void MacroAssembler::fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register eax, Register ecx, Register edx, Register tmp) {
  Label L_2TAG_PACKET_0_0_2, L_2TAG_PACKET_1_0_2, L_2TAG_PACKET_2_0_2, L_2TAG_PACKET_3_0_2;
  Label L_2TAG_PACKET_4_0_2, L_2TAG_PACKET_5_0_2, L_2TAG_PACKET_6_0_2, L_2TAG_PACKET_7_0_2;
  Label L_2TAG_PACKET_8_0_2, L_2TAG_PACKET_9_0_2, L_2TAG_PACKET_10_0_2, L_2TAG_PACKET_11_0_2;
  Label L_2TAG_PACKET_12_0_2, L_2TAG_PACKET_13_0_2, B1_3, B1_5, start;

  assert_different_registers(tmp, eax, ecx, edx);
  jmp(start);
  address static_const_table = (address)_static_const_table;

  bind(start);
  subl(rsp, 120);
  movl(Address(rsp, 64), tmp);
  lea(tmp, ExternalAddress(static_const_table));
  movdqu(xmm0, Address(rsp, 128));
  unpcklpd(xmm0, xmm0);
  movdqu(xmm1, Address(tmp, 64));          // 0x652b82feUL, 0x40571547UL, 0x652b82feUL, 0x40571547UL
  movdqu(xmm6, Address(tmp, 48));          // 0x00000000UL, 0x43380000UL, 0x00000000UL, 0x43380000UL
  movdqu(xmm2, Address(tmp, 80));          // 0xfefa0000UL, 0x3f862e42UL, 0xfefa0000UL, 0x3f862e42UL
  movdqu(xmm3, Address(tmp, 96));          // 0xbc9e3b3aUL, 0x3d1cf79aUL, 0xbc9e3b3aUL, 0x3d1cf79aUL
  pextrw(eax, xmm0, 3);
  andl(eax, 32767);
  movl(edx, 16527);
  subl(edx, eax);
  subl(eax, 15504);
  orl(edx, eax);
  cmpl(edx, INT_MIN);
  jcc(Assembler::aboveEqual, L_2TAG_PACKET_0_0_2);
  mulpd(xmm1, xmm0);
  addpd(xmm1, xmm6);
  movapd(xmm7, xmm1);
  subpd(xmm1, xmm6);
  mulpd(xmm2, xmm1);
  movdqu(xmm4, Address(tmp, 128));         // 0xe3289860UL, 0x3f56c15cUL, 0x555b9e25UL, 0x3fa55555UL
  mulpd(xmm3, xmm1);
  movdqu(xmm5, Address(tmp, 144));         // 0xc090cf0fUL, 0x3f811115UL, 0x55548ba1UL, 0x3fc55555UL
  subpd(xmm0, xmm2);
  movdl(eax, xmm7);
  movl(ecx, eax);
  andl(ecx, 63);
  shll(ecx, 4);
  sarl(eax, 6);
  movl(edx, eax);
  movdqu(xmm6, Address(tmp, 16));          // 0xffffffc0UL, 0x00000000UL, 0xffffffc0UL, 0x00000000UL
  pand(xmm7, xmm6);
  movdqu(xmm6, Address(tmp, 32));          // 0x0000ffc0UL, 0x00000000UL, 0x0000ffc0UL, 0x00000000UL
  paddq(xmm7, xmm6);
  psllq(xmm7, 46);
  subpd(xmm0, xmm3);
  movdqu(xmm2, Address(tmp, ecx, Address::times_1, 160));
  mulpd(xmm4, xmm0);
  movapd(xmm6, xmm0);
  movapd(xmm1, xmm0);
  mulpd(xmm6, xmm6);
  mulpd(xmm0, xmm6);
  addpd(xmm5, xmm4);
  mulsd(xmm0, xmm6);
  mulpd(xmm6, Address(tmp, 112));          // 0xfffffffeUL, 0x3fdfffffUL, 0xfffffffeUL, 0x3fdfffffUL
  addsd(xmm1, xmm2);
  unpckhpd(xmm2, xmm2);
  mulpd(xmm0, xmm5);
  addsd(xmm1, xmm0);
  por(xmm2, xmm7);
  unpckhpd(xmm0, xmm0);
  addsd(xmm0, xmm1);
  addsd(xmm0, xmm6);
  addl(edx, 894);
  cmpl(edx, 1916);
  jcc (Assembler::above, L_2TAG_PACKET_1_0_2);
  mulsd(xmm0, xmm2);
  addsd(xmm0, xmm2);
  jmp(L_2TAG_PACKET_2_0_2);

  bind(L_2TAG_PACKET_1_0_2);
  fnstcw(Address(rsp, 24));
  movzwl(edx, Address(rsp, 24));
  orl(edx, 768);
  movw(Address(rsp, 28), edx);
  fldcw(Address(rsp, 28));
  movl(edx, eax);
  sarl(eax, 1);
  subl(edx, eax);
  movdqu(xmm6, Address(tmp, 0));           // 0x00000000UL, 0xfff00000UL, 0x00000000UL, 0xfff00000UL
  pandn(xmm6, xmm2);
  addl(eax, 1023);
  movdl(xmm3, eax);
  psllq(xmm3, 52);
  por(xmm6, xmm3);
  addl(edx, 1023);
  movdl(xmm4, edx);
  psllq(xmm4, 52);
  movsd(Address(rsp, 8), xmm0);
  fld_d(Address(rsp, 8));
  movsd(Address(rsp, 16), xmm6);
  fld_d(Address(rsp, 16));
  fmula(1);
  faddp(1);
  movsd(Address(rsp, 8), xmm4);
  fld_d(Address(rsp, 8));
  fmulp(1);
  fstp_d(Address(rsp, 8));
  movsd(xmm0,Address(rsp, 8));
  fldcw(Address(rsp, 24));
  pextrw(ecx, xmm0, 3);
  andl(ecx, 32752);
  cmpl(ecx, 32752);
  jcc(Assembler::greaterEqual, L_2TAG_PACKET_3_0_2);
  cmpl(ecx, 0);
  jcc(Assembler::equal, L_2TAG_PACKET_4_0_2);
  jmp(L_2TAG_PACKET_2_0_2);
  cmpl(ecx, INT_MIN);
  jcc(Assembler::less, L_2TAG_PACKET_3_0_2);
  cmpl(ecx, -1064950997);
  jcc(Assembler::less, L_2TAG_PACKET_2_0_2);
  jcc(Assembler::greater, L_2TAG_PACKET_4_0_2);
  movl(edx, Address(rsp, 128));
  cmpl(edx ,-17155601);
  jcc(Assembler::less, L_2TAG_PACKET_2_0_2);
  jmp(L_2TAG_PACKET_4_0_2);

  bind(L_2TAG_PACKET_3_0_2);
  movl(edx, 14);
  jmp(L_2TAG_PACKET_5_0_2);

  bind(L_2TAG_PACKET_4_0_2);
  movl(edx, 15);

  bind(L_2TAG_PACKET_5_0_2);
  movsd(Address(rsp, 0), xmm0);
  movsd(xmm0, Address(rsp, 128));
  fld_d(Address(rsp, 0));
  jmp(L_2TAG_PACKET_6_0_2);

  bind(L_2TAG_PACKET_7_0_2);
  cmpl(eax, 2146435072);
  jcc(Assembler::greaterEqual, L_2TAG_PACKET_8_0_2);
  movl(eax, Address(rsp, 132));
  cmpl(eax, INT_MIN);
  jcc(Assembler::greaterEqual, L_2TAG_PACKET_9_0_2);
  movsd(xmm0, Address(tmp, 1208));         // 0xffffffffUL, 0x7fefffffUL
  mulsd(xmm0, xmm0);
  movl(edx, 14);
  jmp(L_2TAG_PACKET_5_0_2);

  bind(L_2TAG_PACKET_9_0_2);
  movsd(xmm0, Address(tmp, 1216));
  mulsd(xmm0, xmm0);
  movl(edx, 15);
  jmp(L_2TAG_PACKET_5_0_2);

