inline T asymptotic_bessel_j_large_x_2(T v, T x)
{
   // See A&S 9.2.19.
   BOOST_MATH_STD_USING
   // Get the phase and amplitude:
   T ampl = asymptotic_bessel_amplitude(v, x);
   T phase = asymptotic_bessel_phase_mx(v, x);
   BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
   BOOST_MATH_INSTRUMENT_VARIABLE(phase);
   //
   // Calculate the sine of the phase, using
   // sine/cosine addition rules to factor in
   // the x - PI(v/2 + 1/4) term not added to the
   // phase when we calculated it.
   //
   BOOST_MATH_INSTRUMENT_CODE(cos(phase));
   BOOST_MATH_INSTRUMENT_CODE(cos(x));
   BOOST_MATH_INSTRUMENT_CODE(sin(phase));
   BOOST_MATH_INSTRUMENT_CODE(sin(x));
   T cx = cos(x);
   T sx = sin(x);
   T ci = cos_pi(v / 2 + 0.25f);
   T si = sin_pi(v / 2 + 0.25f);
   T sin_phase = cos(phase) * (cx * ci + sx * si) - sin(phase) * (sx * ci - cx * si);
   BOOST_MATH_INSTRUMENT_VARIABLE(sin_phase);
   return sin_phase * ampl;
}
Example #2
0
static npy_cdouble
rotate(npy_cdouble z, double v)
{
    npy_cdouble w;
    double c = cos_pi(v);
    double s = sin_pi(v);
    w.real = z.real*c - z.imag*s;
    w.imag = z.real*s + z.imag*c;
    return w;
}
Example #3
0
static npy_cdouble
rotate_jy(npy_cdouble j, npy_cdouble y, double v)
{
    npy_cdouble w;
    double c = cos_pi(v);
    double s = sin_pi(v);
    w.real = j.real * c - y.real * s;
    w.imag = j.imag * c - y.imag * s;
    return w;
}
Example #4
0
double
__ieee754_lgamma_r(double x, int *signgamp)
{
	double t,y,z,nadj,p,p1,p2,p3,q,r,w;
	int i,hx,lx,ix;

	EXTRACT_WORDS(hx,lx,x);

    /* purge off +-inf, NaN, +-0, and negative arguments */
	*signgamp = 1;
	ix = hx&0x7fffffff;
	if(ix>=0x7ff00000) return x*x;
	if((ix|lx)==0) return one/zero;
	if(ix<0x3b900000) {	/* |x|<2**-70, return -log(|x|) */
	    if(hx<0) {
	        *signgamp = -1;
	        return -__ieee754_log(-x);
	    } else return -__ieee754_log(x);
	}
	if(hx<0) {
	    if(ix>=0x43300000) 	/* |x|>=2**52, must be -integer */
		return one/zero;
	    t = sin_pi(x);
	    if(t==zero) return one/zero; /* -integer */
	    nadj = __ieee754_log(pi/fabs(t*x));
	    if(t<zero) *signgamp = -1;
	    x = -x;
	}

