples
	min_samples = samples_thresh;
	//active variables
	if(attributes.size() < (unsigned)vars_per_node)
		active_vars = attributes.size();
	else
		active_vars = vars_per_node;
	//maximum number of split fails
	max_split_fail = attributes.size();

	//---(5)train the tree---//
	int depth = 1;
	int no_split_fail = 0;
	dbst.set_root(learn_dectree(cv::Mat(),labels, training_data, depth, no_split_fail));
	find_depth(dbst.get_root()); //to find the real-true depth of the created tree

}
Example #2
0
inline char *
finishconf(void)
{
    static char buf[256];
    char *ret;

    if (!new_MeLine || !new_MeLine->servername)
        return "Missing global block";
    if ((ret = set_classes()))
    {
        ircsnprintf(buf, sizeof(buf), "Missing class block for referenced "
                    "class '%s'", ret);
        return buf;
    }
    if (!new_ports)
        return "No ports defined";
    return NULL;
}