static gboolean is_bridge_object_dead (GCObject *obj, void *data) { SgenHashTable *table = (SgenHashTable *)data; unsigned char *value = (unsigned char *)sgen_hash_table_lookup (table, obj); if (!value) return FALSE; return !*value; }
static mono_bool is_bridge_object_alive (MonoObject *obj, void *data) { SgenHashTable *table = data; unsigned char *value = sgen_hash_table_lookup (table, obj); if (!value) return TRUE; return *value; }
static gboolean sgen_compare_bridge_processor_results (SgenBridgeProcessor *a, SgenBridgeProcessor *b) { int i; SgenHashTable obj_to_a_scc = SGEN_HASH_TABLE_INIT (INTERNAL_MEM_BRIDGE_DEBUG, INTERNAL_MEM_BRIDGE_DEBUG, sizeof (int), mono_aligned_addr_hash, NULL); SgenHashTable b_scc_to_a_scc = SGEN_HASH_TABLE_INIT (INTERNAL_MEM_BRIDGE_DEBUG, INTERNAL_MEM_BRIDGE_DEBUG, sizeof (int), g_direct_hash, NULL); MonoGCBridgeXRef *a_xrefs, *b_xrefs; size_t xrefs_alloc_size; // dump_processor_state (a); // dump_processor_state (b); if (a->num_sccs != b->num_sccs) g_error ("SCCS count expected %d but got %d", a->num_sccs, b->num_sccs); if (a->num_xrefs != b->num_xrefs) g_error ("SCCS count expected %d but got %d", a->num_xrefs, b->num_xrefs); /* * First we build a hash of each object in `a` to its respective SCC index within * `a`. Along the way we also assert that no object is more than one SCC. */ for (i = 0; i < a->num_sccs; ++i) { int j; MonoGCBridgeSCC *scc = a->api_sccs [i]; g_assert (scc->num_objs > 0); for (j = 0; j < scc->num_objs; ++j) { GCObject *obj = scc->objs [j]; gboolean new_entry = sgen_hash_table_replace (&obj_to_a_scc, obj, &i, NULL); g_assert (new_entry); } } /* * Now we check whether each of the objects in `b` are in `a`, and whether the SCCs * of `b` contain the same sets of objects as those of `a`. * * While we're doing this, build a hash table to map from `b` SCC indexes to `a` SCC * indexes. */ for (i = 0; i < b->num_sccs; ++i) { MonoGCBridgeSCC *scc = b->api_sccs [i]; MonoGCBridgeSCC *a_scc; int *a_scc_index_ptr; int a_scc_index; int j; gboolean new_entry; g_assert (scc->num_objs > 0); a_scc_index_ptr = (int *)sgen_hash_table_lookup (&obj_to_a_scc, scc->objs [0]); g_assert (a_scc_index_ptr); a_scc_index = *a_scc_index_ptr; //g_print ("A SCC %d -> B SCC %d\n", a_scc_index, i); a_scc = a->api_sccs [a_scc_index]; g_assert (a_scc->num_objs == scc->num_objs); for (j = 1; j < scc->num_objs; ++j) { a_scc_index_ptr = (int *)sgen_hash_table_lookup (&obj_to_a_scc, scc->objs [j]); g_assert (a_scc_index_ptr); g_assert (*a_scc_index_ptr == a_scc_index); } new_entry = sgen_hash_table_replace (&b_scc_to_a_scc, GINT_TO_POINTER (i), &a_scc_index, NULL); g_assert (new_entry); } /* * Finally, check that we have the same xrefs. We do this by making copies of both * xref arrays, and replacing the SCC indexes in the copy for `b` with the * corresponding indexes in `a`. Then we sort both arrays and assert that they're * the same. * * At the same time, check that no xref is self-referential and that there are no * duplicate ones. */ xrefs_alloc_size = a->num_xrefs * sizeof (MonoGCBridgeXRef); a_xrefs = (MonoGCBridgeXRef *)sgen_alloc_internal_dynamic (xrefs_alloc_size, INTERNAL_MEM_BRIDGE_DEBUG, TRUE); b_xrefs = (MonoGCBridgeXRef *)sgen_alloc_internal_dynamic (xrefs_alloc_size, INTERNAL_MEM_BRIDGE_DEBUG, TRUE); memcpy (a_xrefs, a->api_xrefs, xrefs_alloc_size); for (i = 0; i < b->num_xrefs; ++i) { MonoGCBridgeXRef *xref = &b->api_xrefs [i]; int *scc_index_ptr; g_assert (xref->src_scc_index != xref->dst_scc_index); scc_index_ptr = (int *)sgen_hash_table_lookup (&b_scc_to_a_scc, GINT_TO_POINTER (xref->src_scc_index)); g_assert (scc_index_ptr); b_xrefs [i].src_scc_index = *scc_index_ptr; scc_index_ptr = (int *)sgen_hash_table_lookup (&b_scc_to_a_scc, GINT_TO_POINTER (xref->dst_scc_index)); g_assert (scc_index_ptr); b_xrefs [i].dst_scc_index = *scc_index_ptr; } qsort (a_xrefs, a->num_xrefs, sizeof (MonoGCBridgeXRef), compare_xrefs); qsort (b_xrefs, a->num_xrefs, sizeof (MonoGCBridgeXRef), compare_xrefs); for (i = 0; i < a->num_xrefs; ++i) { g_assert (a_xrefs [i].src_scc_index == b_xrefs [i].src_scc_index); g_assert (a_xrefs [i].dst_scc_index == b_xrefs [i].dst_scc_index); } sgen_hash_table_clean (&obj_to_a_scc); sgen_hash_table_clean (&b_scc_to_a_scc); sgen_free_internal_dynamic (a_xrefs, xrefs_alloc_size, INTERNAL_MEM_BRIDGE_DEBUG); sgen_free_internal_dynamic (b_xrefs, xrefs_alloc_size, INTERNAL_MEM_BRIDGE_DEBUG); return TRUE; }
pinned_byte_counts [i] += size; *pin_types |= pin_bit; } } } if (obj < node->addr) pin_stats_count_object_from_tree (obj, size, node->left, pin_types); if (obj + size - 1 > node->addr) pin_stats_count_object_from_tree (obj, size, node->right, pin_types); } static gpointer lookup_class_entry (SgenHashTable *hash_table, MonoClass *class, gpointer empty_entry) { char *name = g_strdup_printf ("%s.%s", class->name_space, class->name); gpointer entry = sgen_hash_table_lookup (hash_table, name); if (entry) { g_free (name); } else { sgen_hash_table_replace (hash_table, name, empty_entry, NULL); entry = sgen_hash_table_lookup (hash_table, name); } return entry; } static void register_class (MonoClass *class, int pin_types) { PinnedClassEntry empty_entry;