  bind(L_2TAG_PACKET_8_0_2);
  movl(edx, Address(rsp, 128));
  cmpl(eax, 2146435072);
  jcc(Assembler::above, L_2TAG_PACKET_10_0_2);
  cmpl(edx, 0);
  jcc(Assembler::notEqual, L_2TAG_PACKET_10_0_2);
  movl(eax, Address(rsp, 132));
  cmpl(eax, 2146435072);
  jcc(Assembler::notEqual, L_2TAG_PACKET_11_0_2);
  movsd(xmm0, Address(tmp, 1192));         // 0x00000000UL, 0x7ff00000UL
  jmp(L_2TAG_PACKET_2_0_2);

  bind(L_2TAG_PACKET_11_0_2);
  movsd(xmm0, Address(tmp, 1200));         // 0x00000000UL, 0x00000000UL
  jmp(L_2TAG_PACKET_2_0_2);

  bind(L_2TAG_PACKET_10_0_2);
  movsd(xmm0, Address(rsp, 128));
  addsd(xmm0, xmm0);
  jmp(L_2TAG_PACKET_2_0_2);

  bind(L_2TAG_PACKET_0_0_2);
  movl(eax, Address(rsp, 132));
  andl(eax, 2147483647);
  cmpl(eax, 1083179008);
  jcc(Assembler::aboveEqual, L_2TAG_PACKET_7_0_2);
  movsd(xmm0, Address(rsp, 128));
  addsd(xmm0, Address(tmp, 1184));         // 0x00000000UL, 0x3ff00000UL
  jmp(L_2TAG_PACKET_2_0_2);

  bind(L_2TAG_PACKET_2_0_2);
  movsd(Address(rsp, 48), xmm0);
  fld_d(Address(rsp, 48));

  bind(L_2TAG_PACKET_6_0_2);
  movl(tmp, Address(rsp, 64));
}
void MacroAssembler::fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register eax, Register ecx, Register edx, Register tmp) {
  Label L_2TAG_PACKET_0_0_2, L_2TAG_PACKET_1_0_2, L_2TAG_PACKET_2_0_2, L_2TAG_PACKET_3_0_2;
  Label L_2TAG_PACKET_4_0_2, L_2TAG_PACKET_5_0_2, L_2TAG_PACKET_6_0_2, L_2TAG_PACKET_7_0_2;
  Label L_2TAG_PACKET_8_0_2, L_2TAG_PACKET_9_0_2, L_2TAG_PACKET_10_0_2, L_2TAG_PACKET_11_0_2;
  Label L_2TAG_PACKET_12_0_2, B1_3, B1_5, start;

  assert_different_registers(tmp, eax, ecx, edx);
  jmp(start);
  address cv = (address)_cv;
  address Shifter = (address)_shifter;
  address mmask = (address)_mmask;
  address bias = (address)_bias;
  address Tbl_addr = (address)_Tbl_addr;
  address ALLONES = (address)_ALLONES;
  address ebias = (address)_ebias;
  address XMAX = (address)_XMAX;
  address XMIN = (address)_XMIN;
  address INF = (address)_INF;
  address ZERO = (address)_ZERO;
  address ONE_val = (address)_ONE_val;

  bind(start);
  subq(rsp, 24);
  movsd(Address(rsp, 8), xmm0);
  unpcklpd(xmm0, xmm0);
  movdqu(xmm1, ExternalAddress(cv));       // 0x652b82feUL, 0x40571547UL, 0x652b82feUL, 0x40571547UL
  movdqu(xmm6, ExternalAddress(Shifter));  // 0x00000000UL, 0x43380000UL, 0x00000000UL, 0x43380000UL
  movdqu(xmm2, ExternalAddress(16+cv));    // 0xfefa0000UL, 0x3f862e42UL, 0xfefa0000UL, 0x3f862e42UL
  movdqu(xmm3, ExternalAddress(32+cv));    // 0xbc9e3b3aUL, 0x3d1cf79aUL, 0xbc9e3b3aUL, 0x3d1cf79aUL
  pextrw(eax, xmm0, 3);
  andl(eax, 32767);
  movl(edx, 16527);
  subl(edx, eax);
  subl(eax, 15504);
  orl(edx, eax);
  cmpl(edx, INT_MIN);
  jcc(Assembler::aboveEqual, L_2TAG_PACKET_0_0_2);
  mulpd(xmm1, xmm0);
  addpd(xmm1, xmm6);
  movapd(xmm7, xmm1);
  subpd(xmm1, xmm6);
  mulpd(xmm2, xmm1);
  movdqu(xmm4, ExternalAddress(64+cv));    // 0xe3289860UL, 0x3f56c15cUL, 0x555b9e25UL, 0x3fa55555UL
  mulpd(xmm3, xmm1);
  movdqu(xmm5, ExternalAddress(80+cv));    // 0xc090cf0fUL, 0x3f811115UL, 0x55548ba1UL, 0x3fc55555UL
  subpd(xmm0, xmm2);
  movdl(eax, xmm7);
  movl(ecx, eax);
  andl(ecx, 63);
  shll(ecx, 4);
  sarl(eax, 6);
  movl(edx, eax);
  movdqu(xmm6, ExternalAddress(mmask));    // 0xffffffc0UL, 0x00000000UL, 0xffffffc0UL, 0x00000000UL
  pand(xmm7, xmm6);
  movdqu(xmm6, ExternalAddress(bias));     // 0x0000ffc0UL, 0x00000000UL, 0x0000ffc0UL, 0x00000000UL
  paddq(xmm7, xmm6);
  psllq(xmm7, 46);
  subpd(xmm0, xmm3);
  lea(tmp, ExternalAddress(Tbl_addr));
  movdqu(xmm2, Address(ecx,tmp));
  mulpd(xmm4, xmm0);
  movapd(xmm6, xmm0);
  movapd(xmm1, xmm0);
  mulpd(xmm6, xmm6);
  mulpd(xmm0, xmm6);
  addpd(xmm5, xmm4);
  mulsd(xmm0, xmm6);
  mulpd(xmm6, ExternalAddress(48+cv));     // 0xfffffffeUL, 0x3fdfffffUL, 0xfffffffeUL, 0x3fdfffffUL
  addsd(xmm1, xmm2);
  unpckhpd(xmm2, xmm2);
  mulpd(xmm0, xmm5);
  addsd(xmm1, xmm0);
  por(xmm2, xmm7);
  unpckhpd(xmm0, xmm0);
  addsd(xmm0, xmm1);
  addsd(xmm0, xmm6);
  addl(edx, 894);
  cmpl(edx, 1916);
  jcc (Assembler::above, L_2TAG_PACKET_1_0_2);
  mulsd(xmm0, xmm2);
  addsd(xmm0, xmm2);
  jmp (B1_5);

  bind(L_2TAG_PACKET_1_0_2);
  xorpd(xmm3, xmm3);
  movdqu(xmm4, ExternalAddress(ALLONES));  // 0xffffffffUL, 0xffffffffUL, 0xffffffffUL, 0xffffffffUL
  movl(edx, -1022);
  subl(edx, eax);
  movdl(xmm5, edx);
  psllq(xmm4, xmm5);
  movl(ecx, eax);
  sarl(eax, 1);
  pinsrw(xmm3, eax, 3);
  movdqu(xmm6, ExternalAddress(ebias));    // 0x00000000UL, 0x3ff00000UL, 0x00000000UL, 0x3ff00000UL
  psllq(xmm3, 4);
  psubd(xmm2, xmm3);
  mulsd(xmm0, xmm2);
  cmpl(edx, 52);
  jcc(Assembler::greater, L_2TAG_PACKET_2_0_2);
  pand(xmm4, xmm2);
  paddd(xmm3, xmm6);
  subsd(xmm2, xmm4);
  addsd(xmm0, xmm2);
  cmpl(ecx, 1023);
  jcc(Assembler::greaterEqual, L_2TAG_PACKET_3_0_2);
  pextrw(ecx, xmm0, 3);
  andl(ecx, 32768);
  orl(edx, ecx);
  cmpl(edx, 0);
  jcc(Assembler::equal, L_2TAG_PACKET_4_0_2);
  movapd(xmm6, xmm0);
  addsd(xmm0, xmm4);
  mulsd(xmm0, xmm3);
  pextrw(ecx, xmm0, 3);
  andl(ecx, 32752);
  cmpl(ecx, 0);
  jcc(Assembler::equal, L_2TAG_PACKET_5_0_2);
  jmp(B1_5);

