int main(int argc, char** argv){ SndWave infile(argv[1], READ); SndIn sig1(&infile,1); SndIn sig2(&infile,2); SndAiff output1(argv[2], OVERWRITE); SndAiff output2(argv[3], OVERWRITE); output1.SetOutput(1, &sig1); output2.SetOutput(1, &sig1); while(!infile.Eof()){ infile.Read(); sig1.DoProcess(); sig2.DoProcess(); output1.Write(); output2.Write(); } return 0; }
void EMDHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix) { // size of the costMatrix with dummies // Mat descriptors1=_descriptors1.getMat(); Mat descriptors2=_descriptors2.getMat(); int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies; _costMatrix.create(costrows, costrows, CV_32F); Mat costMatrix=_costMatrix.getMat(); // Obtain copies of the descriptors // cv::Mat scd1=descriptors1.clone(); cv::Mat scd2=descriptors2.clone(); // row normalization // for(int i=0; i<scd1.rows; i++) { cv::Mat row = scd1.row(i); scd1.row(i)/=(sum(row)[0]+FLT_EPSILON); } for(int i=0; i<scd2.rows; i++) { cv::Mat row = scd2.row(i); scd2.row(i)/=(sum(row)[0]+FLT_EPSILON); } // Compute the Cost Matrix // for(int i=0; i<costrows; i++) { for(int j=0; j<costrows; j++) { if (i<scd1.rows && j<scd2.rows) { cv::Mat sig1(scd1.cols,2,CV_32F), sig2(scd2.cols,2,CV_32F); sig1.col(0)=scd1.row(i).t(); sig2.col(0)=scd2.row(j).t(); for (int k=0; k<sig1.rows; k++) { sig1.at<float>(k,1)=float(k); } for (int k=0; k<sig2.rows; k++) { sig2.at<float>(k,1)=float(k); } costMatrix.at<float>(i,j) = cv::EMD(sig1, sig2, flag); } else { costMatrix.at<float>(i,j) = defaultCost; } } } }
static int what_status(int status) { int i; char **tab; i = 0; tab = sig1(); while (i != (status - 1) && tab[i]) i++; if (tab[i]) printf("Process receive a %s\n", tab[i]); free_tab(tab); return (-1); }
static void SHA256_transform( SHA256_ctx* ctx ) { int t; unsigned int A = ctx->H[ 0 ]; unsigned int B = ctx->H[ 1 ]; unsigned int C = ctx->H[ 2 ]; unsigned int D = ctx->H[ 3 ]; unsigned int E = ctx->H[ 4 ]; unsigned int F = ctx->H[ 5 ]; unsigned int G = ctx->H[ 6 ]; unsigned int H = ctx->H[ 7 ]; unsigned int T1, T2; unsigned int W[ 64 ]; memcpy( W, ctx->M, 64 ); for ( t = 16; t < 64; t++ ) { W[ t ] = sig1(W[t-2]) + W[t-7] + sig0(W[t-15]) + W[t-16]; } for ( t = 0; t < 64; t++ ) { T1 = H + SIG1(E) + Ch(E,F,G) + K[t] + W[t]; T2 = SIG0(A) + Maj(A,B,C); H = G; G = F; F = E; E = D + T1; D = C; C = B; B = A; A = T1 + T2; } ctx->H[ 0 ] += A; ctx->H[ 1 ] += B; ctx->H[ 2 ] += C; ctx->H[ 3 ] += D; ctx->H[ 4 ] += E; ctx->H[ 5 ] += F; ctx->H[ 6 ] += G; ctx->H[ 7 ] += H; }
