// Main function
// *********************************************************************
int main(int argc, char **argv)
{
    gp_argc = &argc;
    gp_argv = &argv;

    shrQAStart(argc, argv);

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    shrLog("clGetPlatformID...\n");

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    shrLog("clGetPlatformID...\n");

    //Get all the devices
    cl_uint uiNumDevices = 0;           // Number of devices available
    cl_uint uiTargetDevice = 0;	        // Default Device to compute on
    cl_uint uiNumComputeUnits;          // Number of compute units (SM's on NV GPU)
    shrLog("Get the Device info and select Device...\n");
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &uiNumDevices);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    cdDevices = (cl_device_id *)malloc(uiNumDevices * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, uiNumDevices, cdDevices, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);

    // Get command line device options and config accordingly
    shrLog("  # of Devices Available = %u\n", uiNumDevices);
    if(shrGetCmdLineArgumentu(argc, (const char**)argv, "device", &uiTargetDevice)== shrTRUE)
    {
        uiTargetDevice = CLAMP(uiTargetDevice, 0, (uiNumDevices - 1));
    }
    shrLog("  Using Device %u: ", uiTargetDevice);
    oclPrintDevName(LOGBOTH, cdDevices[uiTargetDevice]);
    ciErrNum = clGetDeviceInfo(cdDevices[uiTargetDevice], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(uiNumComputeUnits), &uiNumComputeUnits, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, NULL);
    shrLog("\n  # of Compute Units = %u\n", uiNumComputeUnits);

    // get command line arg for quick test, if provided
    bNoPrompt = shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");

    // start logs
    cExecutableName = argv[0];
    shrSetLogFileName ("oclDotProduct.txt");
    shrLog("%s Starting...\n\n# of float elements per Array \t= %u\n", argv[0], iNumElements);

    // set and log Global and Local work size dimensions
    szLocalWorkSize = 256;
    szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, iNumElements);  // rounded up to the nearest multiple of the LocalWorkSize
    shrLog("Global Work Size \t\t= %u\nLocal Work Size \t\t= %u\n# of Work Groups \t\t= %u\n\n",
           szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize));

    // Allocate and initialize host arrays
    shrLog( "Allocate and Init Host Mem...\n");
    srcA = (void *)malloc(sizeof(cl_float4) * szGlobalWorkSize);
    srcB = (void *)malloc(sizeof(cl_float4) * szGlobalWorkSize);
    dst = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
    Golden = (void *)malloc(sizeof(cl_float) * iNumElements);
    shrFillArray((float*)srcA, 4 * iNumElements);
    shrFillArray((float*)srcB, 4 * iNumElements);

    // Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Get a GPU device
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevices[uiTargetDevice], NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create the context
    cxGPUContext = clCreateContext(0, 1, &cdDevices[uiTargetDevice], NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create a command-queue
    shrLog("clCreateCommandQueue...\n");
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[uiTargetDevice], 0, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Allocate the OpenCL buffer memory objects for source and result on the device GMEM
    shrLog("clCreateBuffer (SrcA, SrcB and Dst in Device GMEM)...\n");
    cmDevSrcA = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize * 4, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmDevSrcB = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize * 4, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmDevDst = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Read the OpenCL kernel in from source file
    shrLog("oclLoadProgSource (%s)...\n", cSourceFile);
    cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);
    oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);

    // Create the program
    shrLog("clCreateProgramWithSource...\n");
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErrNum);

    // Build the program with 'mad' Optimization option
#ifdef MAC
    char* flags = "-cl-fast-relaxed-math -DMAC";
#else
    char* flags = "-cl-fast-relaxed-math";
#endif
    shrLog("clBuildProgram...\n");
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclDotProduct.ptx");
        Cleanup(EXIT_FAILURE);
    }

    // Create the kernel
    shrLog("clCreateKernel (DotProduct)...\n");
    ckKernel = clCreateKernel(cpProgram, "DotProduct", &ciErrNum);

    // Set the Argument values
    shrLog("clSetKernelArg 0 - 3...\n\n");
    ciErrNum = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrcA);
    ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrcB);
    ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevDst);
    ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(cl_int), (void*)&iNumElements);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // --------------------------------------------------------
    // Core sequence... copy input data to GPU, compute, copy results back

    // Asynchronous write of data to GPU device
    shrLog("clEnqueueWriteBuffer (SrcA and SrcB)...\n");
    ciErrNum = clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcA, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize * 4, srcA, 0, NULL, NULL);
    ciErrNum |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcB, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize * 4, srcB, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Launch kernel
    shrLog("clEnqueueNDRangeKernel (DotProduct)...\n");
    ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Read back results and check accumulated errors
    shrLog("clEnqueueReadBuffer (Dst)...\n\n");
    ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmDevDst, CL_TRUE, 0, sizeof(cl_float) * szGlobalWorkSize, dst, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Compute and compare results for golden-host and report errors and pass/fail
    shrLog("Comparing against Host/C++ computation...\n\n");
    DotProductHost ((const float*)srcA, (const float*)srcB, (float*)Golden, iNumElements);
    shrBOOL bMatch = shrComparefet((const float*)Golden, (const float*)dst, (unsigned int)iNumElements, 0.0f, 0);

    // Cleanup and leave
    Cleanup (EXIT_SUCCESS);
}
Example #2
0
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for 
////////////////////////////////////////////////////////////////////////////////
int runTest(int argc, const char** argv)
{
    cl_platform_id cpPlatform = NULL;
    cl_uint ciDeviceCount = 0;
    cl_device_id *cdDevices = NULL;
    cl_int ciErrNum = CL_SUCCESS;

    //Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create OpenCL context!\n");
        return ciErrNum;
    }

    //Get the devices
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &ciDeviceCount);
    cdDevices = (cl_device_id *)malloc(ciDeviceCount * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, ciDeviceCount, cdDevices, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create OpenCL context!\n");
        return ciErrNum;
    }

    //Create the context
    cxGPUContext = clCreateContext(0, ciDeviceCount, cdDevices, NULL, NULL, &ciErrNum);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create OpenCL context!\n");
        return ciErrNum;
    }

    if(shrCheckCmdLineFlag(argc, (const char**)argv, "device"))
    {
        // User specified GPUs
        char* deviceList;
        char* deviceStr;
        char* next_token;
        shrGetCmdLineArgumentstr(argc, (const char**)argv, "device", &deviceList);