  bind(L_2TAG_PACKET_5_0_2);
  mulsd(xmm6, xmm3);
  mulsd(xmm4, xmm3);
  movdqu(xmm0, xmm6);
  pxor(xmm6, xmm4);
  psrad(xmm6, 31);
  pshufd(xmm6, xmm6, 85);
  psllq(xmm0, 1);
  psrlq(xmm0, 1);
  pxor(xmm0, xmm6);
  psrlq(xmm6, 63);
  paddq(xmm0, xmm6);
  paddq(xmm0, xmm4);
  movl(Address(rsp,0), 15);
  jmp(L_2TAG_PACKET_6_0_2);

  bind(L_2TAG_PACKET_4_0_2);
  addsd(xmm0, xmm4);
  mulsd(xmm0, xmm3);
  jmp(B1_5);

  bind(L_2TAG_PACKET_3_0_2);
  addsd(xmm0, xmm4);
  mulsd(xmm0, xmm3);
  pextrw(ecx, xmm0, 3);
  andl(ecx, 32752);
  cmpl(ecx, 32752);
  jcc(Assembler::aboveEqual, L_2TAG_PACKET_7_0_2);
  jmp(B1_5);

  bind(L_2TAG_PACKET_2_0_2);
  paddd(xmm3, xmm6);
  addpd(xmm0, xmm2);
  mulsd(xmm0, xmm3);
  movl(Address(rsp,0), 15);
  jmp(L_2TAG_PACKET_6_0_2);

  bind(L_2TAG_PACKET_8_0_2);
  cmpl(eax, 2146435072);
  jcc(Assembler::aboveEqual, L_2TAG_PACKET_9_0_2);
  movl(eax, Address(rsp,12));
  cmpl(eax, INT_MIN);
  jcc(Assembler::aboveEqual, L_2TAG_PACKET_10_0_2);
  movsd(xmm0, ExternalAddress(XMAX));      // 0xffffffffUL, 0x7fefffffUL
  mulsd(xmm0, xmm0);

  bind(L_2TAG_PACKET_7_0_2);
  movl(Address(rsp,0), 14);
  jmp(L_2TAG_PACKET_6_0_2);

  bind(L_2TAG_PACKET_10_0_2);
  movsd(xmm0, ExternalAddress(XMIN));      // 0x00000000UL, 0x00100000UL
  mulsd(xmm0, xmm0);
  movl(Address(rsp,0), 15);
  jmp(L_2TAG_PACKET_6_0_2);

  bind(L_2TAG_PACKET_9_0_2);
  movl(edx, Address(rsp,8));
  cmpl(eax, 2146435072);
  jcc(Assembler::above, L_2TAG_PACKET_11_0_2);
  cmpl(edx, 0);
  jcc(Assembler::notEqual, L_2TAG_PACKET_11_0_2);
  movl(eax, Address(rsp,12));
  cmpl(eax, 2146435072);
  jcc(Assembler::notEqual, L_2TAG_PACKET_12_0_2);
  movsd(xmm0, ExternalAddress(INF));       // 0x00000000UL, 0x7ff00000UL
  jmp(B1_5);

  bind(L_2TAG_PACKET_12_0_2);
  movsd(xmm0, ExternalAddress(ZERO));      // 0x00000000UL, 0x00000000UL
  jmp(B1_5);

  bind(L_2TAG_PACKET_11_0_2);
  movsd(xmm0, Address(rsp, 8));
  addsd(xmm0, xmm0);
  jmp(B1_5);

  bind(L_2TAG_PACKET_0_0_2);
  movl(eax, Address(rsp, 12));
  andl(eax, 2147483647);
  cmpl(eax, 1083179008);
  jcc(Assembler::aboveEqual, L_2TAG_PACKET_8_0_2);
  movsd(Address(rsp, 8), xmm0);
  addsd(xmm0, ExternalAddress(ONE_val));   // 0x00000000UL, 0x3ff00000UL
  jmp(B1_5);

  bind(L_2TAG_PACKET_6_0_2);
  movq(Address(rsp, 16), xmm0);

  bind(B1_3);
  movq(xmm0, Address(rsp, 16));

  bind(B1_5);
  addq(rsp, 24);
}
Example #3
0
void NativeGenerator::generate_native_system_entries() {
  comment_section("Native entry points for system functions");

  rom_linkable_entry("native_jvm_unchecked_byte_arraycopy_entry");
  jmp(Constant("native_system_arraycopy_entry"));
  rom_linkable_entry_end();

  rom_linkable_entry("native_jvm_unchecked_char_arraycopy_entry");
  jmp(Constant("native_system_arraycopy_entry"));
  rom_linkable_entry_end();

  rom_linkable_entry("native_jvm_unchecked_int_arraycopy_entry");
  jmp(Constant("native_system_arraycopy_entry"));
  rom_linkable_entry_end();

  rom_linkable_entry("native_jvm_unchecked_long_arraycopy_entry");
  jmp(Constant("native_system_arraycopy_entry"));
  rom_linkable_entry_end();

  rom_linkable_entry("native_jvm_unchecked_obj_arraycopy_entry");
  jmp(Constant("native_system_arraycopy_entry"));
  rom_linkable_entry_end();

  rom_linkable_entry("native_system_arraycopy_entry");

  wtk_profile_quick_call(/* param_size*/ 5);

  Label bailout, cont, try_2_byte, try_4_byte, try_8_byte, do_4_byte;

  //  public static native void arraycopy(Object src, int src_position,
  //                                      Object dst, int dst_position,
  //                                      int length);
  comment("preserve method");
  pushl(ebx);

  // 8 is for the preserved method and the return address
  int  length_offset  =  JavaFrame::arg_offset_from_sp(0) + 8,
       dst_pos_offset =  JavaFrame::arg_offset_from_sp(1) + 8,
       dst_offset     =  JavaFrame::arg_offset_from_sp(2) + 8,
       src_pos_offset =  JavaFrame::arg_offset_from_sp(3) + 8,
       src_offset     =  JavaFrame::arg_offset_from_sp(4) + 8;

  comment("load arguments to registers");
  movl(ecx, Address(esp, Constant(length_offset)));
  movl(edi, Address(esp, Constant(dst_pos_offset)));
  movl(edx, Address(esp, Constant(dst_offset)));
  movl(esi, Address(esp, Constant(src_pos_offset)));
  movl(eax, Address(esp, Constant(src_offset)));

  // eax = src
  // ebx = tmp register
  // edx = dst
  // ecx = length
  // esi = src_pos
  // edi = dst_pos

  comment("if (src == NULL) goto bailout;");
  testl( eax, eax );
  jcc(zero, Constant(bailout));

  comment("if (dst == NULL) goto bailout;");
  testl( edx, edx );
  jcc(zero, Constant(bailout));

  comment("if (length < 0 || src_pos < 0 || dst_pos < 0) goto bailout;");
  movl(ebx, ecx);
  orl(ebx, esi);
  orl(ebx, edi);
  jcc(negative, Constant(bailout));

  comment("if ((unsigned int) dst.length < (unsigned int) dst_pos + (unsigned int) length) goto bailout;");
  movl(ebx, ecx);
  addl(ebx, edi);
  cmpl(Address(edx, Constant(Array::length_offset())), ebx);
  jcc(below, Constant(bailout));

  comment("if ((unsigned int) src.length < (unsigned int) src_pos + (unsigned int) length) goto bailout;");
  movl(ebx, ecx);
  addl(ebx, esi);
  cmpl(Address(eax, Constant(Array::length_offset())), ebx);
  jcc(below, Constant(bailout));