// Compute the mapping between linear array and the hypercube // corresponding to all the trees. void GeneratorTrees::ComputeCubeMapping() { assert(trees.length()>=1); if (trees.length()==1) { // A single tree ComputeOneGenMapping(map2array, trees[0]); } else { // more than one generator // Compute the sub-mapping for every generator. Also prepare two hypercube // signature objects for the index calculations, with the two ordering of // the generators: one for the generators ordered by their index 0,1,2... // and the other odred the generators by the order of their trees Vec<long> dims1(INIT_SIZE,trees.length()), dims2(INIT_SIZE,trees.length()); Vec<Permut> genMappings(INIT_SIZE, trees.length()); for (long i=0; i<trees.length(); i++) { dims1[i] = trees[i][0].getData().size; ComputeOneGenMapping(genMappings[i], trees[i]); } getCubeDims(dims2); CubeSignature sig1(dims1), sig2(dims2); // Allocate space for the mapping map2array.SetLength(sig1.getSize()); // Combine the generator perms to a single permutation over the cube for (long i=0; i<map2array.length(); i++) { long t=0; for (long j1=0; j1<trees.length(); j1++) { long j2 = trees[j1].getAuxKey(); long digit = sig1.getCoord(i,j1); // the j1 digit of i in base dims digit = genMappings[j1][digit]; // apply the j1 permutation to it t += digit * sig2.getProd(j2+1); // adds the permuted digit } map2array[i] = t; } } // Compute the inverse permutation map2cube.SetLength(map2array.length()); for (long i=0; i<map2array.length(); i++) map2cube[ map2array[i] ] = i; }
int ACE_TMAIN (int argc, ACE_TCHAR *argv[]) { const size_t MAX_DEPTH = argc == 1 ? 10 : ACE_OS::atoi (argv[1]); ACE_OS::atexit (exithook); if (argc > 2) ACE_Trace::set_nesting_indent (ACE_OS::atoi (argv[2])); ACE_TRACE ("int ACE_TMAIN (int argc, ACE_TCHAR *argv[])"); ACE_Sig_Action sig1 ((ACE_SignalHandler) ACE_Trace::start_tracing, SIGUSR1); ACE_UNUSED_ARG (sig1); ACE_Sig_Action sig2 ((ACE_SignalHandler) ACE_Trace::stop_tracing, SIGUSR2); ACE_UNUSED_ARG (sig2); My_Task task (MAX_DEPTH); #if defined (ACE_MT_SAFE) && (ACE_MT_SAFE != 0) int n_threads = argc > 3 ? ACE_OS::atoi (argv[3]) : 4; if (task.activate (THR_BOUND | THR_DETACHED, n_threads) == -1) ACE_ERROR_RETURN ((LM_ERROR, "%p\n", "activate"), -1); // Wait for all the threads to exit. ACE_Thread_Manager::instance ()->wait (); #else const int MAX_ITERATIONS = argc > 3 ? ACE_OS::atoi (argv[3]) : 10; for (int i = 0; i < MAX_ITERATIONS; i++) task.svc (); #endif /* ACE_MT_SAFE */ // Destructor automatically called. return 0; }
// Elliptic Curve Digital Signature Algorithm Example void ecdsa_ex () { // Degree 163 Binary Field from fips186-2 use_NIST_B_163 (); EC_Domain_Parameters dp = NIST_B_163; ECPrivKey sk (dp);// generate a key pair from the EC domain parameters std::string M ("correct message"); ECDSA sig1 (sk, OS2IP(SHA1(M))); // generate the signature // DER encoding, is a common standard method of representing digital // signatures DER der_str (sig1); HexEncoder hex_str (der_str); // You might save the DER ecoded