    /* purge off 1 and 2 */
	if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
    /* for x < 2.0 */
	else if(ix<0x40000000) {
	    if(ix<=0x3feccccc) { 	/* lgamma(x) = lgamma(x+1)-log(x) */
		r = -__ieee754_log(x);
		if(ix>=0x3FE76944) {y = one-x; i= 0;}
		else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
	  	else {y = x; i=2;}
	    } else {
	  	r = zero;
	        if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
	        else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
		else {y=x-one;i=2;}
	    }
	    switch(i) {
	      case 0:
		z = y*y;
		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
		p  = y*p1+p2;
		r  += (p-0.5*y); break;
	      case 1:
		z = y*y;
		w = z*y;
		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */
		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
		p  = z*p1-(tt-w*(p2+y*p3));
		r += (tf + p); break;
	      case 2:	
		p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
		r += (-0.5*y + p1/p2);
	    }
	}
	else if(ix<0x40200000) { 			/* x < 8.0 */
	    i = (int)x;
	    t = zero;
	    y = x-(double)i;
	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
	    r = half*y+p/q;
	    z = one;	/* lgamma(1+s) = log(s) + lgamma(s) */
	    switch(i) {
	    case 7: z *= (y+6.0);	/* FALLTHRU */
	    case 6: z *= (y+5.0);	/* FALLTHRU */
	    case 5: z *= (y+4.0);	/* FALLTHRU */
	    case 4: z *= (y+3.0);	/* FALLTHRU */
	    case 3: z *= (y+2.0);	/* FALLTHRU */
		    r += __ieee754_log(z); break;
	    }
    /* 8.0 <= x < 2**58 */
	} else if (ix < 0x43900000) {
	    t = __ieee754_log(x);
	    z = one/x;
	    y = z*z;
	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
	    r = (x-half)*(t-one)+w;
	} else 
    /* 2**58 <= x <= inf */
	    r =  x*(__ieee754_log(x)-one);
	if(hx<0) r = nadj - r;
	return r;
}
Example #5
0
float __lgammaf_r(float x, int *signgamp)
{
	union {float f; uint32_t i;} u = {x};
	float t,y,z,nadj,p,p1,p2,p3,q,r,w;
	uint32_t ix;
	int i,sign;

	/* purge off +-inf, NaN, +-0, tiny and negative arguments */
	*signgamp = 1;
	sign = u.i>>31;
	ix = u.i & 0x7fffffff;
	if (ix >= 0x7f800000)
		return x*x;
	if (ix < 0x35000000) {  /* |x| < 2**-21, return -log(|x|) */
		if (sign) {
			*signgamp = -1;
			x = -x;
		}
		return -logf(x);
	}
	if (sign) {
		x = -x;
		t = sin_pi(x);
		if (t == 0.0f) /* -integer */
			return 1.0f/(x-x);
		if (t > 0.0f)
			*signgamp = -1;
		else
			t = -t;
		nadj = logf(pi/(t*x));
	}

