Example #1
0
/* Activate a secondary processor. */
int __devinit start_secondary(void *unused)
{
	unsigned int cpu = smp_processor_id();
	struct device_node *l2_cache;
	int i, base;

	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;

	smp_store_cpu_info(cpu);
	set_dec(tb_ticks_per_jiffy);
	preempt_disable();
	cpu_callin_map[cpu] = 1;

	smp_ops->setup_cpu(cpu);
	if (smp_ops->take_timebase)
		smp_ops->take_timebase();

	if (system_state > SYSTEM_BOOTING)
		snapshot_timebase();

	secondary_cpu_time_init();

	ipi_call_lock();
	notify_cpu_starting(cpu);
	cpu_set(cpu, cpu_online_map);
	/* Update sibling maps */
	base = cpu_first_thread_in_core(cpu);
	for (i = 0; i < threads_per_core; i++) {
		if (cpu_is_offline(base + i))
			continue;
		cpu_set(cpu, per_cpu(cpu_sibling_map, base + i));
		cpu_set(base + i, per_cpu(cpu_sibling_map, cpu));

		/* cpu_core_map should be a superset of
		 * cpu_sibling_map even if we don't have cache
		 * information, so update the former here, too.
		 */
		cpu_set(cpu, per_cpu(cpu_core_map, base +i));
		cpu_set(base + i, per_cpu(cpu_core_map, cpu));
	}
	l2_cache = cpu_to_l2cache(cpu);
	for_each_online_cpu(i) {
		struct device_node *np = cpu_to_l2cache(i);
		if (!np)
			continue;
		if (np == l2_cache) {
			cpu_set(cpu, per_cpu(cpu_core_map, i));
			cpu_set(i, per_cpu(cpu_core_map, cpu));
		}
		of_node_put(np);
	}
	of_node_put(l2_cache);
	ipi_call_unlock();

	local_irq_enable();

	cpu_idle();
	return 0;
}
Example #2
0
/* This function is only called on the boot processor */
void __init time_init(void)
{
	time_t sec, old_sec;
	unsigned old_stamp, stamp, elapsed;

        if (ppc_md.time_init != NULL)
                timezone_offset = ppc_md.time_init();

	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		tb_ticks_per_jiffy = DECREMENTER_COUNT_601;
		/* mulhwu_scale_factor(1000000000, 1000000) is 0x418937 */
		tb_to_us = 0x418937;
        } else {
                ppc_md.calibrate_decr();
		tb_to_ns_scale = mulhwu(tb_to_us, 1000 << 10);
	}

	/* Now that the decrementer is calibrated, it can be used in case the
	 * clock is stuck, but the fact that we have to handle the 601
	 * makes things more complex. Repeatedly read the RTC until the
	 * next second boundary to try to achieve some precision.  If there
	 * is no RTC, we still need to set tb_last_stamp and
	 * last_jiffy_stamp(cpu 0) to the current stamp.
	 */
	stamp = get_native_tbl();
	if (ppc_md.get_rtc_time) {
		sec = ppc_md.get_rtc_time();
		elapsed = 0;
		do {
			old_stamp = stamp;
			old_sec = sec;
			stamp = get_native_tbl();
			if (__USE_RTC() && stamp < old_stamp)
				old_stamp -= 1000000000;
			elapsed += stamp - old_stamp;
			sec = ppc_md.get_rtc_time();
		} while ( sec == old_sec && elapsed < 2*HZ*tb_ticks_per_jiffy);
		if (sec==old_sec)
			printk("Warning: real time clock seems stuck!\n");
		xtime.tv_sec = sec;
		xtime.tv_nsec = 0;
		/* No update now, we just read the time from the RTC ! */
		last_rtc_update = xtime.tv_sec;
	}
	last_jiffy_stamp(0) = tb_last_stamp = stamp;

	/* Not exact, but the timer interrupt takes care of this */
	set_dec(tb_ticks_per_jiffy);