signature to a file or send it over // the network here. std::cout << "DER Encoding: " << hex_str << std::endl; ECDSA sig2; try { // try to catch any DER parsing errors sig2 = der_str.toECDSA (); // decode the DER string } catch (borzoiException e) { // print the error message and exit e.debug_print (); return; } ECPubKey pk (sk); std::cout << "Checking signature against M: " << M.c_str () << "\n->"; std::cout << "SHA1(M): " << OS2IP(SHA1(M)) << std::endl; if (sig2.verify(pk, OS2IP(SHA1(M)))) // try to verify the signature std::cout << "valid signature\n"; else std::cout << "invalid signature\n"; M = "in" + M; // tamper with the message std::cout << "Checking signature against M: " << M.c_str () << "\n->"; if (sig2.verify(pk, OS2IP(SHA1(M)))) // try to verify the signature std::cout << "valid signature\n"; else std::cout << "invalid signature\n"; }
void Object::testSignal() { db_emit sig1(); }
std::complex<double> signal::correlation(const signal& other) const { signal sig1(*this), sig2(other); sig1 /= sig1.abs(); sig2 /= sig2.abs(); return sig1 ^ sig2; }
void sha384Process(register sha384Param* sp) { #ifdef OPTIMIZE_SSE2 # if defined(_MSC_VER) || defined (__INTEL_COMPILER) static const __m64 MASK = { 0x00FF00FF00FF00FF00 }; # elif defined(__GNUC__) static const __m64 MASK = { 0x00FF00FF, 0x00FF00FF }; # else # error # endif __m64 a, b, c, d, e, f, g, h, temp; register __m64 *w; register const __m64 *k; register byte t; w = (__m64*) sp->data; t = 16; while (t--) { temp = *w; *(w++) = _m_pxor( _mm_slli_si64(_m_pshufw(_m_pand(temp, MASK), 27), 8), _m_pshufw(_m_pand(_mm_srli_si64(temp, 8), MASK), 27) ); } t = 64; while (t--) { temp = _mm_add_si64(_mm_add_si64(sig1(w[-2]), w[-7]), _mm_add_si64(sig0(w[-15]), w[-16])); *(w++) = temp; } w = (__m64*) sp->h; a = w[0]; b = w[1]; c = w[2]; d = w[3]; e = w[4]; f = w[5]; g = w[6]; h = w[7]; w = (__m64*) sp->data; k = (__m64*) SHA2_64BIT_K; #else register uint64_t a, b, c, d, e, f, g, h, temp; register uint64_t *w; register const uint64_t *k; register byte t; # if WORDS_BIGENDIAN w = sp->data + 16; # else w = sp->data; t = 16; while (t--) { temp = swapu64(*w); *(w++) = temp; } # endif t = 64; while (t--) { temp = sig1(w[-2]) + w[-7] + sig0(w[-15]) + w[-16]; *(w++) = temp; } w = sp->data; a = sp->h[0]; b = sp->h[1]; c = sp->h[2]; d = sp->h[3]; e = sp->h[4]; f = sp->h[5]; g = sp->h[6]; h = sp->h[7]; k = SHA2_64BIT_K; #endif ROUND(a,b,c,d,e,f,g,h,w[ 0],k[ 0]); ROUND(h,a,b,c,d,e,f,g,w[ 1],k[ 1]); ROUND(g,h,a,b,c,d,e,f,w[ 2],k[ 2]); ROUND(f,g,h,a,b,c,d,e,w[ 3],k[ 3]); ROUND(e,f,g,h,a,b,c,d,w[ 4],k[ 4]); ROUND(d,e,f,g,h,a,b,c,w[ 5],k[ 5]); ROUND(c,d,e,f,g,h,a,b,w[ 6],k[ 6]); ROUND(b,c,d,e,f,g,h,a,w[ 7],k[ 7]); ROUND(a,b,c,d,e,f,g,h,w[ 8],k[ 8]); ROUND(h,a,b,c,d,e,f,g,w[ 9],k[ 