  comment("Same near test");
  comment("if (src.near != dst.near) goto bailout;");
  movl(ebx, Address(eax, Constant(Oop::klass_offset())));
  cmpl(ebx, Address(edx, Constant(Oop::klass_offset())));
  jcc(not_equal, Constant(bailout));

  comment("load the instance_size");
  movl(ebx, Address(ebx, Constant(JavaNear::klass_offset())));
  movsxw(ebx, Address(ebx, Constant(FarClass::instance_size_offset())));

  comment("if (instance_size != size_type_array_1()) goto try_2_byte");
  cmpl(ebx, Constant(InstanceSize::size_type_array_1));
  jcc(not_equal, Constant(try_2_byte));
  leal(esi, Address(eax, esi, times_1, Constant(Array::base_offset())));
  leal(edi, Address(edx, edi, times_1, Constant(Array::base_offset())));
  jmp(Constant(cont));

  bind(try_2_byte);
  comment("if (instance_size != size_type_array_2()) goto try_4_byte");
  cmpl(ebx, Constant(InstanceSize::size_type_array_2));
  jcc(not_equal, Constant(try_4_byte));
  leal(esi, Address(eax, esi, times_2, Constant(Array::base_offset())));
  leal(edi, Address(edx, edi, times_2, Constant(Array::base_offset())));
  shll(ecx, Constant(1));
  jmp(Constant(cont));

  bind(try_4_byte);
  comment("if (instance_size == size_type_array_4()) goto do_4_byte");
  cmpl(ebx, Constant(InstanceSize::size_type_array_4));
  jcc(equal, Constant(do_4_byte) );

  comment("if (instance_size != size_obj_array()) goto bailout");
  cmpl(ebx, Constant(InstanceSize::size_obj_array));
  jcc(not_equal, Constant(bailout));

  comment("if (dst < old_generation_end) goto bailout");
  cmpl( edx, Address( Constant( "_old_generation_end" ) ) );
  jcc( below, Constant(bailout));

  bind(do_4_byte);
  leal(esi, Address(eax, esi, times_4, Constant(Array::base_offset())));
  leal(edi, Address(edx, edi, times_4, Constant(Array::base_offset())));
  shll(ecx, Constant(2));

  bind(cont);
  comment("memmove(edi, esi, ecx);");
  pushl(ecx);
  pushl(esi);
  pushl(edi);
  call(Constant("memmove"));
  addl(esp, Constant(16));

  ret(Constant(5 * BytesPerStackElement));

  comment("Bail out to the general arraycopy implementation");
  bind(bailout);
  comment("pop method");
  popl(ebx);

  if (AddExternCUnderscore) {
    emit_instruction("jmp _interpreter_method_entry");
  } else {
    emit_instruction("jmp  interpreter_method_entry");
  }

  rom_linkable_entry_end(); // native_system_arraycopy_entry
}
Example #4
0
void NativeGenerator::generate_native_string_entries() {

  comment_section("Native entry points for string functions");
  {

    //--------------------java.lang.String.indexof0---------------------------
    rom_linkable_entry("native_string_indexof0_entry");

    wtk_profile_quick_call(/* param_size*/ 2);

    comment("Pop the return address");
    popl(edi);
    comment("Push zero for fromIndex");
    pushl(Constant(0));
    comment("Push back the return address");
    pushl(edi);

    jmp(Constant("native_string_indexof_entry"));
    rom_linkable_entry_end(); // native_string_indexof0_entry

    //--------------------java.lang.String.indexof---------------------------

    rom_linkable_entry("native_string_indexof_entry");
    Label cont, loop, test, failure, success;

    wtk_profile_quick_call(/* param_size*/ 3);

    comment("Pop the return address");
    popl(edi);

    comment("Pop the argument: fromIndex");
    pop_int(eax, eax);

    comment("Pop the argument: ch");
    pop_int(ebx, ebx);

    comment("Pop the receiver");
    pop_obj(ecx, ecx);

    cmpl(ebx, Constant(0xFFFF));
    jcc(greater, Constant(failure));

    cmpl(eax, Constant(0));
    jcc(greater_equal, Constant(cont));
    movl(eax, Constant(0));

    bind(cont);
    movl(esi, Address(ecx, Constant(String::count_offset())));

    comment("if (fromIndex >= count) { return -1; }");
    cmpl(eax, esi);
    jcc(greater_equal, Constant(failure));

    movl(edx, Address(ecx, Constant(String::offset_offset())));
    addl(eax, edx); // i = offset + fromIndex
    addl(edx, esi); // int max = offset + count;
    movl(esi, Address(ecx, Constant(String::value_offset())));    // v = value.
    jmp(Constant(test));

    bind(loop);
    cmpw(Address(esi, eax, times_2, Constant(Array::base_offset())),  ebx);
    jcc(equal, Constant(success));
    incl(eax);

    bind(test);
    cmpl(eax, edx);
    jcc(less, Constant(loop));

    comment("Return -1 by pushing the value and jumping to the return address");
    bind(failure);
    push_int(-1);
    jmp(edi);

    comment("Return i - offset by pushing the value and jumping to the return address");
    bind(success);
    movl(esi, Address(ecx, Constant(String::offset_offset())));   // i = offset + fromIndex
    subl(eax, esi);
    push_int(eax);
    jmp(edi);

    rom_linkable_entry_end(); // native_string_indexof_entry
  }

  //----------------------java.lang.String.charAt---------------------------

  {
    rom_linkable_entry("native_string_charAt_entry");
    if (AddExternCUnderscore) {
      emit_instruction("jmp _interpreter_method_entry");
    } else {
      emit_instruction("jmp  interpreter_method_entry");
    }
    rom_linkable_entry_end();
  }

  //----------------------java.lang.String(java.lang.StringBuffer)-------------

  {
    rom_linkable_entry("native_string_init_entry");
    if (AddExternCUnderscore) {
      emit_instruction("jmp _interpreter_method_entry");
    } else {
      emit_instruction("jmp  interpreter_method_entry");
    }
    rom_linkable_entry_end();
  }

  //----------------------java.lang.String.equals(java.lang.Object)------------

  {
    rom_linkable_entry("native_string_equals_entry");
    if (AddExternCUnderscore) {
      emit_instruction("jmp _interpreter_method_entry");
    } else {
      emit_instruction("jmp  interpreter_method_entry");
    }
    rom_linkable_entry_end();
  }

  //----------------------java.lang.String.indexOf(java.lang.String)-----------

  {
    rom_linkable_entry("native_string_indexof0_string_entry");
    if (AddExternCUnderscore) {
      emit_instruction("jmp _interpreter_method_entry");
    } else {
      emit_instruction("jmp  interpreter_method_entry");
    }
    rom_linkable_entry_end();
  }

  //----------------------java.lang.String.indexOf(java.lang.String)-----------

  {
    rom_linkable_entry("native_string_indexof_string_entry");
    if (AddExternCUnderscore) {
      emit_instruction("jmp _interpreter_method_entry");
    } else {
      emit_instruction("jmp  interpreter_method_entry");
    }
    rom_linkable_entry_end();
  }

  //----------------------java.lang.String.compareTo---------------------------

  { // java.lang.String.compareTo
    // Method int compareTo(java.lang.String)

    rom_linkable_entry("native_string_compareTo_entry");

    wtk_profile_quick_call(/* param_size*/ 2);

    comment("preserve method");
    pushl(ebx);

    // 8 is return address plus pushed method
    int  str1_offset =  JavaFrame::arg_offset_from_sp(0) + 8,
         str0_offset =  JavaFrame::arg_offset_from_sp(1) + 8;

    comment("load arguments to registers");
    movl(ecx, Address(esp, Constant(str1_offset)));
    movl(eax, Address(esp, Constant(str0_offset)));