        #ifdef WIN32
            deviceStr = strtok_s (deviceList," ,.-", &next_token);
        #else
            deviceStr = strtok (deviceList," ,.-");
        #endif   
        ciDeviceCount = 0;
        while(deviceStr != NULL) 
        {
            // get and print the device for this queue
            cl_device_id device = oclGetDev(cxGPUContext, atoi(deviceStr));
			if( device == (cl_device_id) -1  ) {
				shrLog(" Device %s does not exist!\n", deviceStr);
				return -1;
			}
			
			shrLog("Device %s: ", deviceStr);
            oclPrintDevName(LOGBOTH, device);            
            shrLog("\n");
           
            // create command queue
            commandQueue[ciDeviceCount] = clCreateCommandQueue(cxGPUContext, device, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            if (ciErrNum != CL_SUCCESS)
            {
                shrLog(" Error %i in clCreateCommandQueue call !!!\n\n", ciErrNum);
                return ciErrNum;
            }
                
            ++ciDeviceCount;

            #ifdef WIN32
                deviceStr = strtok_s (NULL," ,.-", &next_token);
            #else            
                deviceStr = strtok (NULL," ,.-");
            #endif
        }

        free(deviceList);
    } 
    else 
    {
        // Find out how many GPU's to compute on all available GPUs
	    size_t nDeviceBytes;
	    ciErrNum |= clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &nDeviceBytes);
	    ciDeviceCount = (cl_uint)nDeviceBytes/sizeof(cl_device_id);

        if (ciErrNum != CL_SUCCESS)
        {
            shrLog(" Error %i in clGetDeviceIDs call !!!\n\n", ciErrNum);
            return ciErrNum;
        }
        else if (ciDeviceCount == 0)
        {
            shrLog(" There are no devices supporting OpenCL (return code %i)\n\n", ciErrNum);
            return -1;
        } 

        // create command-queues
        for(unsigned int i = 0; i < ciDeviceCount; ++i) 
        {
            // get and print the device for this queue
            cl_device_id device = oclGetDev(cxGPUContext, i);
            shrLog("Device %d: ", i);
            oclPrintDevName(LOGBOTH, device);            
            shrLog("\n");

            // create command queue
            commandQueue[i] = clCreateCommandQueue(cxGPUContext, device, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            if (ciErrNum != CL_SUCCESS)
            {
                shrLog(" Error %i in clCreateCommandQueue call !!!\n\n", ciErrNum);
                return ciErrNum;
            }
        }
    }

    // Optional Command-line multiplier for matrix sizes
    shrGetCmdLineArgumenti(argc, (const char**)argv, "sizemult", &iSizeMultiple); 
    iSizeMultiple = CLAMP(iSizeMultiple, 1, 10);
    uiWA = WA * iSizeMultiple;
    uiHA = HA * iSizeMultiple;
    uiWB = WB * iSizeMultiple;
    uiHB = HB * iSizeMultiple;
    uiWC = WC * iSizeMultiple;
    uiHC = HC * iSizeMultiple;
    shrLog("\nUsing Matrix Sizes: A(%u x %u), B(%u x %u), C(%u x %u)\n", 
            uiWA, uiHA, uiWB, uiHB, uiWC, uiHC);

    // allocate host memory for matrices A and B
    unsigned int size_A = uiWA * uiHA;
    unsigned int mem_size_A = sizeof(float) * size_A;
    float* h_A_data = (float*)malloc(mem_size_A);
    unsigned int size_B = uiWB * uiHB;
    unsigned int mem_size_B = sizeof(float) * size_B;
    float* h_B_data = (float*)malloc(mem_size_B);

    // initialize host memory
    srand(2006);
    shrFillArray(h_A_data, size_A);
    shrFillArray(h_B_data, size_B);

    // allocate host memory for result
    unsigned int size_C = uiWC * uiHC;
    unsigned int mem_size_C = sizeof(float) * size_C;
    float* h_C = (float*) malloc(mem_size_C);

    // create OpenCL buffer pointing to the host memory
    cl_mem h_A = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
				    mem_size_A, h_A_data, &ciErrNum);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: clCreateBuffer\n");
        return ciErrNum;
    }

    // Program Setup
    size_t program_length;
    const char* header_path = shrFindFilePath("matrixMul.h", argv[0]);
    oclCheckError(header_path != NULL, shrTRUE);
    char* header = oclLoadProgSource(header_path, "", &program_length);
    if(!header)
    {
        shrLog("Error: Failed to load the header %s!\n", header_path);
        return -1000;
    }
    const char* source_path = shrFindFilePath("matrixMul.cl", argv[0]);
    oclCheckError(source_path != NULL, shrTRUE);
    char *source = oclLoadProgSource(source_path, header, &program_length);
    if(!source)
    {
        shrLog("Error: Failed to load compute program %s!\n", source_path);
        return -2000;
    }

    // create the program
    cl_program cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&source, 
                                                    &program_length, &ciErrNum);
    if (ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failed to create program\n");
        return ciErrNum;
    }
    free(header);
    free(source);
    
    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then return error
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclMatrixMul.ptx");
        return ciErrNum;
    }

    // write out PTX if requested on the command line
    if(shrCheckCmdLineFlag(argc, argv, "dump-ptx") )
    {
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclMatrixMul.ptx");
    }

    // Create Kernel
    for(unsigned int i = 0; i < ciDeviceCount; ++i) {
        multiplicationKernel[i] = clCreateKernel(cpProgram, "matrixMul", &ciErrNum);
        if (ciErrNum != CL_SUCCESS)
        {
            shrLog("Error: Failed to create kernel\n");
            return ciErrNum;
        }
    }
        
    // Run multiplication on 1..deviceCount GPUs to compare improvement
    shrLog("\nRunning Computations on 1 - %d GPU's...\n\n", ciDeviceCount);
    for(unsigned int k = 1; k <= ciDeviceCount; ++k) 
    {
        matrixMulGPU(k, h_A, h_B_data, mem_size_B, h_C);
    }

    // compute reference solution
    shrLog("Comparing results with CPU computation... \n\n");
    float* reference = (float*) malloc(mem_size_C);
    computeGold(reference, h_A_data, h_B_data, uiHA, uiWA, uiWB);

    // check result
    shrBOOL res = shrCompareL2fe(reference, h_C, size_C, 1.0e-6f);
    if (res != shrTRUE) 
    {
        printDiff(reference, h_C, uiWC, uiHC, 100, 1.0e-5f);
    }

    // clean up OCL resources
    ciErrNum = clReleaseMemObject(h_A);
    for(unsigned int k = 0; k < ciDeviceCount; ++k) 
    {
        ciErrNum |= clReleaseKernel( multiplicationKernel[k] );
        ciErrNum |= clReleaseCommandQueue( commandQueue[k] );
    }
    ciErrNum |= clReleaseProgram(cpProgram);
    ciErrNum |= clReleaseContext(cxGPUContext);
    if(ciErrNum != CL_SUCCESS)
    {
        shrLog("Error: Failure releasing OpenCL resources: %d\n", ciErrNum);
        return ciErrNum;
    }