	/* purge off 1 and 2 */
	if (ix == 0x3f800000 || ix == 0x40000000)
		r = 0;
	/* for x < 2.0 */
	else if (ix < 0x40000000) {
		if (ix <= 0x3f666666) {  /* lgamma(x) = lgamma(x+1)-log(x) */
			r = -logf(x);
			if (ix >= 0x3f3b4a20) {
				y = 1.0f - x;
				i = 0;
			} else if (ix >= 0x3e6d3308) {
				y = x - (tc-1.0f);
				i = 1;
			} else {
				y = x;
				i = 2;
			}
		} else {
			r = 0.0f;
			if (ix >= 0x3fdda618) {  /* [1.7316,2] */
				y = 2.0f - x;
				i = 0;
			} else if (ix >= 0x3F9da620) {  /* [1.23,1.73] */
				y = x - tc;
				i = 1;
			} else {
				y = x - 1.0f;
				i = 2;
			}
		}
		switch(i) {
		case 0:
			z = y*y;
			p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
			p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
			p = y*p1+p2;
			r += p - 0.5f*y;
			break;
		case 1:
			z = y*y;
			w = z*y;
			p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));    /* parallel comp */
			p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
			p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
			p = z*p1-(tt-w*(p2+y*p3));
			r += (tf + p);
			break;
		case 2:
			p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
			p2 = 1.0f+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
			r += -0.5f*y + p1/p2;
		}
	} else if (ix < 0x41000000) {  /* x < 8.0 */
		i = (int)x;
		y = x - (float)i;
		p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
		q = 1.0f+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
		r = 0.5f*y+p/q;
		z = 1.0f;    /* lgamma(1+s) = log(s) + lgamma(s) */
		switch (i) {
		case 7: z *= y + 6.0f;  /* FALLTHRU */
		case 6: z *= y + 5.0f;  /* FALLTHRU */
		case 5: z *= y + 4.0f;  /* FALLTHRU */
		case 4: z *= y + 3.0f;  /* FALLTHRU */
		case 3: z *= y + 2.0f;  /* FALLTHRU */
			r += logf(z);
			break;
		}
	} else if (ix < 0x5c800000) {  /* 8.0 <= x < 2**58 */
		t = logf(x);
		z = 1.0f/x;
		y = z*z;
		w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
		r = (x-0.5f)*(t-1.0f)+w;
	} else                         /* 2**58 <= x <= inf */
		r =  x*(logf(x)-1.0f);
	if (sign)
		r = nadj - r;
	return r;
}
Example #6
0
int test_main(int, char* [])
{
   int i;
   TEST_POLICY_SF(tgamma(3.0));
   TEST_POLICY_SF(tgamma1pm1(0.25));
   TEST_POLICY_SF(lgamma(50.0));
   TEST_POLICY_SF(lgamma(50.0, &i));
   TEST_POLICY_SF(digamma(12.0));
   TEST_POLICY_SF(tgamma_ratio(12.0, 13.5));
   TEST_POLICY_SF(tgamma_delta_ratio(100.0, 0.25));
   TEST_POLICY_SF(factorial<double>(8));
   TEST_POLICY_SF(unchecked_factorial<double>(3));
   TEST_POLICY_SF(double_factorial<double>(5));
   TEST_POLICY_SF(rising_factorial(20.5, 5));
   TEST_POLICY_SF(falling_factorial(10.2, 7));
   TEST_POLICY_SF(tgamma(12.0, 13.0));
   TEST_POLICY_SF(tgamma_lower(12.0, 13.0));
   TEST_POLICY_SF(gamma_p(12.0, 13.0));
   TEST_POLICY_SF(gamma_q(12.0, 15.0));
   TEST_POLICY_SF(gamma_p_inv(12.0, 0.25));
   TEST_POLICY_SF(gamma_q_inv(15.0, 0.25));
   TEST_POLICY_SF(gamma_p_inva(12.0, 0.25));