    // eax: str0: this String
    // ebx: str1: String to compare against

    Label bailout;

    comment("Null check");
    testl(ecx, ecx);
    jcc(zero, Constant(bailout));

    comment("get str0.value[]");
    movl(esi, Address(eax, Constant(String::value_offset())));
    comment("get str0.offset");
    movl(ebx, Address(eax, Constant(String::offset_offset())));
    comment("compute start of character data");
    leal(esi, Address(esi, ebx, times_2, Constant(Array::base_offset())));
    comment("get str0.count");
    movl(eax, Address(eax, Constant(String::count_offset())));

    comment("get str1.value[]");
    movl(edi, Address(ecx, Constant(String::value_offset())));
    comment("get str1.offset");
    movl(ebx, Address(ecx, Constant(String::offset_offset())));
    comment("compute start of character data");
    leal(edi, Address(edi, ebx, times_2, Constant(Array::base_offset())));
    comment("get str1.count");
    movl(ebx, Address(ecx, Constant(String::count_offset())));

    // esi = str0 start of character data
    // edi = str1 start of character data
    // eax = str0 length
    // ebx = str1 length

    Label str1_longest;
    subl(eax, ebx);
    jcc(greater_equal, Constant(str1_longest));
    // str1 is longer than str0
    addl(ebx, eax);
    bind(str1_longest);

    // esi = str0 start of character data
    // edi = str1 start of character data
    // eax = str0.count - str1.count
    // ebx = min(str0.count, str1.count)

    // save str0.count - str1.count, we might need it later
    pushl(eax);

    xorl(ecx, ecx);

    Label loop, check_lengths, done;
    bind(loop);
    cmpl(ecx, ebx);
    jcc(above_equal, Constant(check_lengths));
    movzxw(eax, Address(esi, ecx, times_2));
    movzxw(edx, Address(edi, ecx, times_2));
    subl(eax, edx);
    jcc(not_equal, Constant(done));
    incl(ecx);
    jmp(Constant(loop));

    bind(check_lengths);
    movl(eax, Address(esp));

    bind(done);
    popl(ebx); // remove saved length difference

    // Push result on stack and return to caller
    popl(ebx);     // remove method
    popl(edi);     // pop return address
    addl(esp, Constant(2 * BytesPerStackElement)); // remove arguments
    push_int(eax); // push result
    jmp(edi);      // return

    comment("Bail out to the general compareTo implementation");
    bind(bailout);
    comment("pop method");
    popl(ebx);
    if (AddExternCUnderscore) {
      emit_instruction("jmp _interpreter_method_entry");
    } else {
      emit_instruction("jmp  interpreter_method_entry");
    }

    rom_linkable_entry_end(); // native_string_compareTo_entry
  }

  //----------------------java.lang.String.endsWith----------------

  {
    // java.lang.String.endsWith
    // Method boolean endsWith(java.lang.String)

    rom_linkable_entry("native_string_endsWith_entry");

    wtk_profile_quick_call(/* param_size*/ 2);

    Label bailout;

    // 4 is return address
    int suffix_offset =  JavaFrame::arg_offset_from_sp(0) + 4,
        this_offset =  JavaFrame::arg_offset_from_sp(1) + 4;

    comment("load arguments to registers");
    movl(eax, Address(esp, Constant(suffix_offset)));
    cmpl(eax, Constant(0));
    jcc(equal, Constant(bailout));

    movl(ecx, Address(esp, Constant(this_offset)));

    comment("Pop the return address");
    popl(edi);

    movl(edx, Address(ecx, Constant(String::count_offset())));
    subl(edx, Address(eax, Constant(String::count_offset())));

    comment("Push (this.count - suffix.count) for toffset");
    pushl(edx);

    comment("Push back the return address");
    pushl(edi);

    jmp(Constant("native_string_startsWith_entry"));

    comment("Bail out to the general startsWith implementation");
    bind(bailout);
    if (AddExternCUnderscore) {
      emit_instruction("jmp _interpreter_method_entry");
    } else {
      emit_instruction("jmp  interpreter_method_entry");
    }

    rom_linkable_entry_end(); // native_string_endsWith_entry
  }

  //----------------------java.lang.String.startsWith----------------
  {
    // java.lang.String.startsWith
    // Method boolean startsWith(java.lang.String)
    rom_linkable_entry("native_string_startsWith0_entry");

    wtk_profile_quick_call(/* param_size*/ 2);
    Label bailout;

    // 4 is return address
    int prefix_offset = JavaFrame::arg_offset_from_sp(0) + 4;

    comment("Check if prefix is null");
    cmpl(Address(esp, Constant(prefix_offset)), Constant(0));
    jcc(equal, Constant(bailout));

    comment("Pop the return address");
    popl(edi);
    comment("Push zero for toffset");
    pushl(Constant(0));
    comment("Push back the return address");
    pushl(edi);

    jmp(Constant("native_string_startsWith_entry"));

    comment("Bail out to the general startsWith implementation");
    bind(bailout);
    if (AddExternCUnderscore) {
      emit_instruction("jmp _interpreter_method_entry");
    } else {
      emit_instruction("jmp  interpreter_method_entry");
    }

    rom_linkable_entry_end(); // native_string_startsWith0_entry
  }

  {
    // ----------- java.lang.String.startsWith ------------------------------
    // Method boolean startsWith(java.lang.String,int)

    rom_linkable_entry("native_string_startsWith_entry");

    wtk_profile_quick_call(/* param_size*/ 3);

    Label bailout, return_false;

    // 4 is return address
    int  prefix_offset =  JavaFrame::arg_offset_from_sp(1) + 4;

    comment("Check if prefix is null");
    cmpl(Address(esp, Constant(prefix_offset)), Constant(0));
    jcc(equal, Constant(bailout));

    comment("Pop the return address");
    popl(edi);

    comment("Pop the argument: toffset");
    pop_int(edx, edx);

    comment("Pop the argument: prefix");
    pop_obj(eax, eax);

    comment("Pop the receiver");
    pop_obj(ecx, ecx);

    comment("Preserve the return address");
    pushl(edi);

    // ecx: this String
    // eax: prefix

    cmpl(edx, Constant(0));
    jcc(less, Constant(return_false));

    comment("if (toffset > this.count - prefix.count) return false;");
    movl(ebx, Address(ecx, Constant(String::count_offset())));
    subl(ebx, Address(eax, Constant(String::count_offset())));
    cmpl(edx, ebx);
    jcc(greater, Constant(return_false));

    comment("get this.value[]");
    movl(esi, Address(ecx, Constant(String::value_offset())));
    comment("get this.offset");
    movl(ebx, Address(ecx, Constant(String::offset_offset())));
    comment("add toffset");
    addl(ebx, edx);
    comment("compute start of character data");
    leal(esi, Address(esi, ebx, times_2, Constant(Array::base_offset())));

    comment("get prefix.value[]");
    movl(edi, Address(eax, Constant(String::value_offset())));
    comment("get prefix.offset");
    movl(ebx, Address(eax, Constant(String::offset_offset())));
    comment("compute start of character data");
    leal(edi, Address(edi, ebx, times_2, Constant(Array::base_offset())));

    comment("get prefix.count");
    movl(ecx, Address(eax, Constant(String::count_offset())));
    comment("get the number of bytes to compare");
    shll(ecx, Constant(1));

    comment("memcmp(edi, esi, ecx);");
    pushl(ecx);
    pushl(esi);
    pushl(edi);

    if (GenerateInlineAsm) {
      // VC++ treats memcmp() as an intrinsic function and would cause
      // reference to memcmp in Interpreter_i386.c to fail to compile.
      call(Constant("memcmp_from_interpreter"));
    } else {
      call(Constant("memcmp"));
    }
    addl(esp, Constant(12));
    cmpl(eax, Constant(0));
    jcc(not_equal, Constant(return_false));

    // Push 1 on stack and return to caller
    popl(edi);     // pop return address
    push_int(1);   // push result
    jmp(edi);      // return

    bind(return_false);
    // Push 0 on stack and return to caller
    popl(edi);     // pop return address
    push_int(0);   // push result
    jmp(edi);      // return

    comment("Bail out to the general startsWith implementation");
    bind(bailout);
    if (AddExternCUnderscore) {
      emit_instruction("jmp _interpreter_method_entry");
    } else {
      emit_instruction("jmp  interpreter_method_entry");
    }

    rom_linkable_entry_end(); // native_string_startsWith_entry
  }
}
void InterpreterStubs::generate_interpreter_fill_in_tags() {
  comment_section("Interpreter fill in tags");
  entry("interpreter_fill_in_tags");
  comment("eax: return address of method");
  comment("ebx: method");
  comment("ecx: size of parameters.  Guaranteed to be >= 1");
  comment("edx: call info from call site");
  comment("Must preserve eax, ebx, ecx");

