inline T asymptotic_bessel_j_large_x_2(T v, T x) { // See A&S 9.2.19. BOOST_MATH_STD_USING // Get the phase and amplitude: T ampl = asymptotic_bessel_amplitude(v, x); T phase = asymptotic_bessel_phase_mx(v, x); BOOST_MATH_INSTRUMENT_VARIABLE(ampl); BOOST_MATH_INSTRUMENT_VARIABLE(phase); // // Calculate the sine of the phase, using // sine/cosine addition rules to factor in // the x - PI(v/2 + 1/4) term not added to the // phase when we calculated it. // BOOST_MATH_INSTRUMENT_CODE(cos(phase)); BOOST_MATH_INSTRUMENT_CODE(cos(x)); BOOST_MATH_INSTRUMENT_CODE(sin(phase)); BOOST_MATH_INSTRUMENT_CODE(sin(x)); T cx = cos(x); T sx = sin(x); T ci = cos_pi(v / 2 + 0.25f); T si = sin_pi(v / 2 + 0.25f); T sin_phase = cos(phase) * (cx * ci + sx * si) - sin(phase) * (sx * ci - cx * si); BOOST_MATH_INSTRUMENT_VARIABLE(sin_phase); return sin_phase * ampl; }
static npy_cdouble rotate(npy_cdouble z, double v) { npy_cdouble w; double c = cos_pi(v); double s = sin_pi(v); w.real = z.real*c - z.imag*s; w.imag = z.real*s + z.imag*c; return w; }
static npy_cdouble rotate_jy(npy_cdouble j, npy_cdouble y, double v) { npy_cdouble w; double c = cos_pi(v); double s = sin_pi(v); w.real = j.real * c - y.real * s; w.imag = j.imag * c - y.imag * s; return w; }
double __ieee754_lgamma_r(double x, int *signgamp) { double t,y,z,nadj,p,p1,p2,p3,q,r,w; int i,hx,lx,ix; EXTRACT_WORDS(hx,lx,x); /* purge off +-inf, NaN, +-0, and negative arguments */ *signgamp = 1; ix = hx&0x7fffffff; if(ix>=0x7ff00000) return x*x; if((ix|lx)==0) return one/zero; if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */ if(hx<0) { *signgamp = -1; return -__ieee754_log(-x); } else return -__ieee754_log(x); } if(hx<0) { if(ix>=0x43300000) /* |x|>=2**52, must be -integer */ return one/zero; t = sin_pi(x); if(t==zero) return one/zero; /* -integer */ nadj = __ieee754_log(pi/fabs(t*x)); if(t<zero) *signgamp = -1; x = -x; } /* purge off 1 and 2 */ if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0; /* for x < 2.0 */ else if(ix<0x40000000) { if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ r = -__ieee754_log(x); if(ix>=0x3FE76944) {y = one-x; i= 0;} else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;} else {y = x; i=2;} } else { r = zero; if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */ else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */ else {y=x-one;i=2;} } switch(i) { case 0: z = y*y; p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); p = y*p1+p2; r += (p-0.5*y); break; case 1: z = y*y; w = z*y; p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); p = z*p1-(tt-w*(p2+y*p3)); r += (tf + p); break; case 2: p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); r += (-0.5*y + p1/p2); } } else if(ix<0x40200000) { /* x < 8.0 */ i = (int)x; t = zero; y = x-(double)i; p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); r = half*y+p/q; z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ switch(i) { case 7: z *= (y+6.0); /* FALLTHRU */ case 6: z *= (y+5.0); /* FALLTHRU */ case 5: z *= (y+4.0); /* FALLTHRU */ case 4: z *= (y+3.0); /* FALLTHRU */ case 3: z *= (y+2.0); /* FALLTHRU */ r += __ieee754_log(z); break; } /* 8.0 <= x < 2**58 */ } else if (ix < 0x43900000) { t = __ieee754_log(x); z = one/x; y = z*z; w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); r = (x-half)*(t-one)+w; } else /* 2**58 <= x <= inf */ r = x*(__ieee754_log(x)-one); if(hx<0) r = nadj - r; return r; }