9]); ROUND(g,h,a,b,c,d,e,f,w[10],k[10]); ROUND(f,g,h,a,b,c,d,e,w[11],k[11]); ROUND(e,f,g,h,a,b,c,d,w[12],k[12]); ROUND(d,e,f,g,h,a,b,c,w[13],k[13]); ROUND(c,d,e,f,g,h,a,b,w[14],k[14]); ROUND(b,c,d,e,f,g,h,a,w[15],k[15]); ROUND(a,b,c,d,e,f,g,h,w[16],k[16]); ROUND(h,a,b,c,d,e,f,g,w[17],k[17]); ROUND(g,h,a,b,c,d,e,f,w[18],k[18]); ROUND(f,g,h,a,b,c,d,e,w[19],k[19]); ROUND(e,f,g,h,a,b,c,d,w[20],k[20]); ROUND(d,e,f,g,h,a,b,c,w[21],k[21]); ROUND(c,d,e,f,g,h,a,b,w[22],k[22]); ROUND(b,c,d,e,f,g,h,a,w[23],k[23]); ROUND(a,b,c,d,e,f,g,h,w[24],k[24]); ROUND(h,a,b,c,d,e,f,g,w[25],k[25]); ROUND(g,h,a,b,c,d,e,f,w[26],k[26]); ROUND(f,g,h,a,b,c,d,e,w[27],k[27]); ROUND(e,f,g,h,a,b,c,d,w[28],k[28]); ROUND(d,e,f,g,h,a,b,c,w[29],k[29]); ROUND(c,d,e,f,g,h,a,b,w[30],k[30]); ROUND(b,c,d,e,f,g,h,a,w[31],k[31]); ROUND(a,b,c,d,e,f,g,h,w[32],k[32]); ROUND(h,a,b,c,d,e,f,g,w[33],k[33]); ROUND(g,h,a,b,c,d,e,f,w[34],k[34]); ROUND(f,g,h,a,b,c,d,e,w[35],k[35]); ROUND(e,f,g,h,a,b,c,d,w[36],k[36]); ROUND(d,e,f,g,h,a,b,c,w[37],k[37]); ROUND(c,d,e,f,g,h,a,b,w[38],k[38]); ROUND(b,c,d,e,f,g,h,a,w[39],k[39]); ROUND(a,b,c,d,e,f,g,h,w[40],k[40]); ROUND(h,a,b,c,d,e,f,g,w[41],k[41]); ROUND(g,h,a,b,c,d,e,f,w[42],k[42]); ROUND(f,g,h,a,b,c,d,e,w[43],k[43]); ROUND(e,f,g,h,a,b,c,d,w[44],k[44]); ROUND(d,e,f,g,h,a,b,c,w[45],k[45]); ROUND(c,d,e,f,g,h,a,b,w[46],k[46]); ROUND(b,c,d,e,f,g,h,a,w[47],k[47]); ROUND(a,b,c,d,e,f,g,h,w[48],k[48]); ROUND(h,a,b,c,d,e,f,g,w[49],k[49]); ROUND(g,h,a,b,c,d,e,f,w[50],k[50]); ROUND(f,g,h,a,b,c,d,e,w[51],k[51]); ROUND(e,f,g,h,a,b,c,d,w[52],k[52]); ROUND(d,e,f,g,h,a,b,c,w[53],k[53]); ROUND(c,d,e,f,g,h,a,b,w[54],k[54]); ROUND(b,c,d,e,f,g,h,a,w[55],k[55]); ROUND(a,b,c,d,e,f,g,h,w[56],k[56]); ROUND(h,a,b,c,d,e,f,g,w[57],k[57]); ROUND(g,h,a,b,c,d,e,f,w[58],k[58]); ROUND(f,g,h,a,b,c,d,e,w[59],k[59]); ROUND(e,f,g,h,a,b,c,d,w[60],k[60]); ROUND(d,e,f,g,h,a,b,c,w[61],k[61]); ROUND(c,d,e,f,g,h,a,b,w[62],k[62]); ROUND(b,c,d,e,f,g,h,a,w[63],k[63]); ROUND(a,b,c,d,e,f,g,h,w[64],k[64]); ROUND(h,a,b,c,d,e,f,g,w[65],k[65]); ROUND(g,h,a,b,c,d,e,f,w[66],k[66]); ROUND(f,g,h,a,b,c,d,e,w[67],k[67]); ROUND(e,f,g,h,a,b,c,d,w[68],k[68]); ROUND(d,e,f,g,h,a,b,c,w[69],k[69]); ROUND(c,d,e,f,g,h,a,b,w[70],k[70]); ROUND(b,c,d,e,f,g,h,a,w[71],k[71]); ROUND(a,b,c,d,e,f,g,h,w[72],k[72]); ROUND(h,a,b,c,d,e,f,g,w[73],k[73]); ROUND(g,h,a,b,c,d,e,f,w[74],k[74]); ROUND(f,g,h,a,b,c,d,e,w[75],k[75]); ROUND(e,f,g,h,a,b,c,d,w[76],k[76]); ROUND(d,e,f,g,h,a,b,c,w[77],k[77]); ROUND(c,d,e,f,g,h,a,b,w[78],k[78]); ROUND(b,c,d,e,f,g,h,a,w[79],k[79]); #ifdef OPTIMIZE_SSE2 w = (__m64*) sp->h; w[0] = _mm_add_si64(w[0], a); w[1] = _mm_add_si64(w[1], b); w[2] = _mm_add_si64(w[2], c); w[3] = _mm_add_si64(w[3], d); w[4] = _mm_add_si64(w[4], e); w[5] = _mm_add_si64(w[5], f); w[6] = _mm_add_si64(w[6], g); w[7] = _mm_add_si64(w[7], h); _mm_empty(); #else sp->h[0] += a; sp->h[1] += b; sp->h[2] += c; sp->h[3] += d; sp->h[4] += e; sp->h[5] += f; sp->h[6] += g; sp->h[7] += h; #endif }