  // stack layout:
  //   sp return address of caller
  //      --> argument n
  //      -->    ...
  //      --> argument 0

  Label extended_call_info;

  comment("Compact call info or normal call info?");
  testl(edx, edx); 
  jcc(positive, Constant(extended_call_info));

  Label loop_entry, loop_condition;
  comment("We have a compact call info");
  movl(edi, ecx);

bind(loop_entry);
  decl(edi);
  comment("Store int tag");
  movl(Address(esp, edi, times_8, Constant(BytesPerWord)), Constant(int_tag));
  comment("Test the bit in the call info");
  GUARANTEE(CallInfo::format1_tag_start == 0, "Tag must start at bit position 0 for this code to work");
  btl(edx, edi);
  jcc(carry_clear, Constant(loop_condition));
  comment("Store obj tag");
  movl(Address(esp, edi, times_8, Constant(BytesPerWord)), Constant(obj_tag));
  bind(loop_condition);
  testl(edi, edi);
  jcc(not_zero, Constant(loop_entry));
  ret();

bind(extended_call_info);
  comment("Normal call info");
  // The following code is slightly complicated.  "Bit offset" below
  // pretends like the callinfo's are in a bit array, as follows:
  //     Callinfo describing bci and offset
  //     Size [16 bits] and stack info 0-3
  //     Stack info 4-11
  // We ignore the fact that each of these words is preceded by a byte
  // that makes it look like an instruction.
  pushl(ecx); 
  pushl(ebx);
  Label loopx_entry, loopx_done;
 
  comment("Bit offset of first argument in CallInfo array");
  movzxw(edx, Address(eax, Constant(5 + 1)));  // total number of locals/expr
  subl(edx, ecx);               // number of locals/expr belonging to callee
  shll(edx, Constant(2));       // number of bits per nybble
  addl(edx, Constant(32 + 16)); // 48 bits is the 32 bit callinfo and 16bit size info

  comment("Decrement argument count; move to more convenient register");
  leal(esi, Address(ecx, Constant(-1)));

  comment("Location of tag of esi-th local");
  leal(ebx, Address(esp, Constant(3 * BytesPerWord)));

bind(loopx_entry);
  comment("eax holds the return address");
  comment("ebx holds address of the esi-th tag");
  comment("esi is the local whose tag we are setting");
  comment("edx contains the bit offset of Local 0 in the CallInfo array");
  comment("Get bit offset of esi-th local");
  leal(ecx, Address(edx, esi, times_4));

  comment("From bit offset, get word offset, then multiply by 5");
  movl(edi, ecx);
  shrl(edi, Constant(5));
  leal(edi, Address(edi, edi, times_4));

  comment("Get the appropriate CallInfo word; extract the nybble");
  movl(edi, Address(eax, edi, times_1, Constant(1)));
  shrl(edi);
  andl(edi, Constant(0xF));

  comment("Tag is (1 << value) >> 1.  This is 0 when value == 0");
  movl(ecx, edi);
  movl(edi, Constant(1));
  shll(edi);
  shrl(edi, Constant(1));

  comment("Store the tag");
  movl(Address(ebx), edi);

  comment("Are we done?");
  decl(esi); 
  addl(ebx, Constant(8));
  testl(esi, esi);
  jcc(greater_equal, Constant(loopx_entry));
bind(loopx_done);
  popl(ebx); 
  popl(ecx);
  ret();

  entry_end(); // interpreter_fill_in_tags
}
Example #6
0
//------------------------------------------------------------------------------
// MethodHandles::generate_method_handle_stub
//
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  // Here is the register state during an interpreted call,
  // as set up by generate_method_handle_interpreter_entry():
  // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
  // - rcx: receiver method handle
  // - rax: method handle type (only used by the check_mtype entry point)
  // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  // - rdx: garbage temp, can blow away

  const Register rcx_recv    = rcx;
  const Register rax_argslot = rax;
  const Register rbx_temp    = rbx;
  const Register rdx_temp    = rdx;

  // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
  // and gen_c2i_adapter (from compiled calls):
  const Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);

  // Argument registers for _raise_exception.
  // 32-bit: Pass first two oop/int args in registers ECX and EDX.
  const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
  const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
  const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
  assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);

  guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");

  // some handy addresses
  Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
  Address rbx_method_fce(     rbx,      methodOopDesc::from_compiled_offset() );

  Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
  Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );

  Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );

  Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
  Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
  Address vmarg;                // __ argument_address(vmargslot)

  const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();

  if (have_entry(ek)) {
    __ nop();                   // empty stubs make SG sick
    return;
  }

  address interp_entry = __ pc();

  trace_method_handle(_masm, entry_name(ek));

  BLOCK_COMMENT(entry_name(ek));

  switch ((int) ek) {
  case _raise_exception:
    {
      // Not a real MH entry, but rather shared code for raising an
      // exception.  Since we use the compiled entry, arguments are
      // expected in compiler argument registers.
      assert(raise_exception_method(), "must be set");
      assert(raise_exception_method()->from_compiled_entry(), "method must be linked");

      const Register rdi_pc = rax;
      __ pop(rdi_pc);  // caller PC
      __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started

      Register rbx_method = rbx_temp;
      Label L_no_method;
      // FIXME: fill in _raise_exception_method with a suitable java.lang.invoke method
      __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
      __ testptr(rbx_method, rbx_method);
      __ jccb(Assembler::zero, L_no_method);

      const int jobject_oop_offset = 0;
      __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
      __ testptr(rbx_method, rbx_method);
      __ jccb(Assembler::zero, L_no_method);
      __ verify_oop(rbx_method);

      NOT_LP64(__ push(rarg2_required));
      __ push(rdi_pc);         // restore caller PC
      __ jmp(rbx_method_fce);  // jump to compiled entry

      // Do something that is at least causes a valid throw from the interpreter.
      __ bind(L_no_method);
      __ push(rarg2_required);
      __ push(rarg1_actual);
      __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
    }
    break;

  case _invokestatic_mh:
  case _invokespecial_mh:
    {
      Register rbx_method = rbx_temp;
      __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
      __ verify_oop(rbx_method);
      // same as TemplateTable::invokestatic or invokespecial,
      // minus the CP setup and profiling:
      if (ek == _invokespecial_mh) {
        // Must load & check the first argument before entering the target method.
        __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
        __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
        __ null_check(rcx_recv);
        __ verify_oop(rcx_recv);
      }
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokevirtual_mh:
    {
      // same as TemplateTable::invokevirtual,
      // minus the CP setup and profiling:

      // pick out the vtable index and receiver offset from the MH,
      // and then we can discard it:
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rbx_index = rbx_temp;
      __ movl(rbx_index, rcx_dmh_vmindex);
      // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

      // get target methodOop & entry point
      const int base = instanceKlass::vtable_start_offset() * wordSize;
      assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
      Address vtable_entry_addr(rax_klass,
                                rbx_index, Address::times_ptr,
                                base + vtableEntry::method_offset_in_bytes());
      Register rbx_method = rbx_temp;
      __ movptr(rbx_method, vtable_entry_addr);

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokeinterface_mh:
    {
      // same as TemplateTable::invokeinterface,
      // minus the CP setup and profiling:

      // pick out the interface and itable index from the MH.
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rdx_intf  = rdx_temp;
      Register rbx_index = rbx_temp;
      __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
      __ movl(rbx_index, rcx_dmh_vmindex);
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

      Register rdi_temp   = rdi;
      Register rbx_method = rbx_index;

      // get interface klass
      Label no_such_interface;
      __ verify_oop(rdx_intf);
      __ lookup_interface_method(rax_klass, rdx_intf,
                                 // note: next two args must be the same:
                                 rbx_index, rbx_method,
                                 rdi_temp,
                                 no_such_interface);