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
		xtime.tv_sec -= timezone_offset;
        }
        set_normalized_timespec(&wall_to_monotonic,
                                -xtime.tv_sec, -xtime.tv_nsec);
}
Example #3
0
void wakeup_decrementer(void)
{
	set_dec(tb_ticks_per_jiffy);
	/* No currently-supported powerbook has a 601,
	 * so use get_tbl, not native
	 */
	last_jiffy_stamp(0) = tb_last_stamp = get_tbl();
}
Example #4
0
static inline void rthal_setup_periodic_dec(void)
{
#ifdef CONFIG_40x
	mtspr(SPRN_TCR, mfspr(SPRN_TCR) | TCR_ARE); /* Auto-reload on. */
	mtspr(SPRN_PIT, tb_ticks_per_jiffy);
#else /* !CONFIG_40x */
	set_dec(tb_ticks_per_jiffy);
#endif /* CONFIG_40x */
}
Example #5
0
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
int timer_interrupt(struct pt_regs * regs)
{
	int next_dec;
	unsigned long cur_tb;
	struct paca_struct *lpaca = get_paca();
	unsigned long cpu = lpaca->xPacaIndex;

	irq_enter();

#ifndef CONFIG_PPC_ISERIES
	ppc64_do_profile(regs);
#endif

	lpaca->xLpPaca.xIntDword.xFields.xDecrInt = 0;

	while (lpaca->next_jiffy_update_tb <= (cur_tb = get_tb())) {

#ifdef CONFIG_SMP
		smp_local_timer_interrupt(regs);
#endif
		if (cpu == boot_cpuid) {
			write_seqlock(&xtime_lock);
			tb_last_stamp = lpaca->next_jiffy_update_tb;
			do_timer(regs);
			timer_sync_xtime( cur_tb );
			timer_check_rtc();
			write_sequnlock(&xtime_lock);
			if ( adjusting_time && (time_adjust == 0) )
				ppc_adjtimex();
		}
		lpaca->next_jiffy_update_tb += tb_ticks_per_jiffy;
	}
	
	next_dec = lpaca->next_jiffy_update_tb - cur_tb;
	if (next_dec > lpaca->default_decr)
        	next_dec = lpaca->default_decr;
	set_dec(next_dec);

#ifdef CONFIG_PPC_ISERIES
	{
		struct ItLpQueue *lpq = lpaca->lpQueuePtr;
		if (lpq && ItLpQueue_isLpIntPending(lpq))
			lpEvent_count += ItLpQueue_process(lpq, regs);
	}
#endif

	irq_exit();

	return 1;
}
Example #6
0
int interrupt_init (void)
{
	int ret;

	/* call cpu specific function from $(CPU)/interrupts.c */
	ret = interrupt_init_cpu (&decrementer_count);

	if (ret)
		return ret;

	set_dec (decrementer_count);

	set_msr (get_msr () | MSR_EE);

	return (0);
}
void __init smp_callin(void)
{
	int cpu = current->processor;
	
        smp_store_cpu_info(cpu);
	set_dec(paca[cpu].default_decr);
	cpu_callin_map[cpu] = 1;

	ppc_md.smp_setup_cpu(cpu);

	init_idle();

	set_bit(smp_processor_id(), &cpu_online_map);
	
	while(!smp_commenced) {
		barrier();
	}
	__sti();
}
Example #8
0
void __init smp_callin(void)
{
	int cpu = current->processor;
	
        smp_store_cpu_info(cpu);
	smp_ops->setup_cpu(cpu);
	set_dec(tb_ticks_per_jiffy);
	cpu_online_map |= 1UL << cpu;
	mb();
	cpu_callin_map[cpu] = 1;
	
	while(!smp_commenced)
		barrier();

	/* see smp_commence for more info */
	if (!smp_tb_synchronized && smp_num_cpus == 2) {
		smp_software_tb_sync(cpu);
	}
	__sti();
}
Example #9
0
/* Processor coming up starts here */
int __devinit start_secondary(void *unused)
{
	int cpu;

	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;

	cpu = smp_processor_id();
        smp_store_cpu_info(cpu);
	set_dec(tb_ticks_per_jiffy);
	cpu_callin_map[cpu] = 1;

	printk("CPU %i done callin...\n", cpu);
	smp_ops->setup_cpu(cpu);
	printk("CPU %i done setup...\n", cpu);
	local_irq_enable();
	smp_ops->take_timebase();
	printk("CPU %i done timebase take...\n", cpu);

	return cpu_idle(NULL);
}
Example #10
0
void __init time_init(void)
{
	/* This function is only called on the boot processor */
	unsigned long flags;
	struct rtc_time tm;

	ppc_md.calibrate_decr();