   TEST_POLICY_SF(gamma_q_inva(12.0, 0.25));
   TEST_POLICY_SF(erf(2.5));
   TEST_POLICY_SF(erfc(2.5));
   TEST_POLICY_SF(erf_inv(0.25));
   TEST_POLICY_SF(erfc_inv(0.25));
   TEST_POLICY_SF(beta(12.0, 15.0));
   TEST_POLICY_SF(beta(12.0, 15.0, 0.25));
   TEST_POLICY_SF(betac(12.0, 15.0, 0.25));
   TEST_POLICY_SF(ibeta(12.0, 15.0, 0.25));
   TEST_POLICY_SF(ibetac(12.0, 15.0, 0.25));
   TEST_POLICY_SF(ibeta_inv(12.0, 15.0, 0.25));
   TEST_POLICY_SF(ibetac_inv(12.0, 15.0, 0.25));
   TEST_POLICY_SF(ibeta_inva(12.0, 0.75, 0.25));
   TEST_POLICY_SF(ibetac_inva(12.0, 0.75, 0.25));
   TEST_POLICY_SF(ibeta_invb(12.0, 0.75, 0.25));
   TEST_POLICY_SF(ibetac_invb(12.0, 0.75, 0.25));
   TEST_POLICY_SF(gamma_p_derivative(12.0, 15.0));
   TEST_POLICY_SF(ibeta_derivative(12.0, 15.75, 0.25));
   TEST_POLICY_SF(fpclassify(12.0));
   TEST_POLICY_SF(isfinite(12.0));
   TEST_POLICY_SF(isnormal(12.0));
   TEST_POLICY_SF(isnan(12.0));
   TEST_POLICY_SF(isinf(12.0));
   TEST_POLICY_SF(log1p(0.0025));
   TEST_POLICY_SF(expm1(0.0025));
   TEST_POLICY_SF(cbrt(30.0));
   TEST_POLICY_SF(sqrt1pm1(0.0025));
   TEST_POLICY_SF(powm1(1.0025, 12.0));
   TEST_POLICY_SF(legendre_p(5, 0.75));
   TEST_POLICY_SF(legendre_p(7, 3, 0.75));
   TEST_POLICY_SF(legendre_q(5, 0.75));
   TEST_POLICY_SF(legendre_next(2, 0.25, 12.0, 5.0));
   TEST_POLICY_SF(legendre_next(2, 2, 0.25, 12.0, 5.0));
   TEST_POLICY_SF(laguerre(5, 12.2));
   TEST_POLICY_SF(laguerre(7, 3, 5.0));
   TEST_POLICY_SF(laguerre_next(2, 5.0, 12.0, 5.0));
   TEST_POLICY_SF(laguerre_next(5, 3, 5.0, 20.0, 10.0));
   TEST_POLICY_SF(hermite(1, 2.0));
   TEST_POLICY_SF(hermite_next(2, 2.0, 3.0, 2.0));
   TEST_POLICY_SF(spherical_harmonic_r(5, 4, 0.75, 0.25));
   TEST_POLICY_SF(spherical_harmonic_i(5, 4, 0.75, 0.25));
   TEST_POLICY_SF(ellint_1(0.25));
   TEST_POLICY_SF(ellint_1(0.25, 0.75));
   TEST_POLICY_SF(ellint_2(0.25));
   TEST_POLICY_SF(ellint_2(0.25, 0.75));
   TEST_POLICY_SF(ellint_3(0.25, 0.75));
   TEST_POLICY_SF(ellint_3(0.25, 0.125, 0.75));
   TEST_POLICY_SF(ellint_rc(3.0, 5.0));
   TEST_POLICY_SF(ellint_rd(2.0, 3.0, 4.0));
   TEST_POLICY_SF(ellint_rf(2.0, 3.0, 4.0));
   TEST_POLICY_SF(ellint_rj(2.0, 3.0, 5.0, 0.25));
   TEST_POLICY_SF(hypot(5.0, 3.0));
   TEST_POLICY_SF(sinc_pi(3.0));
   TEST_POLICY_SF(sinhc_pi(2.0));
   TEST_POLICY_SF(asinh(12.0));
   TEST_POLICY_SF(acosh(5.0));
   TEST_POLICY_SF(atanh(0.75));
   TEST_POLICY_SF(sin_pi(5.0));
   TEST_POLICY_SF(cos_pi(6.0));
   TEST_POLICY_SF(cyl_neumann(2.0, 5.0));
   TEST_POLICY_SF(cyl_neumann(2, 5.0));
   TEST_POLICY_SF(cyl_bessel_j(2.0, 5.0));
   TEST_POLICY_SF(cyl_bessel_j(2, 5.0));
   TEST_POLICY_SF(cyl_bessel_i(3.0, 5.0));
   TEST_POLICY_SF(cyl_bessel_i(3, 5.0));
   TEST_POLICY_SF(cyl_bessel_k(3.0, 5.0));
   TEST_POLICY_SF(cyl_bessel_k(3, 5.0));
   TEST_POLICY_SF(sph_bessel(3, 5.0));
   TEST_POLICY_SF(sph_bessel(3, 5));
   TEST_POLICY_SF(sph_neumann(3, 5.0));
   TEST_POLICY_SF(sph_neumann(3, 5));
   return 0;
}
Example #7
0