    // clean up memory
    free(h_A_data);
    free(h_B_data);
    free(h_C);
    free(reference);
    
    return ((shrTRUE == res) ? CL_SUCCESS : -3000);
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
    shrQAStart(argc, argv);
    // start logs 
    shrSetLogFileName ("oclSimpleMultiGPU.txt");
    shrLog("%s Starting, Array = %u float values...\n\n", argv[0], DATA_N); 

    // OpenCL
    cl_platform_id cpPlatform;
    cl_uint ciDeviceCount;
    cl_device_id* cdDevices;
    cl_context cxGPUContext;
    cl_device_id cdDevice;                          // GPU device
    int deviceNr[MAX_GPU_COUNT];
    cl_command_queue commandQueue[MAX_GPU_COUNT];
    cl_mem d_Data[MAX_GPU_COUNT];
    cl_mem d_Result[MAX_GPU_COUNT];
    cl_program cpProgram; 
    cl_kernel reduceKernel[MAX_GPU_COUNT];
    cl_event GPUDone[MAX_GPU_COUNT];
    cl_event GPUExecution[MAX_GPU_COUNT];
    size_t programLength;
    cl_int ciErrNum;			               
    char cDeviceName [256];
    cl_mem h_DataBuffer;

    // Vars for reduction results
    float h_SumGPU[MAX_GPU_COUNT * ACCUM_N];   
    float *h_Data;
    double sumGPU;
    double sumCPU, dRelError;

    // allocate and init host buffer with with some random generated input data
    h_Data = (float *)malloc(DATA_N * sizeof(float));
    shrFillArray(h_Data, DATA_N);

    // start timer & logs 
    shrLog("Setting up OpenCL on the Host...\n\n"); 
    shrDeltaT(1);

    // Annotate profiling state
    #ifdef GPU_PROFILING
        shrLog("OpenCL Profiling is enabled...\n\n"); 
    #endif

     //Get the NVIDIA platform
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clGetPlatformID...\n"); 

    //Get the devices
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &ciDeviceCount);
    oclCheckError(ciErrNum, CL_SUCCESS);
    cdDevices = (cl_device_id *)malloc(ciDeviceCount * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, ciDeviceCount, cdDevices, NULL);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clGetDeviceIDs...\n"); 

    //Create the context
    cxGPUContext = clCreateContext(0, ciDeviceCount, cdDevices, NULL, NULL, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clCreateContext...\n");

    // Set up command queue(s) for GPU's specified on the command line or all GPU's
    if(shrCheckCmdLineFlag(argc, (const char **)argv, "device"))
    {
        // User specified GPUs
        int ciMaxDeviceID = ciDeviceCount-1;

        ciDeviceCount = 0;
        char* deviceList;
        char* deviceStr;
        char* next_token;
        shrGetCmdLineArgumentstr(argc, (const char **)argv, "device", &deviceList);

        #ifdef WIN32
            deviceStr = strtok_s (deviceList," ,.-", &next_token);
        #else
            deviceStr = strtok (deviceList," ,.-");
        #endif   

        // Create command queues for all Requested GPU's
        while(deviceStr != NULL) 
        {
            // get & log device index # and name
            deviceNr[ciDeviceCount] = atoi(deviceStr);
            if( deviceNr[ciDeviceCount] > ciMaxDeviceID ) {
                shrLog(" Invalid user specified device ID: %d\n", deviceNr[ciDeviceCount]);
                return 1;
            }

            cdDevice = oclGetDev(cxGPUContext, deviceNr[ciDeviceCount]);
            ciErrNum = clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cDeviceName), cDeviceName, NULL);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog(" Device %i: %s\n\n", deviceNr[ciDeviceCount], cDeviceName);

            // create a command que
            commandQueue[ciDeviceCount] = clCreateCommandQueue(cxGPUContext, cdDevice, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog("clCreateCommandQueue\n"); 

            ++ciDeviceCount;

            #ifdef WIN32
                deviceStr = strtok_s (NULL," ,.-", &next_token);
            #else            
                deviceStr = strtok (NULL," ,.-");
            #endif
        }

        free(deviceList);
    } 
    else 
    {
        // Find out how many GPU's to compute on all available GPUs
        size_t nDeviceBytes;
        ciErrNum = clGetContextInfo(cxGPUContext, CL_CONTEXT_DEVICES, 0, NULL, &nDeviceBytes);
        oclCheckError(ciErrNum, CL_SUCCESS);
        ciDeviceCount = (cl_uint)nDeviceBytes/sizeof(cl_device_id);

        for(unsigned int i = 0; i < ciDeviceCount; ++i ) 
        {
            // get & log device index # and name
            deviceNr[i] = i;
            cdDevice = oclGetDev(cxGPUContext, i);
            ciErrNum = clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cDeviceName), cDeviceName, NULL);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog(" Device %i: %s\n", i, cDeviceName);

            // create a command que
            commandQueue[i] = clCreateCommandQueue(cxGPUContext, cdDevice, CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
            oclCheckError(ciErrNum, CL_SUCCESS);
            shrLog("clCreateCommandQueue\n\n"); 
        }
    }

    // Load the OpenCL source code from the .cl file 
    const char* source_path = shrFindFilePath("simpleMultiGPU.cl", argv[0]);
    char *source = oclLoadProgSource(source_path, "", &programLength);
    oclCheckError(source != NULL, shrTRUE);
    shrLog("oclLoadProgSource\n"); 

    // Create the program for all GPUs in the context
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&source, &programLength, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clCreateProgramWithSource\n"); 
    
    // build the program
    ciErrNum = clBuildProgram(cpProgram, 0, NULL, "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclSimpleMultiGPU.ptx");
        oclCheckError(ciErrNum, CL_SUCCESS); 
    }
    shrLog("clBuildProgram\n"); 

    // Create host buffer with page-locked memory
    h_DataBuffer = clCreateBuffer(cxGPUContext, CL_MEM_COPY_HOST_PTR | CL_MEM_ALLOC_HOST_PTR,
                                  DATA_N * sizeof(float), h_Data, &ciErrNum);
    oclCheckError(ciErrNum, CL_SUCCESS);
    shrLog("clCreateBuffer (Page-locked Host)\n\n"); 