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
      __ hlt();

      __ bind(no_such_interface);
      // Throw an exception.
      // For historical reasons, it will be IncompatibleClassChangeError.
      __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
      assert_different_registers(rarg2_required, rbx_temp);
      __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
      __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
      __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
    }
    break;

  case _bound_ref_mh:
  case _bound_int_mh:
  case _bound_long_mh:
  case _bound_ref_direct_mh:
  case _bound_int_direct_mh:
  case _bound_long_direct_mh:
    {
      bool direct_to_method = (ek >= _bound_ref_direct_mh);
      BasicType arg_type  = T_ILLEGAL;
      int       arg_mask  = _INSERT_NO_MASK;
      int       arg_slots = -1;
      get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);

      // make room for the new argument:
      __ movl(rax_argslot, rcx_bmh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask, rax_argslot, rbx_temp, rdx_temp);

      // store bound argument into the new stack slot:
      __ load_heap_oop(rbx_temp, rcx_bmh_argument);
      if (arg_type == T_OBJECT) {
        __ movptr(Address(rax_argslot, 0), rbx_temp);
      } else {
        Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
        const int arg_size = type2aelembytes(arg_type);
        __ load_sized_value(rdx_temp, prim_value_addr, arg_size, is_signed_subword_type(arg_type), rbx_temp);
        __ store_sized_value(Address(rax_argslot, 0), rdx_temp, arg_size, rbx_temp);
      }

      if (direct_to_method) {
        Register rbx_method = rbx_temp;
        __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
        __ verify_oop(rbx_method);
        __ jmp(rbx_method_fie);
      } else {
        __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
        __ verify_oop(rcx_recv);
        __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
      }
    }
    break;

  case _adapter_retype_only:
  case _adapter_retype_raw:
    // immediately jump to the next MH layer:
    __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
    __ verify_oop(rcx_recv);
    __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    // This is OK when all parameter types widen.
    // It is also OK when a return type narrows.
    break;

  case _adapter_check_cast:
    {
      // temps:
      Register rbx_klass = rbx_temp; // interesting AMH data

      // check a reference argument before jumping to the next layer of MH:
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      // What class are we casting to?
      __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));

      Label done;
      __ movptr(rdx_temp, vmarg);
      __ testptr(rdx_temp, rdx_temp);
      __ jcc(Assembler::zero, done);         // no cast if null
      __ load_klass(rdx_temp, rdx_temp);

      // live at this point:
      // - rbx_klass:  klass required by the target method
      // - rdx_temp:   argument klass to test
      // - rcx_recv:   adapter method handle
      __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);

      // If we get here, the type check failed!
      // Call the wrong_method_type stub, passing the failing argument type in rax.
      Register rax_mtype = rax_argslot;
      __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
      __ movptr(rdx_temp, vmarg);

      assert_different_registers(rarg2_required, rdx_temp);
      __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
      __ mov(          rarg1_actual,   rdx_temp);                     // bad object
      __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));

      __ bind(done);
      // get the new MH:
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_prim:
  case _adapter_ref_to_prim:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place conversion to int or an int subword
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      switch (ek) {
      case _adapter_opt_i2i:
        __ movl(rdx_temp, vmarg);
        break;
      case _adapter_opt_l2i:
        {
          // just delete the extra slot; on a little-endian machine we keep the first
          __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
          remove_arg_slots(_masm, -stack_move_unit(),
                           rax_argslot, rbx_temp, rdx_temp);
          vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
          __ movl(rdx_temp, vmarg);
        }
        break;
      case _adapter_opt_unboxi:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
            if (is_subword_type(BasicType(bt)))
              assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
          }
#endif
          __ null_check(rdx_temp, value_offset);
          __ movl(rdx_temp, Address(rdx_temp, value_offset));
          // We load this as a word.  Because we are little-endian,
          // the low bits will be correct, but the high bits may need cleaning.
          // The vminfo will guide us to clean those bits.
        }
        break;
      default:
        ShouldNotReachHere();
      }

      // Do the requested conversion and store the value.
      Register rbx_vminfo = rbx_temp;
      __ movl(rbx_vminfo, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");

      // get the new MH:
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      // (now we are done with the old MH)

      // original 32-bit vmdata word must be of this form:
      //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
      __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
      __ shll(rdx_temp /*, rcx*/);
      Label zero_extend, done;
      __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
      __ jccb(Assembler::zero, zero_extend);

      // this path is taken for int->byte, int->short
      __ sarl(rdx_temp /*, rcx*/);
      __ jmpb(done);

      __ bind(zero_extend);
      // this is taken for int->char
      __ shrl(rdx_temp /*, rcx*/);

      __ bind(done);
      __ movl(vmarg, rdx_temp);  // Store the value.
      __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv

      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place int-to-long or ref-to-long conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);

      // on a little-endian machine we keep the first slot and add another after
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                       rax_argslot, rbx_temp, rdx_temp);
      Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
      Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);

      switch (ek) {
      case _adapter_opt_i2l:
        {
#ifdef _LP64
          __ movslq(rdx_temp, vmarg1);  // Load sign-extended
          __ movq(vmarg1, rdx_temp);    // Store into first slot
#else
          __ movl(rdx_temp, vmarg1);
          __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
          __ movl(vmarg2, rdx_temp); // store second word
#endif
        }
        break;
      case _adapter_opt_unboxl:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg1);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
          assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
          __ null_check(rdx_temp, value_offset);
#ifdef _LP64
          __ movq(rbx_temp, Address(rdx_temp, value_offset));
          __ movq(vmarg1, rbx_temp);
#else
          __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
          __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
          __ movl(vmarg1, rbx_temp);
          __ movl(vmarg2, rdx_temp);
#endif
        }
        break;
      default:
        ShouldNotReachHere();
      }

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
    {
      // perform an in-place floating primitive conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      if (ek == _adapter_opt_f2d) {
        insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                         rax_argslot, rbx_temp, rdx_temp);
      }
      Address vmarg(rax_argslot, -Interpreter::stackElementSize);

#ifdef _LP64
      if (ek == _adapter_opt_f2d) {
        __ movflt(xmm0, vmarg);
        __ cvtss2sd(xmm0, xmm0);
        __ movdbl(vmarg, xmm0);
      } else {
        __ movdbl(xmm0, vmarg);
        __ cvtsd2ss(xmm0, xmm0);
        __ movflt(vmarg, xmm0);
      }
#else //_LP64
      if (ek == _adapter_opt_f2d) {
        __ fld_s(vmarg);        // load float to ST0
        __ fstp_s(vmarg);       // store single
      } else {
        __ fld_d(vmarg);        // load double to ST0
        __ fstp_s(vmarg);       // store single
      }
#endif //_LP64

      if (ek == _adapter_opt_d2f) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_ref:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_swap_args:
  case _adapter_rot_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_swap_1:
  case _adapter_opt_swap_2:
  case _adapter_opt_rot_1_up:
  case _adapter_opt_rot_1_down:
  case _adapter_opt_rot_2_up:
  case _adapter_opt_rot_2_down:
    {
      int swap_bytes = 0, rotate = 0;
      get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);

      // 'argslot' is the position of the first argument to swap
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'vminfo' is the second
      Register rbx_destslot = rbx_temp;
      __ movl(rbx_destslot, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");
      __ andl(rbx_destslot, CONV_VMINFO_MASK);
      __ lea(rbx_destslot, __ argument_address(rbx_destslot));
      DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));

      if (!rotate) {
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ movptr(rdx_temp, Address(rax_argslot , i));
          __ push(rdx_temp);
          __ movptr(rdx_temp, Address(rbx_destslot, i));
          __ movptr(Address(rax_argslot, i), rdx_temp);
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      } else {
        // push the first chunk, which is going to get overwritten
        for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
          __ movptr(rdx_temp, Address(rax_argslot, i));
          __ push(rdx_temp);
        }

        if (rotate > 0) {
          // rotate upward
          __ subptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot > destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
            __ jccb(Assembler::aboveEqual, L_ok);
            __ stop("source must be above destination (upward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot down to destslot, copying contiguous data upwards
          // pseudo-code:
          //   rax = src_addr - swap_bytes
          //   rbx = dest_addr
          //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
          __ addptr(rax_argslot, -wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
          __ jccb(Assembler::aboveEqual, loop);
        } else {
          __ addptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot < destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
            __ jccb(Assembler::belowEqual, L_ok);
            __ stop("source must be below destination (downward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot up to destslot, copying contiguous data downwards
          // pseudo-code:
          //   rax = src_addr + swap_bytes
          //   rbx = dest_addr
          //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
          __ addptr(rax_argslot, wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
          __ jccb(Assembler::belowEqual, loop);
        }