    //------------------------------------------------------------------------------
    double Cmath::__ieee754_lgamma_r( double x, int* signgamp )
    {
        static const double zero = 0.00000000000000000000e+00;
        static const double half=  5.00000000000000000000e-01; // 0x3FE00000, 0x00000000
        static const double one =  1.00000000000000000000e+00; // 0x3FF00000, 0x00000000
        static const double pi  =  3.14159265358979311600e+00; // 0x400921FB, 0x54442D18
        static const double a0  =  7.72156649015328655494e-02; // 0x3FB3C467, 0xE37DB0C8
        static const double a1  =  3.22467033424113591611e-01; // 0x3FD4A34C, 0xC4A60FAD
        static const double a2  =  6.73523010531292681824e-02; // 0x3FB13E00, 0x1A5562A7
        static const double a3  =  2.05808084325167332806e-02; // 0x3F951322, 0xAC92547B
        static const double a4  =  7.38555086081402883957e-03; // 0x3F7E404F, 0xB68FEFE8
        static const double a5  =  2.89051383673415629091e-03; // 0x3F67ADD8, 0xCCB7926B
        static const double a6  =  1.19270763183362067845e-03; // 0x3F538A94, 0x116F3F5D
        static const double a7  =  5.10069792153511336608e-04; // 0x3F40B6C6, 0x89B99C00
        static const double a8  =  2.20862790713908385557e-04; // 0x3F2CF2EC, 0xED10E54D
        static const double a9  =  1.08011567247583939954e-04; // 0x3F1C5088, 0x987DFB07
        static const double a10 =  2.52144565451257326939e-05; // 0x3EFA7074, 0x428CFA52
        static const double a11 =  4.48640949618915160150e-05; // 0x3F07858E, 0x90A45837
        static const double tc  =  1.46163214496836224576e+00; // 0x3FF762D8, 0x6356BE3F
        static const double tf  = -1.21486290535849611461e-01; // 0xBFBF19B9, 0xBCC38A42
        static const double tt  = -3.63867699703950536541e-18; // 0xBC50C7CA, 0xA48A971F
        static const double t0  =  4.83836122723810047042e-01; // 0x3FDEF72B, 0xC8EE38A2
        static const double t1  = -1.47587722994593911752e-01; // 0xBFC2E427, 0x8DC6C509
        static const double t2  =  6.46249402391333854778e-02; // 0x3FB08B42, 0x94D5419B
        static const double t3  = -3.27885410759859649565e-02; // 0xBFA0C9A8, 0xDF35B713
        static const double t4  =  1.79706750811820387126e-02; // 0x3F9266E7, 0x970AF9EC
        static const double t5  = -1.03142241298341437450e-02; // 0xBF851F9F, 0xBA91EC6A
        static const double t6  =  6.10053870246291332635e-03; // 0x3F78FCE0, 0xE370E344
        static const double t7  = -3.68452016781138256760e-03; // 0xBF6E2EFF, 0xB3E914D7
        static const double t8  =  2.25964780900612472250e-03; // 0x3F6282D3, 0x2E15C915
        static const double t9  = -1.40346469989232843813e-03; // 0xBF56FE8E, 0xBF2D1AF1
        static const double t10 =  8.81081882437654011382e-04; // 0x3F4CDF0C, 0xEF61A8E9
        static const double t11 = -5.38595305356740546715e-04; // 0xBF41A610, 0x9C73E0EC
        static const double t12 =  3.15632070903625950361e-04; // 0x3F34AF6D, 0x6C0EBBF7