#ifdef CONFIG_PPC_ISERIES
	if (!piranha_simulator)
#endif
		ppc_md.get_boot_time(&tm);

	write_seqlock_irqsave(&xtime_lock, flags);
	xtime.tv_sec = mktime(tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
			      tm.tm_hour, tm.tm_min, tm.tm_sec);
	tb_last_stamp = get_tb();
	do_gtod.tb_orig_stamp = tb_last_stamp;
	do_gtod.varp = &do_gtod.vars[0];
	do_gtod.var_idx = 0;
	do_gtod.varp->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
	do_gtod.varp->tb_to_xs = tb_to_xs;
	do_gtod.tb_to_us = tb_to_us;

	xtime_sync_interval = tb_ticks_per_sec - (tb_ticks_per_sec/8);
	next_xtime_sync_tb = tb_last_stamp + xtime_sync_interval;

	time_freq = 0;

	xtime.tv_nsec = 0;
	last_rtc_update = xtime.tv_sec;
	set_normalized_timespec(&wall_to_monotonic,
	                        -xtime.tv_sec, -xtime.tv_nsec);
	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* Not exact, but the timer interrupt takes care of this */
	set_dec(tb_ticks_per_jiffy);
}
Example #11
0
void timer_interrupt (struct pt_regs *regs)
{
	/* call cpu specific function from $(CPU)/interrupts.c */
	timer_interrupt_cpu (regs);

	/* Restore Decrementer Count */
	set_dec (decrementer_count);

	timestamp++;

#if defined(CONFIG_WATCHDOG) || defined (CONFIG_HW_WATCHDOG)
	if ((timestamp % (CFG_WATCHDOG_FREQ)) == 0)
		WATCHDOG_RESET ();
#endif    /* CONFIG_WATCHDOG || CONFIG_HW_WATCHDOG */

#ifdef CONFIG_STATUS_LED
	status_led_tick (timestamp);
#endif /* CONFIG_STATUS_LED */

#ifdef CONFIG_SHOW_ACTIVITY
	board_show_activity (timestamp);
#endif /* CONFIG_SHOW_ACTIVITY */
}
Example #12
0
/* Activate a secondary processor. */
int __devinit start_secondary(void *unused)
{
	unsigned int cpu = smp_processor_id();
	struct device_node *l2_cache;
	int i, base;

	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;

	smp_store_cpu_info(cpu);

#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
	set_dec(tb_ticks_per_jiffy);
	preempt_disable();
	cpu_callin_map[cpu] = 1;

	if (smp_ops->setup_cpu)
		smp_ops->setup_cpu(cpu);
	if (smp_ops->take_timebase)
		smp_ops->take_timebase();

	if (system_state > SYSTEM_BOOTING)
		snapshot_timebase();

	secondary_cpu_time_init();

	ipi_call_lock();
	notify_cpu_starting(cpu);
	set_cpu_online(cpu, true);
	/* Update sibling maps */
	base = cpu_first_thread_in_core(cpu);
	for (i = 0; i < threads_per_core; i++) {
		if (cpu_is_offline(base + i))
			continue;
		cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
		cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));

		/* cpu_core_map should be a superset of
		 * cpu_sibling_map even if we don't have cache
		 * information, so update the former here, too.
		 */
		cpumask_set_cpu(cpu, cpu_core_mask(base + i));
		cpumask_set_cpu(base + i, cpu_core_mask(cpu));
	}
	l2_cache = cpu_to_l2cache(cpu);
	for_each_online_cpu(i) {
		struct device_node *np = cpu_to_l2cache(i);
		if (!np)
			continue;
		if (np == l2_cache) {
			cpumask_set_cpu(cpu, cpu_core_mask(i));
			cpumask_set_cpu(i, cpu_core_mask(cpu));
		}
		of_node_put(np);
	}
	of_node_put(l2_cache);
	ipi_call_unlock();

	local_irq_enable();

	cpu_idle();
	return 0;
}
Example #13
0
void __init smp_software_tb_sync(int cpu)
{
#define PASSES 4	/* 4 passes.. */
	int pass;
	int i, j;

	/* stop - start will be the number of timebase ticks it takes for cpu0
	 * to send a message to all others and the first reponse to show up.
	 *
	 * ASSUMPTION: this time is similiar for all cpus
	 * ASSUMPTION: the time to send a one-way message is ping/2
	 */
	register unsigned long start = 0;
	register unsigned long stop = 0;
	register unsigned long temp = 0;

	set_tb(0, 0);