        // pop the original first chunk into the destination slot, now free
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      }

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_dup_args:
    {
      // 'argslot' is the position of the first argument to duplicate
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'stack_move' is negative number of words to duplicate
      Register rdx_stack_move = rdx_temp;
      __ movl2ptr(rdx_stack_move, rcx_amh_conversion);
      __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT);

      int argslot0_num = 0;
      Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
      assert(argslot0.base() == rsp, "");
      int pre_arg_size = argslot0.disp();
      assert(pre_arg_size % wordSize == 0, "");
      assert(pre_arg_size > 0, "must include PC");

      // remember the old rsp+1 (argslot[0])
      Register rbx_oldarg = rbx_temp;
      __ lea(rbx_oldarg, argslot0);

      // move rsp down to make room for dups
      __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));

      // compute the new rsp+1 (argslot[0])
      Register rdx_newarg = rdx_temp;
      __ lea(rdx_newarg, argslot0);

      __ push(rdi);             // need a temp
      // (preceding push must be done after arg addresses are taken!)

      // pull down the pre_arg_size data (PC)
      for (int i = -pre_arg_size; i < 0; i += wordSize) {
        __ movptr(rdi, Address(rbx_oldarg, i));
        __ movptr(Address(rdx_newarg, i), rdi);
      }

      // copy from rax_argslot[0...] down to new_rsp[1...]
      // pseudo-code:
      //   rbx = old_rsp+1
      //   rdx = new_rsp+1
      //   rax = argslot
      //   while (rdx < rbx) *rdx++ = *rax++
      Label loop;
      __ bind(loop);
      __ movptr(rdi, Address(rax_argslot, 0));
      __ movptr(Address(rdx_newarg, 0), rdi);
      __ addptr(rax_argslot, wordSize);
      __ addptr(rdx_newarg, wordSize);
      __ cmpptr(rdx_newarg, rbx_oldarg);
      __ jccb(Assembler::less, loop);

      __ pop(rdi);              // restore temp

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_drop_args:
    {
      // 'argslot' is the position of the first argument to nuke
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      __ push(rdi);             // need a temp
      // (must do previous push after argslot address is taken)

      // 'stack_move' is number of words to drop
      Register rdi_stack_move = rdi;
      __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
      __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
      remove_arg_slots(_masm, rdi_stack_move,
                       rax_argslot, rbx_temp, rdx_temp);

      __ pop(rdi);              // restore temp

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_collect_args:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_spread_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_spread_0:
  case _adapter_opt_spread_1:
  case _adapter_opt_spread_more:
    {
      // spread an array out into a group of arguments
      int length_constant = get_ek_adapter_opt_spread_info(ek);

      // find the address of the array argument
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // grab some temps
      { __ push(rsi); __ push(rdi); }
      // (preceding pushes must be done after argslot address is taken!)
#define UNPUSH_RSI_RDI \
      { __ pop(rdi); __ pop(rsi); }

      // arx_argslot points both to the array and to the first output arg
      vmarg = Address(rax_argslot, 0);

      // Get the array value.
      Register  rsi_array       = rsi;
      Register  rdx_array_klass = rdx_temp;
      BasicType elem_type       = T_OBJECT;
      int       length_offset   = arrayOopDesc::length_offset_in_bytes();
      int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
      __ movptr(rsi_array, vmarg);
      Label skip_array_check;
      if (length_constant == 0) {
        __ testptr(rsi_array, rsi_array);
        __ jcc(Assembler::zero, skip_array_check);
      }
      __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
      __ load_klass(rdx_array_klass, rsi_array);

      // Check the array type.
      Register rbx_klass = rbx_temp;
      __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));

      Label ok_array_klass, bad_array_klass, bad_array_length;
      __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
      // If we get here, the type check failed!
      __ jmp(bad_array_klass);
      __ bind(ok_array_klass);

      // Check length.
      if (length_constant >= 0) {
        __ cmpl(Address(rsi_array, length_offset), length_constant);
      } else {
        Register rbx_vminfo = rbx_temp;
        __ movl(rbx_vminfo, rcx_amh_conversion);
        assert(CONV_VMINFO_SHIFT == 0, "preshifted");
        __ andl(rbx_vminfo, CONV_VMINFO_MASK);
        __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
      }
      __ jcc(Assembler::notEqual, bad_array_length);

      Register rdx_argslot_limit = rdx_temp;

      // Array length checks out.  Now insert any required stack slots.
      if (length_constant == -1) {
        // Form a pointer to the end of the affected region.
        __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
        // 'stack_move' is negative number of words to insert
        Register rdi_stack_move = rdi;
        __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
        __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
        Register rsi_temp = rsi_array;  // spill this
        insert_arg_slots(_masm, rdi_stack_move, -1,
                         rax_argslot, rbx_temp, rsi_temp);
        // reload the array (since rsi was killed)
        __ movptr(rsi_array, vmarg);
      } else if (length_constant > 1) {
        int arg_mask = 0;
        int new_slots = (length_constant - 1);
        for (int i = 0; i < new_slots; i++) {
          arg_mask <<= 1;
          arg_mask |= _INSERT_REF_MASK;
        }
        insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
                         rax_argslot, rbx_temp, rdx_temp);
      } else if (length_constant == 1) {
        // no stack resizing required
      } else if (length_constant == 0) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

      // Copy from the array to the new slots.
      // Note: Stack change code preserves integrity of rax_argslot pointer.
      // So even after slot insertions, rax_argslot still points to first argument.
      if (length_constant == -1) {
        // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
        Register rsi_source = rsi_array;
        __ lea(rsi_source, Address(rsi_array, elem0_offset));
        Label loop;
        __ bind(loop);
        __ movptr(rbx_temp, Address(rsi_source, 0));
        __ movptr(Address(rax_argslot, 0), rbx_temp);
        __ addptr(rsi_source, type2aelembytes(elem_type));
        __ addptr(rax_argslot, Interpreter::stackElementSize);
        __ cmpptr(rax_argslot, rdx_argslot_limit);
        __ jccb(Assembler::less, loop);
      } else if (length_constant == 0) {
        __ bind(skip_array_check);
        // nothing to copy
      } else {
        int elem_offset = elem0_offset;
        int slot_offset = 0;
        for (int index = 0; index < length_constant; index++) {
          __ movptr(rbx_temp, Address(rsi_array, elem_offset));
          __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
          elem_offset += type2aelembytes(elem_type);
           slot_offset += Interpreter::stackElementSize;
        }
      }

      // Arguments are spread.  Move to next method handle.
      UNPUSH_RSI_RDI;
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);

      __ bind(bad_array_klass);
      UNPUSH_RSI_RDI;
      assert(!vmarg.uses(rarg2_required), "must be different registers");
      __ movptr(rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
      __ movptr(rarg1_actual,   vmarg);                                         // bad array
      __ movl(  rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));

      __ bind(bad_array_length);
      UNPUSH_RSI_RDI;
      assert(!vmarg.uses(rarg2_required), "must be different registers");
      __ mov   (rarg2_required, rcx_recv);                       // AMH requiring a certain length
      __ movptr(rarg1_actual,   vmarg);                          // bad array
      __ movl(  rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));

#undef UNPUSH_RSI_RDI
    }
    break;

  case _adapter_flyby:
  case _adapter_ricochet:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  default:  ShouldNotReachHere();
  }
  __ hlt();

  address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  __ unimplemented(entry_name(ek)); // %%% FIXME: NYI

  init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}