        static const double t13 = -3.12754168375120860518e-04; // 0xBF347F24, 0xECC38C38
        static const double t14 =  3.35529192635519073543e-04; // 0x3F35FD3E, 0xE8C2D3F4
        static const double u0  = -7.72156649015328655494e-02; // 0xBFB3C467, 0xE37DB0C8
        static const double u1  =  6.32827064025093366517e-01; // 0x3FE4401E, 0x8B005DFF
        static const double u2  =  1.45492250137234768737e+00; // 0x3FF7475C, 0xD119BD6F
        static const double u3  =  9.77717527963372745603e-01; // 0x3FEF4976, 0x44EA8450
        static const double u4  =  2.28963728064692451092e-01; // 0x3FCD4EAE, 0xF6010924
        static const double u5  =  1.33810918536787660377e-02; // 0x3F8B678B, 0xBF2BAB09
        static const double v1  =  2.45597793713041134822e+00; // 0x4003A5D7, 0xC2BD619C
        static const double v2  =  2.12848976379893395361e+00; // 0x40010725, 0xA42B18F5
        static const double v3  =  7.69285150456672783825e-01; // 0x3FE89DFB, 0xE45050AF
        static const double v4  =  1.04222645593369134254e-01; // 0x3FBAAE55, 0xD6537C88
        static const double v5  =  3.21709242282423911810e-03; // 0x3F6A5ABB, 0x57D0CF61
        static const double s0  = -7.72156649015328655494e-02; // 0xBFB3C467, 0xE37DB0C8
        static const double s1  =  2.14982415960608852501e-01; // 0x3FCB848B, 0x36E20878
        static const double s2  =  3.25778796408930981787e-01; // 0x3FD4D98F, 0x4F139F59
        static const double s3  =  1.46350472652464452805e-01; // 0x3FC2BB9C, 0xBEE5F2F7
        static const double s4  =  2.66422703033638609560e-02; // 0x3F9B481C, 0x7E939961
        static const double s5  =  1.84028451407337715652e-03; // 0x3F5E26B6, 0x7368F239
        static const double s6  =  3.19475326584100867617e-05; // 0x3F00BFEC, 0xDD17E945
        static const double r1  =  1.39200533467621045958e+00; // 0x3FF645A7, 0x62C4AB74
        static const double r2  =  7.21935547567138069525e-01; // 0x3FE71A18, 0x93D3DCDC
        static const double r3  =  1.71933865632803078993e-01; // 0x3FC601ED, 0xCCFBDF27
        static const double r4  =  1.86459191715652901344e-02; // 0x3F9317EA, 0x742ED475
        static const double r5  =  7.77942496381893596434e-04; // 0x3F497DDA, 0xCA41A95B
        static const double r6  =  7.32668430744625636189e-06; // 0x3EDEBAF7, 0xA5B38140
        static const double w0  =  4.18938533204672725052e-01; // 0x3FDACFE3, 0x90C97D69
        static const double w1  =  8.33333333333329678849e-02; // 0x3FB55555, 0x5555553B
        static const double w2  = -2.77777777728775536470e-03; // 0xBF66C16C, 0x16B02E5C
        static const double w3  =  7.93650558643019558500e-04; // 0x3F4A019F, 0x98CF38B6
        static const double w4  = -5.95187557450339963135e-04; // 0xBF4380CB, 0x8C0FE741
        static const double w5  =  8.36339918996282139126e-04; // 0x3F4B67BA, 0x4CDAD5D1
        static const double w6  = -1.63092934096575273989e-03; // 0xBF5AB89D, 0x0B9E43E4