    // Create buffers for each GPU, with data divided evenly among GPU's
    int sizePerGPU = DATA_N / ciDeviceCount;
    int workOffset[MAX_GPU_COUNT];
    int workSize[MAX_GPU_COUNT];
    workOffset[0] = 0;
    for(unsigned int i = 0; i < ciDeviceCount; ++i ) 
    {
        workSize[i] = (i != (ciDeviceCount - 1)) ? sizePerGPU : (DATA_N - workOffset[i]);        

        // Input buffer
        d_Data[i] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, workSize[i] * sizeof(float), NULL, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateBuffer (Input)\t\tDev %i\n", i); 

        // Copy data from host to device
        ciErrNum = clEnqueueCopyBuffer(commandQueue[i], h_DataBuffer, d_Data[i], workOffset[i] * sizeof(float), 
                                      0, workSize[i] * sizeof(float), 0, NULL, NULL);        
        shrLog("clEnqueueCopyBuffer (Input)\tDev %i\n", i);

        // Output buffer
        d_Result[i] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, ACCUM_N * sizeof(float), NULL, &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateBuffer (Output)\t\tDev %i\n", i);
        
        // Create kernel
        reduceKernel[i] = clCreateKernel(cpProgram, "reduce", &ciErrNum);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clCreateKernel\t\t\tDev %i\n", i); 
        
        // Set the args values and check for errors
        ciErrNum |= clSetKernelArg(reduceKernel[i], 0, sizeof(cl_mem), &d_Result[i]);
        ciErrNum |= clSetKernelArg(reduceKernel[i], 1, sizeof(cl_mem), &d_Data[i]);
        ciErrNum |= clSetKernelArg(reduceKernel[i], 2, sizeof(int), &workSize[i]);
        oclCheckError(ciErrNum, CL_SUCCESS);
        shrLog("clSetKernelArg\t\t\tDev %i\n\n", i);

        workOffset[i + 1] = workOffset[i] + workSize[i];
    }

    // Set # of work items in work group and total in 1 dimensional range
    size_t localWorkSize[] = {THREAD_N};        
    size_t globalWorkSize[] = {ACCUM_N};        

    // Start timer and launch reduction kernel on each GPU, with data split between them 
    shrLog("Launching Kernels on GPU(s)...\n\n");
    for(unsigned int i = 0; i < ciDeviceCount; i++) 
    {        
        ciErrNum = clEnqueueNDRangeKernel(commandQueue[i], reduceKernel[i], 1, 0, globalWorkSize, localWorkSize,
                                         0, NULL, &GPUExecution[i]);
        oclCheckError(ciErrNum, CL_SUCCESS);
    }
    
    // Copy result from device to host for each device
    for(unsigned int i = 0; i < ciDeviceCount; i++) 
    {
        ciErrNum = clEnqueueReadBuffer(commandQueue[i], d_Result[i], CL_FALSE, 0, ACCUM_N * sizeof(float), 
                            h_SumGPU + i *  ACCUM_N, 0, NULL, &GPUDone[i]);
        oclCheckError(ciErrNum, CL_SUCCESS);
    }

    // Synchronize with the GPUs and do accumulated error check
    clWaitForEvents(ciDeviceCount, GPUDone);
    shrLog("clWaitForEvents complete...\n\n"); 

    // Aggregate results for multiple GPU's and stop/log processing time
    sumGPU = 0;
    for(unsigned int i = 0; i < ciDeviceCount * ACCUM_N; i++)
    {
         sumGPU += h_SumGPU[i];
    }

    // Print Execution Times for each GPU
    #ifdef GPU_PROFILING
        shrLog("Profiling Information for GPU Processing:\n\n");
        for(unsigned int i = 0; i < ciDeviceCount; i++) 
        {
            cdDevice = oclGetDev(cxGPUContext, deviceNr[i]);
            clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(cDeviceName), cDeviceName, NULL);
            shrLog("Device %i : %s\n", deviceNr[i], cDeviceName);
            shrLog("  Reduce Kernel     : %.5f s\n", executionTime(GPUExecution[i]));
            shrLog("  Copy Device->Host : %.5f s\n\n\n", executionTime(GPUDone[i]));
        }
    #endif

    // Run the computation on the Host CPU and log processing time 
    shrLog("Launching Host/CPU C++ Computation...\n\n");
    sumCPU = 0;
    for(unsigned int i = 0; i < DATA_N; i++)
    {
        sumCPU += h_Data[i];
    }

    // Check GPU result against CPU result 
    dRelError = 100.0 * fabs(sumCPU - sumGPU) / fabs(sumCPU);
    shrLog("Comparing against Host/C++ computation...\n"); 
    shrLog(" GPU sum: %f\n CPU sum: %f\n", sumGPU, sumCPU);
    shrLog(" Relative Error (100.0 * Error / Golden) = %f \n\n", dRelError);

    // cleanup 
    free(source);
    free(h_Data);
    for(unsigned int i = 0; i < ciDeviceCount; ++i ) 
    {
        clReleaseKernel(reduceKernel[i]);
        clReleaseCommandQueue(commandQueue[i]);
    }
    clReleaseProgram(cpProgram);
    clReleaseContext(cxGPUContext);

    // finish
    shrQAFinishExit(argc, (const char **)argv, (dRelError < 1e-4) ? QA_PASSED : QA_FAILED);
  }
Example #4
0
// Main function 
// *********************************************************************
int ymain(int argc, char **argv)
{
    shrQAStart(argc, argv);

    // get command line arg for quick test, if provided
    bNoPrompt = shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");
    
    // start logs 
	cExecutableName = argv[0];
    shrSetLogFileName ("oclVectorAdd2.txt");
    shrLog("%s Starting...\n\n# of float elements per Array \t= %i\n", argv[0], iNumElements); 

    // set and log Global and Local work size dimensions
    szLocalWorkSize = 256;
    szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, iNumElements);  // rounded up to the nearest multiple of the LocalWorkSize
    shrLog("Global Work Size \t\t= %u\nLocal Work Size \t\t= %u\n# of Work Groups \t\t= %u\n\n", 
           szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize)); 

    // Allocate and initialize host arrays 
    shrLog( "Allocate and Init Host Mem...\n"); 
    srcA = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
    srcB = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
    dst = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
    Golden = (void *)malloc(sizeof(cl_float) * iNumElements);
    shrFillArray((float*)srcA, iNumElements);
    shrFillArray((float*)srcB, iNumElements);