	/* multiple passes to get in l1 cache.. */
	for (pass = 2; pass < 2+PASSES; pass++){
		if (cpu == 0){
			mb();
			for (i = j = 1; i < smp_num_cpus; i++, j++){
				/* skip stuck cpus */
				while (!cpu_callin_map[j])
					++j;
				while (cpu_callin_map[j] != pass)
					barrier();
			}
			mb();
			tb_sync_flag = pass;
			start = get_tbl();	/* start timing */
			while (tb_sync_flag)
				mb();
			stop = get_tbl();	/* end timing */
			/* theoretically, the divisor should be 2, but
			 * I get better results on my dual mtx. someone
			 * please report results on other smp machines..
			 */
			tb_offset = (stop-start)/4;
			mb();
			tb_sync_flag = pass;
			udelay(10);
			mb();
			tb_sync_flag = 0;
			mb();
			set_tb(0,0);
			mb();
		} else {
			cpu_callin_map[cpu] = pass;
			mb();
			while (!tb_sync_flag)
				mb();		/* wait for cpu0 */
			mb();
			tb_sync_flag = 0;	/* send response for timing */
			mb();
			while (!tb_sync_flag)
				mb();
			temp = tb_offset;	/* make sure offset is loaded */
			while (tb_sync_flag)
				mb();
			set_tb(0,temp);		/* now, set the timebase */
			mb();
		}
	}
	if (cpu == 0) {
		smp_tb_synchronized = 1;
		printk("smp_software_tb_sync: %d passes, final offset: %ld\n",
			PASSES, tb_offset);
	}
	/* so time.c doesn't get confused */
	set_dec(tb_ticks_per_jiffy);
	last_jiffy_stamp(cpu) = 0;
}
Example #14
0
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 * We set it up to overflow again in 1/HZ seconds.
 */
void timer_interrupt(struct pt_regs * regs)
{
	int next_dec;
	unsigned long cpu = smp_processor_id();
	unsigned jiffy_stamp = last_jiffy_stamp(cpu);
	extern void do_IRQ(struct pt_regs *);

	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);

	MARK(kernel_trap_entry, "%d struct pt_regs %p", regs->trap, regs);

	irq_enter();

	while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) {
		jiffy_stamp += tb_ticks_per_jiffy;
		
		profile_tick(CPU_PROFILING, regs);
		update_process_times(user_mode(regs));

	  	if (smp_processor_id())
			continue;

		/* We are in an interrupt, no need to save/restore flags */
		write_seqlock(&xtime_lock);
		tb_last_stamp = jiffy_stamp;
#ifdef CONFIG_LTT
		ltt_reset_timestamp();
#endif //CONFIG_LTT
		do_timer(regs);

		/*
		 * update the rtc when needed, this should be performed on the
		 * right fraction of a second. Half or full second ?
		 * Full second works on mk48t59 clocks, others need testing.
		 * Note that this update is basically only used through
		 * the adjtimex system calls. Setting the HW clock in
		 * any other way is a /dev/rtc and userland business.
		 * This is still wrong by -0.5/+1.5 jiffies because of the
		 * timer interrupt resolution and possible delay, but here we
		 * hit a quantization limit which can only be solved by higher
		 * resolution timers and decoupling time management from timer
		 * interrupts. This is also wrong on the clocks
		 * which require being written at the half second boundary.
		 * We should have an rtc call that only sets the minutes and
		 * seconds like on Intel to avoid problems with non UTC clocks.
		 */
		if ( ppc_md.set_rtc_time && ntp_synced() &&
		     xtime.tv_sec - last_rtc_update >= 659 &&
		     abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ &&
		     jiffies - wall_jiffies == 1) {
		  	if (ppc_md.set_rtc_time(xtime.tv_sec+1 + timezone_offset) == 0)
				last_rtc_update = xtime.tv_sec+1;
			else
				/* Try again one minute later */
				last_rtc_update += 60;
		}
		write_sequnlock(&xtime_lock);
	}
	if ( !disarm_decr[smp_processor_id()] )
		set_dec(next_dec);
	last_jiffy_stamp(cpu) = jiffy_stamp;

	if (ppc_md.heartbeat && !ppc_md.heartbeat_count--)
		ppc_md.heartbeat();

	irq_exit();

 	trace_kernel_trap_exit();
	MARK(kernel_trap_exit, MARK_NOARGS);
}
Example #15
0
/* Activate a secondary processor. */
__cpuinit void start_secondary(void *unused)
{
	unsigned int cpu = smp_processor_id();
	struct device_node *l2_cache;
	int i, base;