        double t, y, z, nadj, p, p1, p2, p3, q, r, w;
        Cmp_signed__int32 i, hx, lx, ix;

        extract_words( hx, lx, x );

        // purge off +-inf, NaN, +-0, and negative arguments
        *signgamp = 1;
        ix = hx & 0x7fffffff;
        if( ix >= 0x7ff00000 )
        {
            return x * x;
        }

        if( ( ix | lx ) == 0 )
        {
            return one / zero;
        }

        if( ix < 0x3b900000 )
        {
            // |x|<2**-70, return -log(|x|)
            if( hx < 0 )
            {
                *signgamp = -1;
                return -__ieee754_log( -x );
            }
            else
            {
                return -__ieee754_log( x );
            }
        }

        if( hx < 0 )
        {
            if( ix >= 0x43300000 ) // |x|>=2**52, must be -integer
            {
                return one / zero;
            }

            t = sin_pi( x );
            if( t == zero )
            {
                return one / zero; // -integer
            }

            nadj = __ieee754_log( pi / fabs( t * x ) );
            if( t < zero )
            {
                *signgamp = -1;
            }
            x = -x;
        }

        // purge off 1 and 2
        if( ( ( ( ix - 0x3ff00000 ) | lx ) == 0 ) || ( ( ( ix - 0x40000000 ) | lx ) == 0 ) )
        {
            r = 0;
        }// for x < 2.0
        else if( ix < 0x40000000 )
        {
            if( ix <= 0x3feccccc )
            {
                // lgamma(x) = lgamma(x+1)-log(x)
                r = -__ieee754_log( x );
                if( ix >= 0x3FE76944 )
                {
                    y = one - x;
                    i = 0;
                }
                else if( ix >= 0x3FCDA661 )
                {
                    y = x - ( tc - one );
                    i = 1;
                }
                else
                {
                    y = x;
                    i = 2;
                }
            }
            else
            {
                r = zero;
                if( ix >= 0x3FFBB4C3 )
                {
                    y = 2.0 - x;
                    i = 0;
                } // [1.7316,2]
                else if( ix >= 0x3FF3B4C4 )
                {
                    y = x - tc;
                    i = 1;
                } // [1.23,1.73]
                else
                {
                    y = x - one;
                    i = 2;
                }
            }

            switch( i )
            {
            case 0:
                z = y * y;
                p1 = a0 + z * ( a2 + z * ( a4 + z * ( a6 + z * ( a8 + z * a10 ) ) ) );
                p2 = z * ( a1 + z * ( a3 + z * ( a5 + z * ( a7 + z * ( a9 + z * a11 ) ) ) ) );
                p = y * p1 + p2;
                r += ( p - 0.5 * y );
                break;
            case 1:
                z = y * y;
                w = z * y;
                p1 = t0 + w * ( t3 + w * ( t6 + w * ( t9 + w * t12 ) ) ); // parallel comp
                p2 = t1 + w * ( t4 + w * ( t7 + w * ( t10 + w * t13 ) ) );
                p3 = t2 + w * ( t5 + w * ( t8 + w * ( t11 + w * t14 ) ) );
                p = z * p1 - ( tt - w * ( p2 + y * p3 ) );
                r += ( tf + p );
                break;
            case 2:
                p1 = y * ( u0 + y * ( u1 + y * ( u2 + y * ( u3 + y * ( u4 + y * u5 ) ) ) ) );
                p2 = one + y * ( v1 + y * ( v2 + y * ( v3 + y * ( v4 + y * v5 ) ) ) );
                r += ( -0.5 * y + p1 / p2 );
            }
        }
        else if( ix < 0x40200000 )
        {
            // x < 8.0
            i = (Cmp_signed__int32)x;
            t = zero;
            y = x - (double)i;
            p = y * ( s0 + y * ( s1 + y * ( s2 + y * ( s3 + y * ( s4 + y * ( s5 + y * s6 ) ) ) ) ) );
            q = one + y * ( r1 + y * ( r2 + y * ( r3 + y * ( r4 + y * ( r5 + y * r6 ) ) ) ) );
            r = half * y + p / q;
            z = one; // lgamma(1+s) = log(s) + lgamma(s)

            switch( i )
            {
            case 7: z *= ( y + 6.0 ); // FALLTHRU
            case 6: z *= ( y + 5.0 ); // FALLTHRU
            case 5: z *= ( y + 4.0 ); // FALLTHRU
            case 4: z *= ( y + 3.0 ); // FALLTHRU
            case 3: z *= ( y + 2.0 ); // FALLTHRU
            r += __ieee754_log( z );
            break;
            }
            // 8.0 <= x < 2**58
        }
        else if( ix < 0x43900000 )
        {
            t = __ieee754_log( x );
            z = one / x;
            y = z * z;
            w = w0 + z * ( w1 + y * ( w2 + y * ( w3 + y * ( w4 + y * ( w5 + y * w6 ) ) ) ) );
            r = ( x - half ) * ( t - one ) + w;
        }
        else
        {
            // 2**58 <= x <= inf
            r =  x * ( __ieee754_log( x ) - one );
        }

        if( hx < 0 )
        {
            r = nadj - r;
        }
        return r;
    }