    //Get an OpenCL platform
    ciErr1 = clGetPlatformIDs(1, &cpPlatform, NULL);

    shrLog("clGetPlatformID...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clGetPlatformID, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    //Get the devices
    ciErr1 = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);
    shrLog("clGetDeviceIDs...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clGetDeviceIDs, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    //Create the context
    cxGPUContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, &ciErr1);
    shrLog("clCreateContext...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateContext, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Create a command-queue
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevice, 0, &ciErr1);
    shrLog("clCreateCommandQueue...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateCommandQueue, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Allocate the OpenCL buffer memory objects for source and result on the device GMEM
    cmDevSrcA = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr1);
    cmDevSrcB = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
    ciErr1 |= ciErr2;
    cmDevDst = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
    ciErr1 |= ciErr2;
    shrLog("clCreateBuffer...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }
    
    // Read the OpenCL kernel in from source file
    shrLog("oclLoadProgSource (%s)...\n", cSourceFile); 
    cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
    shrLog("Looking for: %s in Path: %s\n", cSourceFile, argv[0]);
    cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);

    // Create the program
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErr1);
    shrLog("clCreateProgramWithSource...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateProgramWithSource, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Build the program with 'mad' Optimization option
    #ifdef MAC
        char* flags = "-cl-fast-relaxed-math -DMAC";
    #else
        char* flags = "-cl-fast-relaxed-math";
    #endif
    ciErr1 = clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
    shrLog("clBuildProgram...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clBuildProgram, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Create the kernel
    ckKernel = clCreateKernel(cpProgram, "VectorAdd", &ciErr1);
    shrLog("clCreateKernel (VectorAdd)...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clCreateKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Set the Argument values
    ciErr1 = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrcA);
    ciErr1 |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrcB);
    ciErr1 |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevDst);
    ciErr1 |= clSetKernelArg(ckKernel, 3, sizeof(cl_int), (void*)&iNumElements);
    shrLog("clSetKernelArg 0 - 3...\n\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clSetKernelArg, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // --------------------------------------------------------
    // Start Core sequence... copy input data to GPU, compute, copy results back

    // Asynchronous write of data to GPU device
    ciErr1 = clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcA, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, srcA, 0, NULL, NULL);
    ciErr1 |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcB, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, srcB, 0, NULL, NULL);
    shrLog("clEnqueueWriteBuffer (SrcA and SrcB)...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clEnqueueWriteBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Launch kernel
    ciErr1 = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, NULL);
    shrLog("clEnqueueNDRangeKernel (VectorAdd)...\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clEnqueueNDRangeKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }

    // Synchronous/blocking read of results, and check accumulated errors
    ciErr1 = clEnqueueReadBuffer(cqCommandQueue, cmDevDst, CL_TRUE, 0, sizeof(cl_float) * szGlobalWorkSize, dst, 0, NULL, NULL);
    shrLog("clEnqueueReadBuffer (Dst)...\n\n"); 
    if (ciErr1 != CL_SUCCESS)
    {
        shrLog("Error in clEnqueueReadBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
        Cleanup(argc, argv, EXIT_FAILURE);
    }
    //--------------------------------------------------------

    // Compute and compare results for golden-host and report errors and pass/fail
    shrLog("Comparing against Host/C++ computation...\n\n"); 
    VectorAddHost ((const float*)srcA, (const float*)srcB, (float*)Golden, iNumElements);
    shrBOOL bMatch = shrComparefet((const float*)Golden, (const float*)dst, (unsigned int)iNumElements, 0.0f, 0);

    // Cleanup and leave
    Cleanup (argc, argv, (bMatch == shrTRUE) ? EXIT_SUCCESS : EXIT_FAILURE);
}
// Main function 
// *********************************************************************
int main(int argc, char** argv)
{
    shrQAStart(argc, argv);
    // get command line arg for quick test, if provided
    bNoPrompt = shrCheckCmdLineFlag(argc, (const char **)argv, "noprompt");

    // start logs
	cExecutableName = argv[0];
    shrSetLogFileName ("oclMatVecMul.txt");
    shrLog("%s Starting...\n\n", argv[0]); 

    // calculate matrix height given GPU memory
    shrLog("Determining Matrix height from available GPU mem...\n");
    memsize_t memsize;
    getTargetDeviceGlobalMemSize(&memsize, argc, (const char **)argv);
    height = memsize/width/16;
    if (height > MAX_HEIGHT)
        height = MAX_HEIGHT;
    shrLog(" Matrix width\t= %u\n Matrix height\t= %u\n\n", width, height); 

    // Allocate and initialize host arrays
    shrLog("Allocate and Init Host Mem...\n\n");
    unsigned int size = width * height;
    unsigned int mem_size_M = size * sizeof(float);
    M = (float*)malloc(mem_size_M);
    unsigned int mem_size_V = width * sizeof(float);
    V = (float*)malloc(mem_size_V);
    unsigned int mem_size_W = height * sizeof(float);
    W = (float*)malloc(mem_size_W);
    shrFillArray(M, size);
    shrFillArray(V, width);
    Golden = (float*)malloc(mem_size_W);
    MatVecMulHost(M, V, width, height, Golden);

    //Get the NVIDIA platform
    shrLog("Get the Platform ID...\n\n");
    ciErrNum = oclGetPlatformID(&cpPlatform);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    //Get all the devices
    shrLog("Get the Device info and select Device...\n");
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 0, NULL, &uiNumDevices);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cdDevices = (cl_device_id *)malloc(uiNumDevices * sizeof(cl_device_id) );
    ciErrNum = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, uiNumDevices, cdDevices, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Set target device and Query number of compute units on targetDevice
    shrLog(" # of Devices Available = %u\n", uiNumDevices); 
    if(shrGetCmdLineArgumentu(argc, (const char **)argv, "device", &targetDevice)== shrTRUE) 
    {
        targetDevice = CLAMP(targetDevice, 0, (uiNumDevices - 1));
    }
    shrLog(" Using Device %u: ", targetDevice); 
    oclPrintDevName(LOGBOTH, cdDevices[targetDevice]);  
    cl_uint num_compute_units;
    clGetDeviceInfo(cdDevices[targetDevice], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(num_compute_units), &num_compute_units, NULL);
    shrLog("\n # of Compute Units = %u\n\n", num_compute_units); 

    //Create the context
    shrLog("clCreateContext...\n"); 
    cxGPUContext = clCreateContext(0, uiNumDevsUsed, &cdDevices[targetDevice], NULL, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Create a command-queue
    shrLog("clCreateCommandQueue...\n"); 
    cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevices[targetDevice], CL_QUEUE_PROFILING_ENABLE, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Allocate the OpenCL buffer memory objects for source and result on the device GMEM
    shrLog("clCreateBuffer (M, V and W in device global memory, mem_size_m = %u)...\n", mem_size_M); 
    cmM = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, mem_size_M, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmV = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, mem_size_V, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
    cmW = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, mem_size_W, NULL, &ciErrNum);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Read the OpenCL kernel in from source file
    shrLog("oclLoadProgSource (%s)...\n", cSourceFile); 
    cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
    oclCheckErrorEX(cPathAndName != NULL, shrTRUE, pCleanup);
    cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);
    oclCheckErrorEX(cSourceCL != NULL, shrTRUE, pCleanup);