inline bool TRobustRegressionL1PD( const MATRIX_TYPE& A, const Eigen::Matrix<REAL, Eigen::Dynamic, 1>& y, Eigen::Matrix<REAL, Eigen::Dynamic, 1>& xp, REAL pdtol=1e-3, unsigned pdmaxiter=50) { typedef Eigen::Matrix<REAL, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Matrix; typedef Eigen::Matrix<REAL, Eigen::Dynamic, 1> Vector; const unsigned M = (unsigned)y.size(); const unsigned N = (unsigned)xp.size(); assert(A.rows() == M && A.cols() == N); const REAL alpha(0.01); const REAL beta(0.5); const REAL mu(10); Vector x(xp); Vector Ax(A*x); Vector tmpM1(y-Ax); Vector tmpM2(-tmpM1); Vector tmpM3(tmpM1.cwiseAbs()), tmpM4(M); Vector u = (tmpM3*REAL(0.95)).array() + tmpM3.maxCoeff()*REAL(0.10); Vector fu1 = tmpM2-u; Vector fu2 = tmpM1-u; Vector lamu1(M), lamu2(M); for (unsigned i=0; i<M; ++i) { lamu1(i) = -1.0/fu1(i); lamu2(i) = -1.0/fu2(i); } const MATRIX_TYPE At(A.transpose()); Vector Atv(At*(lamu1-lamu2)); REAL AtvNormSq = Atv.squaredNorm(); Vector rdual((-lamu1-lamu2).array() + REAL(1)); REAL rdualNormSq = rdual.squaredNorm(); Vector w2(M), sig1(M), sig2(M), sigx(M), dx(N), up(N), Atdv(N); Vector Axp(M), Atvp(M); Vector &Adx(sigx), &du(w2), &w1p(dx); Matrix H11p(N,N); Vector &dlamu1(tmpM3), &dlamu2(tmpM4); for (unsigned pditer=0; pditer<pdmaxiter; ++pditer) { // surrogate duality gap const REAL sdg(-(fu1.dot(lamu1) + fu2.dot(lamu2))); if (sdg < pdtol) break; const REAL tau(mu*2*M/sdg); const REAL inv_tau = REAL(-1)/tau; tmpM1 = (-lamu1.cwiseProduct(fu1)).array() + inv_tau; tmpM2 = (-lamu2.cwiseProduct(fu2)).array() + inv_tau; const REAL resnorm = sqrt(AtvNormSq + rdualNormSq + tmpM1.squaredNorm() + tmpM2.squaredNorm()); for (unsigned i=0; i<M; ++i) { REAL& tmpM3i = tmpM3(i); tmpM3i = inv_tau/fu1(i); REAL& tmpM4i = tmpM4(i); tmpM4i = inv_tau/fu2(i); w2(i) = tmpM3i + tmpM4i - REAL(1); } tmpM1 = lamu1.cwiseQuotient(fu1); tmpM2 = lamu2.cwiseQuotient(fu2); sig1 = -tmpM1 - tmpM2; sig2 = tmpM1 - tmpM2; sigx = sig1 - sig2.cwiseAbs2().cwiseQuotient(sig1); H11p = At*(Eigen::DiagonalMatrix<REAL,Eigen::Dynamic>(sigx)*A); w1p = At*(tmpM4 - tmpM3 - (sig2.cwiseQuotient(sig1).cwiseProduct(w2))); // optimized solver as A is positive definite and symmetric dx = H11p.ldlt().solve(w1p); Adx = A*dx; du = (w2 - sig2.cwiseProduct(Adx)).cwiseQuotient(sig1); dlamu1 = -tmpM1.cwiseProduct(Adx-du) - lamu1 + tmpM3; dlamu2 = tmpM2.cwiseProduct(Adx+du) - lamu2 + tmpM4; Atdv = At*(dlamu1-dlamu2); // make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0 REAL s(1); for (unsigned i=0; i<M; ++i) { REAL& dlamu1i = dlamu1(i); if (dlamu1i < 0) { const REAL tmp = -lamu1(i)/dlamu1i; if (s > tmp) s = tmp; } REAL& dlamu2i = dlamu2(i); if (dlamu2i < 0) { const REAL tmp = -lamu2(i)/dlamu2i; if (s > tmp) s = tmp; } } for (unsigned i=0; i<M; ++i) { REAL& Adxi = Adx(i); REAL& dui = du(i); REAL Adx_du = Adxi-dui; if (Adx_du > 0) { const REAL tmp = -fu1(i)/Adx_du; if (s > tmp) s = tmp; } Adx_du = -Adxi-dui; if (Adx_du > 0) { const REAL tmp = -fu2(i)/Adx_du; if (s > tmp) s = tmp; } } s *= REAL(0.99); // backtrack lamu1 += s*dlamu1; lamu2 += s*dlamu2; rdual = (-lamu1-lamu2).array() + REAL(1); rdualNormSq = rdual.squaredNorm(); bool suffdec = false; unsigned backiter = 0; do { xp = x + s*dx; up = u + s*du; Axp = Ax + s*Adx; Atvp = Atv + s*Atdv; fu1 = Axp - y - up; fu2 = -Axp + y - up; AtvNormSq = Atvp.squaredNorm(); tmpM1 = (-lamu1.cwiseProduct(fu1)).array() + inv_tau; tmpM2 = (-lamu2.cwiseProduct(fu2)).array() + inv_tau; const REAL newresnorm = sqrt(AtvNormSq + rdualNormSq + tmpM1.squaredNorm() + tmpM2.squaredNorm()); suffdec = (newresnorm <= (REAL(1)-alpha*s)*resnorm); s = beta*s; if (++backiter > 32) { //("error: stuck backtracking, returning last iterate"); // see Section 4 of notes for more information xp.swap(x); return false; } } while (!suffdec); // next iteration x.swap(xp); u.swap(up); Ax.swap(Axp); Atv.swap(Atvp); } return true; }
int main(int argc, char* argv[]) { if(argc < 2) { printf("Usage: sha256 <string>\n"); return 0; } // 4.2.2 uint32_t K[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; // 5.3.2 uint32_t H[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; char* msg = argv[1]; size_t len = strlen(msg); // 5.1.1 uint64_t l = len * sizeof(char) * 8; size_t k = (448 - l - 1) % 512; if(k < 0) k += 512; assert((l+1+k) % 512 == 448); size_t msgSize = l + 1 + k + 64; char* msgPad = (char*)calloc((msgSize / 8), sizeof(char)); memcpy(msgPad, msg, len); msgPad[len] = 0x80; l = swapE64(l); memcpy(msgPad+(msgSize/8)-8, &l, 8); // 5.2.1 size_t N = msgSize / 512; // 6.2 uint32_t v[8]; uint32_t W[64]; uint32_t* M = (uint32_t*)msgPad; uint32_t T1, T2; for(size_t i = 0; i < N * 16; i++) { M[i] = swapE32(M[i]); } // 6.2.2 for(size_t i = 0; i < N; i++) { // 1 for(size_t t = 0; t < 16; t++) { W[t] = M[i*16 + t]; } for(size_t t = 16; t < 64; t++) { W[t] = sig1(W[t-2]) + W[t-7] + sig0(W[t-15]) + W[t-16]; } // 2 for(size_t t = 0; t < 8; t++) { v[t] = H[t]; } // 3 for(size_t t = 0; t < 64; t++) { // a=0 b=1 c=2 d=3 e=4 f=5 g=6 h=7 T1 = v[7] + ep1(v[4]) + Ch(v[4], v[5], v[6]) + K[t] + W[t]; T2 = ep0(v[0]) + Maj(v[0], v[1], v[2]); v[7] = v[6]; v[6] = v[5]; v[5] = v[4]; v[4] = v[3] + T1; v[3] = v[2]; v[2] = v[1]; v[1] = v[0]; v[0] = T1 + T2; } for(size_t t = 0; t < 8; t++) { H[t] += v[t]; } } for(size_t i = 0; i < 8; i++) { H[i] = swapE32(H[i]); hex(&H[i], 4); } printf("\n"); free(msgPad); return 0; }