	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;

	smp_store_cpu_info(cpu);
	set_dec(tb_ticks_per_jiffy);
	preempt_disable();
	cpu_callin_map[cpu] = 1;

	if (smp_ops->setup_cpu)
		smp_ops->setup_cpu(cpu);
	if (smp_ops->take_timebase)
		smp_ops->take_timebase();

	secondary_cpu_time_init();

#ifdef CONFIG_PPC64
	if (system_state == SYSTEM_RUNNING)
		vdso_data->processorCount++;

	vdso_getcpu_init();
#endif
	notify_cpu_starting(cpu);
	set_cpu_online(cpu, true);
	/* Update sibling maps */
	base = cpu_first_thread_sibling(cpu);
	for (i = 0; i < threads_per_core; i++) {
		if (cpu_is_offline(base + i))
			continue;
		cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
		cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));

		/* cpu_core_map should be a superset of
		 * cpu_sibling_map even if we don't have cache
		 * information, so update the former here, too.
		 */
		cpumask_set_cpu(cpu, cpu_core_mask(base + i));
		cpumask_set_cpu(base + i, cpu_core_mask(cpu));
	}
	l2_cache = cpu_to_l2cache(cpu);
	for_each_online_cpu(i) {
		struct device_node *np = cpu_to_l2cache(i);
		if (!np)
			continue;
		if (np == l2_cache) {
			cpumask_set_cpu(cpu, cpu_core_mask(i));
			cpumask_set_cpu(i, cpu_core_mask(cpu));
		}
		of_node_put(np);
	}
	of_node_put(l2_cache);

	local_irq_enable();

	cpu_startup_entry(CPUHP_ONLINE);

	BUG();
}
Example #16
0
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 * We set it up to overflow again in 1/HZ seconds.
 */
int timer_interrupt(struct pt_regs * regs)
{
	int next_dec;
	unsigned long cpu = smp_processor_id();
	unsigned jiffy_stamp = last_jiffy_stamp(cpu);
	extern void do_IRQ(struct pt_regs *);

	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);

	hardirq_enter(cpu);

	while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) < 0) {
		jiffy_stamp += tb_ticks_per_jiffy;
		if (!user_mode(regs))
			ppc_do_profile(instruction_pointer(regs));
		if (unlikely(!heartbeat_count(cpu)--)
				&& heartbeat_reset(cpu)) {
			ppc_md.heartbeat();
			heartbeat_count(cpu) = heartbeat_reset(cpu);
		}
	  	if (cpu)
			continue;

		/* We are in an interrupt, no need to save/restore flags */
		write_lock(&xtime_lock);
		tb_last_stamp = jiffy_stamp;
		do_timer(regs);

		/*
		 * update the rtc when needed, this should be performed on the
		 * right fraction of a second. Half or full second ?
		 * Full second works on mk48t59 clocks, others need testing.
		 * Note that this update is basically only used through
		 * the adjtimex system calls. Setting the HW clock in
		 * any other way is a /dev/rtc and userland business.
		 * This is still wrong by -0.5/+1.5 jiffies because of the
		 * timer interrupt resolution and possible delay, but here we
		 * hit a quantization limit which can only be solved by higher
		 * resolution timers and decoupling time management from timer
		 * interrupts. This is also wrong on the clocks
		 * which require being written at the half second boundary.
		 * We should have an rtc call that only sets the minutes and
		 * seconds like on Intel to avoid problems with non UTC clocks.
		 */
		if ( ppc_md.set_rtc_time && (time_status & STA_UNSYNC) == 0 &&
		     xtime.tv_sec - last_rtc_update >= 659 &&
		     abs(xtime.tv_usec - (1000000-1000000/HZ)) < 500000/HZ &&
		     jiffies - wall_jiffies == 1) {
		  	if (ppc_md.set_rtc_time(xtime.tv_sec+1 + time_offset) == 0)
				last_rtc_update = xtime.tv_sec+1;
			else
				/* Try again one minute later */
				last_rtc_update += 60;
		}
		write_unlock(&xtime_lock);
	}
	if (!disarm_decr[cpu])
		set_dec(next_dec);
	last_jiffy_stamp(cpu) = jiffy_stamp;

#ifdef CONFIG_SMP
	smp_local_timer_interrupt(regs);
#endif /* CONFIG_SMP */

	hardirq_exit(cpu);

	if (softirq_pending(cpu))
		do_softirq();

	return 1; /* lets ret_from_int know we can do checks */
}