    // Create the program
    shrLog("clCreateProgramWithSource...\n"); 
    cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErrNum);

    // Build the program
    shrLog("clBuildProgram...\n"); 
    ciErrNum = clBuildProgram(cpProgram, uiNumDevsUsed, &cdDevices[targetDevice], "-cl-fast-relaxed-math", NULL, NULL);
    if (ciErrNum != CL_SUCCESS)
    {
        // write out standard error, Build Log and PTX, then cleanup and exit
        shrLogEx(LOGBOTH | ERRORMSG, ciErrNum, STDERROR);
        oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
        oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext), "oclMatVecMul.ptx");
        shrQAFinish(argc, (const char **)argv, QA_FAILED);
        Cleanup(EXIT_FAILURE); 
    }

    // --------------------------------------------------------
    // Core sequence... copy input data to GPU, compute, copy results back

    // Asynchronous write of data to GPU device
    shrLog("clEnqueueWriteBuffer (M and V)...\n\n"); 
    ciErrNum = clEnqueueWriteBuffer(cqCommandQueue, cmM, CL_FALSE, 0, mem_size_M, M, 0, NULL, NULL);
    ciErrNum |= clEnqueueWriteBuffer(cqCommandQueue, cmV, CL_FALSE, 0, mem_size_V, V, 0, NULL, NULL);
    oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    // Kernels
    const char* kernels[] = {
        "MatVecMulUncoalesced0",
        "MatVecMulUncoalesced1",
        "MatVecMulCoalesced0",
        "MatVecMulCoalesced1",
        "MatVecMulCoalesced2",
        "MatVecMulCoalesced3" };

    for (int k = 0; k < (int)(sizeof(kernels)/sizeof(char*)); ++k) {
        shrLog("Running with Kernel %s...\n\n", kernels[k]); 

        // Clear result
        shrLog("  Clear result with clEnqueueWriteBuffer (W)...\n"); 
        memset(W, 0, mem_size_W);
        ciErrNum = clEnqueueWriteBuffer(cqCommandQueue, cmW, CL_FALSE, 0, mem_size_W, W, 0, NULL, NULL);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Create the kernel
        shrLog("  clCreateKernel...\n"); 
        if (ckKernel) {
            clReleaseKernel(ckKernel);
            ckKernel = 0;
        }
        ckKernel = clCreateKernel(cpProgram, kernels[k], &ciErrNum);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Set and log Global and Local work size dimensions
        szLocalWorkSize = 256;
        if (k == 0)
            szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, height);  // rounded up to the nearest multiple of the LocalWorkSize
        else
            // Some experiments should be done here for determining the best global work size for a given device
            // We will assume here that we can run 2 work-groups per compute unit
            szGlobalWorkSize = 2 * num_compute_units * szLocalWorkSize;
        shrLog("  Global Work Size \t\t= %u\n  Local Work Size \t\t= %u\n  # of Work Groups \t\t= %u\n", 
               szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize)); 

        // Set the Argument values
        shrLog("  clSetKernelArg...\n\n");
        int n = 0;
        ciErrNum = clSetKernelArg(ckKernel,  n++, sizeof(cl_mem), (void*)&cmM);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_mem), (void*)&cmV);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_int), (void*)&width);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_int), (void*)&height);
        ciErrNum |= clSetKernelArg(ckKernel, n++, sizeof(cl_mem), (void*)&cmW);
        if (k > 1)
            ciErrNum |= clSetKernelArg(ckKernel, n++, szLocalWorkSize * sizeof(float), 0);    
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Launch kernel
        shrLog("  clEnqueueNDRangeKernel (%s)...\n", kernels[k]); 
        ciErrNum = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, &ceEvent);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

        // Read back results and check accumulated errors
        shrLog("  clEnqueueReadBuffer (W)...\n"); 
        ciErrNum = clEnqueueReadBuffer(cqCommandQueue, cmW, CL_TRUE, 0, mem_size_W, W, 0, NULL, NULL);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

    #ifdef GPU_PROFILING
        // Execution time
        ciErrNum = clWaitForEvents(1, &ceEvent);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        cl_ulong start, end;
        ciErrNum = clGetEventProfilingInfo(ceEvent, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL);
        ciErrNum |= clGetEventProfilingInfo(ceEvent, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        double dSeconds = 1.0e-9 * (double)(end - start);
        shrLog("  Kernel execution time: %.5f s\n\n", dSeconds);
    #endif

        // Compare results for golden-host and report errors and pass/fail
        shrLog("  Comparing against Host/C++ computation...\n\n"); 
        shrBOOL res = shrCompareL2fe(Golden, W, height, 1e-6f);
        shrLog("    GPU Result %s CPU Result within allowable tolerance\n\n", (res == shrTRUE) ? "MATCHES" : "DOESN'T MATCH");
        bPassFlag &= (res == shrTRUE); 

        // Release event
        ciErrNum = clReleaseEvent(ceEvent);
        oclCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
        ceEvent = 0;
    }

    // Master status Pass/Fail (all tests)
    shrQAFinish(argc, (const char **)argv, (bPassFlag ? QA_PASSED : QA_FAILED) );

    // Cleanup and leave
    Cleanup (EXIT_SUCCESS);
}
// Main function 
// *********************************************************************
int main(int argc, char **argv)
{
	//////////////////////////////////////////////////////////////////////////
	unsigned int count = iNumElements;
	int k = 8;
	unsigned int random_seed, random_seed2;
	srand( (unsigned)time( NULL ) );
	random_seed = rand();
	random_seed2 = rand();
	//////////////////////////////////////////////////////////////////////////

	// get command line arg for quick test, if provided
	bNoPrompt = shrCheckCmdLineFlag(argc, (const char**)argv, "noprompt");

	// start logs 
	shrSetLogFileName ("oclVectorAdd.txt");
	shrLog("%s Starting...\n\n# of float elements per Array \t= %i\n", argv[0], iNumElements); 

	// set and log Global and Local work size dimensions
	szLocalWorkSize = 256;
	szGlobalWorkSize = shrRoundUp((int)szLocalWorkSize, iNumElements);  // rounded up to the nearest multiple of the LocalWorkSize
	shrLog("Global Work Size \t\t= %u\nLocal Work Size \t\t= %u\n# of Work Groups \t\t= %u\n\n", 
		szGlobalWorkSize, szLocalWorkSize, (szGlobalWorkSize % szLocalWorkSize + szGlobalWorkSize/szLocalWorkSize)); 

	// Allocate and initialize host arrays 
	shrLog( "Allocate and Init Host Mem...\n"); 
	srcA = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
	srcB = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
	dst = (void *)malloc(sizeof(cl_float) * szGlobalWorkSize);
	Golden = (void *)malloc(sizeof(cl_float) * iNumElements);
	shrFillArray((float*)srcA, iNumElements);
	shrFillArray((float*)srcB, iNumElements);
	//////////////////////////////////////////////////////////////////////////
	float *scalar_value = new float[count];
	float *gradient_magnitude = new float[count];
	float *second_derivative_magnitude = new float[count];
	unsigned char *label_ptr = new unsigned char[count];
	shrFillArray(scalar_value, count);
	shrFillArray(gradient_magnitude, count);
	shrFillArray(second_derivative_magnitude, count);
	//////////////////////////////////////////////////////////////////////////

	//Get an OpenCL platform
	ciErr1 = clGetPlatformIDs(1, &cpPlatform, NULL);

	shrLog("clGetPlatformID...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clGetPlatformID, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	//Get the devices
	ciErr1 = clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);
	shrLog("clGetDeviceIDs...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clGetDeviceIDs, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	//Create the context
	cxGPUContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, &ciErr1);
	shrLog("clCreateContext...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateContext, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Create a command-queue
	cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevice, 0, &ciErr1);
	shrLog("clCreateCommandQueue...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateCommandQueue, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Allocate the OpenCL buffer memory objects for source and result on the device GMEM
	cmDevSrcA = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr1);
	cmDevSrcB = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	cmDevDst = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	//////////////////////////////////////////////////////////////////////////
	cmDevSrc_scalar_value = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr1);
	cmDevSrc_gradient_magnitude = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	cmDevSrc_second_derivative_magnitude = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	cmDevDst_label_ptr = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, sizeof(cl_float) * szGlobalWorkSize, NULL, &ciErr2);
	ciErr1 |= ciErr2;
	//////////////////////////////////////////////////////////////////////////
	shrLog("clCreateBuffer...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Read the OpenCL kernel in from source file
	shrLog("oclLoadProgSource (%s)...\n", cSourceFile); 
	cPathAndName = shrFindFilePath(cSourceFile, argv[0]);
	cSourceCL = oclLoadProgSource(cPathAndName, "", &szKernelLength);
	printf("%s\n%s\n", cSourceFile, cPathAndName);

	// Create the program
	cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, &ciErr1);
	shrLog("clCreateProgramWithSource...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateProgramWithSource, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Build the program with 'mad' Optimization option
#ifdef MAC
	char* flags = "-cl-fast-relaxed-math -DMAC";
#else
	char* flags = "-cl-fast-relaxed-math";
#endif
	ciErr1 = clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
	shrLog("clBuildProgram...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clBuildProgram, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Create the kernel
	ckKernel = clCreateKernel(cpProgram, "k_means", &ciErr1);
	shrLog("clCreateKernel (VectorAdd)...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clCreateKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Set the Argument values
	//ciErr1 = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrcA);
	//ciErr1 |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrcB);
	//ciErr1 |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevDst);
	//ciErr1 |= clSetKernelArg(ckKernel, 3, sizeof(cl_int), (void*)&iNumElements);
	//////////////////////////////////////////////////////////////////////////
	// __global const float *scalar_value, __global const float *gradient_magnitude, __global const float *second_derivative_magnitude, __global unsigned char *label_ptr, __global const unsigned int count, __global const int k, __global const unsigned int random_seed, __global const unsigned int random_seed2
	ciErr1 = clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void*)&cmDevSrc_scalar_value);
	ciErr1 |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void*)&cmDevSrc_gradient_magnitude);
	ciErr1 |= clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&cmDevSrc_second_derivative_magnitude);
	ciErr1 |= clSetKernelArg(ckKernel, 3, sizeof(cl_mem), (void*)&cmDevDst_label_ptr);
	ciErr1 |= clSetKernelArg(ckKernel, 4, sizeof(cl_uint), (void*)&count);
	ciErr1 |= clSetKernelArg(ckKernel, 5, sizeof(cl_uint), (void*)&k);
	ciErr1 |= clSetKernelArg(ckKernel, 6, sizeof(cl_uint), (void*)&random_seed);
	ciErr1 |= clSetKernelArg(ckKernel, 7, sizeof(cl_uint), (void*)&random_seed2);
	//////////////////////////////////////////////////////////////////////////
	shrLog("clSetKernelArg 0 - 3...\n\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clSetKernelArg, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// --------------------------------------------------------
	// Start Core sequence... copy input data to GPU, compute, copy results back

	// Asynchronous write of data to GPU device
	//ciErr1 = clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcA, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, srcA, 0, NULL, NULL);
	//ciErr1 |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrcB, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, srcB, 0, NULL, NULL);
	//////////////////////////////////////////////////////////////////////////
	ciErr1 = clEnqueueWriteBuffer(cqCommandQueue, cmDevSrc_scalar_value, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, scalar_value, 0, NULL, NULL);
	ciErr1 |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrc_gradient_magnitude, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, gradient_magnitude, 0, NULL, NULL);
	ciErr1 |= clEnqueueWriteBuffer(cqCommandQueue, cmDevSrc_second_derivative_magnitude, CL_FALSE, 0, sizeof(cl_float) * szGlobalWorkSize, second_derivative_magnitude, 0, NULL, NULL);
	//////////////////////////////////////////////////////////////////////////
	shrLog("clEnqueueWriteBuffer (SrcA and SrcB)...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clEnqueueWriteBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Launch kernel
	ciErr1 = clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &szGlobalWorkSize, &szLocalWorkSize, 0, NULL, NULL);
	shrLog("clEnqueueNDRangeKernel (VectorAdd)...\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clEnqueueNDRangeKernel, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}

	// Synchronous/blocking read of results, and check accumulated errors
	//ciErr1 = clEnqueueReadBuffer(cqCommandQueue, cmDevDst, CL_TRUE, 0, sizeof(cl_float) * szGlobalWorkSize, dst, 0, NULL, NULL);
	//////////////////////////////////////////////////////////////////////////
		ciErr1 = clEnqueueReadBuffer(cqCommandQueue, cmDevDst_label_ptr, CL_TRUE, 0, sizeof(cl_float) * szGlobalWorkSize, label_ptr, 0, NULL, NULL);
	//////////////////////////////////////////////////////////////////////////
	shrLog("clEnqueueReadBuffer (Dst)...\n\n"); 
	if (ciErr1 != CL_SUCCESS)
	{
		shrLog("Error in clEnqueueReadBuffer, Line %u in file %s !!!\n\n", __LINE__, __FILE__);
		Cleanup(EXIT_FAILURE);
	}
	//--------------------------------------------------------

	// Compute and compare results for golden-host and report errors and pass/fail
	shrLog("Comparing against Host/C++ computation...\n\n"); 
	VectorAddHost ((const float*)srcA, (const float*)srcB, (float*)Golden, iNumElements);
	shrBOOL bMatch = shrComparefet((const float*)Golden, (const float*)dst, (unsigned int)iNumElements, 0.0f, 0);
	shrLog("%s\n\n", (bMatch == shrTRUE) ? "PASSED" : "FAILED");

	//////////////////////////////////////////////////////////////////////////
	//float *a = (float *)srcA;
	//float *b = (float *)srcB;
	//float *c = (float *)dst;
	//float *d = (float *)Golden;
	//for (int i=0; i<iNumElements; i++)
	//{
	//	printf("%f+%f=%f=%f\t", a[i], b[i], c[i], a[i]+b[i]);
	//	printf("%s\n", (a[i]+b[i]==c[i]?"equal":"not equal"));
	//}

	//for (int i=0; i<iNumElements; i++)
	//{
	//	printf("%f\n", ((float *)dst)[i]);
	//}
	//////////////////////////////////////////////////////////////////////////

	// Cleanup and leave
	Cleanup (EXIT_SUCCESS);

	//////////////////////////////////////////////////////////////////////////
	delete [] scalar_value;
	delete [] gradient_magnitude;
	delete [] second_derivative_magnitude;
	delete [] label_ptr;
	//////////////////////////////////////////////////////////////////////////
}
Example #7
0
int main(int argc, char *argv[])
{
    cl_platform_id platform;
    cl_device_id device;
    cl_context context;
    cl_command_queue queue;
    cl_program program;
    cl_kernel kernel;
    cl_mem buff_A, buff_B, buff_C;

    int mult = 1;
    uint32_t uiWA, uiHA, uiWB, uiHB, uiWC, uiHC;
    uiWA = WA * mult;
    uiHA = HA * mult;
    uiWB = WB * mult;
    uiHB = HB * mult;
    uiWC = WC * mult;
    uiHC = HC * mult;

    printf("sizes WA %u HA %u WB %u HB %u WC %u HC %u\n",
            uiWA, uiHA, uiWB, uiHB, uiWC, uiHC); 

    uint32_t size_A = uiWA * uiHA;
    uint32_t size_B = uiWB * uiHB;
    uint32_t size_C = uiWC * uiHC;

    size_t mem_size_A = size_A * sizeof(float); 
    size_t mem_size_B = size_B * sizeof(float); 
    size_t mem_size_C = size_C * sizeof(float); 

    float *data_A = (float *)malloc(mem_size_A);
    float *data_B = (float *)malloc(mem_size_B);
    float *data_C = (float *)malloc(mem_size_C);

    srand(2012);
    shrFillArray(data_A, size_A);
    shrFillArray(data_B, size_B);

    size_t global_work_size[2];
    size_t local_work_size[] = { BLOCK_SIZE, BLOCK_SIZE };

    global_work_size[0] = shrRoundUp(BLOCK_SIZE, uiWC);
    global_work_size[1] = shrRoundUp(BLOCK_SIZE, uiHA);

    const char *source = load_program_source("MatrixMul.cl");
    size_t source_len = strlen(source);;
    cl_uint err = 0;

    char *flags = "-cl-fast-relaxed-math";

    clGetPlatformIDs(1, &platform, NULL);
    printf("platform %p err %d\n", platform, err);

    clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 1, &device, &err);
    printf("device %p err %d\n", device, err);

    context = clCreateContext(0, 1, &device, NULL, NULL, &err);
    printf("context %p err %d\n", context, err);

    queue = clCreateCommandQueue(context, device, 0, &err);
    printf("queue %p err %d\n", queue, err);

    program = clCreateProgramWithSource(context, 1, &source, &source_len, &err);
    printf("program %p err %d\n", program, err);

    err = clBuildProgram(program, 0, NULL, flags, NULL, NULL);
    printf("err %d\n", err);

    kernel = clCreateKernel(program, "matrixMul", &err);
    printf("kernel %p err %d\n", kernel, err);

    buff_A = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
        mem_size_A, data_A, NULL);
    printf("buff_A %p\n", buff_A);

    buff_B = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
        mem_size_B, data_B, NULL);
    printf("buff_B %p\n", buff_B);

    buff_C = clCreateBuffer(context, CL_MEM_WRITE_ONLY, mem_size_C, NULL, NULL);
    printf("buff_C %p\n", buff_C);

    err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&buff_C);
    printf("err %d\n", err);

    err = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*)&buff_A);
    printf("err %d\n", err);

    err = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*)&buff_B);
    printf("err %d\n", err);

    err = clSetKernelArg(kernel, 3, sizeof(float) * BLOCK_SIZE * BLOCK_SIZE, NULL);
    printf("err %d\n", err);

    err = clSetKernelArg(kernel, 4, sizeof(float) * BLOCK_SIZE * BLOCK_SIZE, NULL);
    printf("err %d\n", err);

    err = clSetKernelArg(kernel, 5, sizeof(cl_int), (void*)&uiWA);
    printf("err %d\n", err);

    err = clSetKernelArg(kernel, 6, sizeof(cl_int), (void*)&uiWB);
    printf("err %d\n", err);

    err = clSetKernelArg(kernel, 7, sizeof(cl_int), (void*)&uiHA);
    printf("err %d\n", err);

    err = clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_work_size, 
        local_work_size, 0, NULL, NULL);
    printf("err %d\n", err);

    err = clFlush(queue);
    printf("err %d\n", err);

    err = clFinish(queue);
    printf("err %d\n", err);

    err = clEnqueueReadBuffer(queue, buff_C, CL_TRUE, 0, mem_size_C, data_C, 0,
          NULL, NULL);
    printf("err %d\n", err);

    int i;
    for (i = 0; i < size_C; i++) {
        printf("%d %f\n", i, data_C[i]);
    }

    clReleaseMemObject(buff_A);
    clReleaseMemObject(buff_B);
    clReleaseMemObject(buff_C);
    clReleaseProgram(program);
    clReleaseKernel(kernel);
    clReleaseCommandQueue(queue);
    clReleaseProgram(program);
}