float __lgammaf_r(float x, int *signgamp) { union {float f; uint32_t i;} u = {x}; float t,y,z,nadj,p,p1,p2,p3,q,r,w; uint32_t ix; int i,sign; /* purge off +-inf, NaN, +-0, tiny and negative arguments */ *signgamp = 1; sign = u.i>>31; ix = u.i & 0x7fffffff; if (ix >= 0x7f800000) return x*x; if (ix < 0x35000000) { /* |x| < 2**-21, return -log(|x|) */ if (sign) { *signgamp = -1; x = -x; } return -logf(x); } if (sign) { x = -x; t = sin_pi(x); if (t == 0.0f) /* -integer */ return 1.0f/(x-x); if (t > 0.0f) *signgamp = -1; else t = -t; nadj = logf(pi/(t*x)); } /* purge off 1 and 2 */ if (ix == 0x3f800000 || ix == 0x40000000) r = 0; /* for x < 2.0 */ else if (ix < 0x40000000) { if (ix <= 0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ r = -logf(x); if (ix >= 0x3f3b4a20) { y = 1.0f - x; i = 0; } else if (ix >= 0x3e6d3308) { y = x - (tc-1.0f); i = 1; } else { y = x; i = 2; } } else { r = 0.0f; if (ix >= 0x3fdda618) { /* [1.7316,2] */ y = 2.0f - x; i = 0; } else if (ix >= 0x3F9da620) { /* [1.23,1.73] */ y = x - tc; i = 1; } else { y = x - 1.0f; i = 2; } } switch(i) { case 0: z = y*y; p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); p = y*p1+p2; r += p - 0.5f*y; break; case 1: z = y*y; w = z*y; p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); p = z*p1-(tt-w*(p2+y*p3)); r += (tf + p); break; case 2: p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); p2 = 1.0f+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); r += -0.5f*y + p1/p2; } } else if (ix < 0x41000000) { /* x < 8.0 */ i = (int)x; y = x - (float)i; p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); q = 1.0f+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); r = 0.5f*y+p/q; z = 1.0f; /* lgamma(1+s) = log(s) + lgamma(s) */ switch (i) { case 7: z *= y + 6.0f; /* FALLTHRU */ case 6: z *= y + 5.0f; /* FALLTHRU */ case 5: z *= y + 4.0f; /* FALLTHRU */ case 4: z *= y + 3.0f; /* FALLTHRU */ case 3: z *= y + 2.0f; /* FALLTHRU */ r += logf(z); break; } } else if (ix < 0x5c800000) { /* 8.0 <= x < 2**58 */ t = logf(x); z = 1.0f/x; y = z*z; w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); r = (x-0.5f)*(t-1.0f)+w; } else /* 2**58 <= x <= inf */ r = x*(logf(x)-1.0f); if (sign) r = nadj - r; return r; }
int test_main(int, char* []) { int i; TEST_POLICY_SF(tgamma(3.0)); TEST_POLICY_SF(tgamma1pm1(0.25)); TEST_POLICY_SF(lgamma(50.0)); TEST_POLICY_SF(lgamma(50.0, &i)); TEST_POLICY_SF(digamma(12.0)); TEST_POLICY_SF(tgamma_ratio(12.0, 13.5)); TEST_POLICY_SF(tgamma_delta_ratio(100.0, 0.25)); TEST_POLICY_SF(factorial<double>(8)); TEST_POLICY_SF(unchecked_factorial<double>(3)); TEST_POLICY_SF(double_factorial<double>(5)); TEST_POLICY_SF(rising_factorial(20.5, 5)); TEST_POLICY_SF(falling_factorial(10.2, 7)); TEST_POLICY_SF(tgamma(12.0, 13.0)); TEST_POLICY_SF(tgamma_lower(12.0, 13.0)); TEST_POLICY_SF(gamma_p(12.0, 13.0)); TEST_POLICY_SF(gamma_q(12.0, 15.0)); TEST_POLICY_SF(gamma_p_inv(12.0, 0.25)); TEST_POLICY_SF(gamma_q_inv(15.0, 0.25)); TEST_POLICY_SF(gamma_p_inva(12.0, 0.25)); TEST_POLICY_SF(gamma_q_inva(12.0, 0.25)); TEST_POLICY_SF(erf(2.5)); TEST_POLICY_SF(erfc(2.5)); TEST_POLICY_SF(erf_inv(0.25)); TEST_POLICY_SF(erfc_inv(0.25)); TEST_POLICY_SF(beta(12.0, 15.0)); TEST_POLICY_SF(beta(12.0, 15.0, 0.25)); TEST_POLICY_SF(betac(12.0, 15.0, 0.25)); TEST_POLICY_SF(ibeta(12.0, 15.0, 0.25)); TEST_POLICY_SF(ibetac(12.0, 15.0, 0.25)); TEST_POLICY_SF(ibeta_inv(12.0, 15.0, 0.25)); TEST_POLICY_SF(ibetac_inv(12.0, 15.0, 0.25)); TEST_POLICY_SF(ibeta_inva(12.0, 0.75, 0.25)); TEST_POLICY_SF(ibetac_inva(12.0, 0.75, 0.25)); TEST_POLICY_SF(ibeta_invb(12.0, 0.75, 0.25)); TEST_POLICY_SF(ibetac_invb(12.0, 0.75, 0.25)); TEST_POLICY_SF(gamma_p_derivative(12.0, 15.0)); TEST_POLICY_SF(ibeta_derivative(12.0, 15.75, 0.25)); TEST_POLICY_SF(fpclassify(12.0)); TEST_POLICY_SF(isfinite(12.0)); TEST_POLICY_SF(isnormal(12.0)); TEST_POLICY_SF(isnan(12.0)); TEST_POLICY_SF(isinf(12.0)); TEST_POLICY_SF(log1p(0.0025)); TEST_POLICY_SF(expm1(0.0025)); TEST_POLICY_SF(cbrt(30.0)); TEST_POLICY_SF(sqrt1pm1(0.0025)); TEST_POLICY_SF(powm1(1.0025, 12.0)); TEST_POLICY_SF(legendre_p(5, 0.75)); TEST_POLICY_SF(legendre_p(7, 3, 0.75)); TEST_POLICY_SF(legendre_q(5, 0.75)); TEST_POLICY_SF(legendre_next(2, 0.25, 12.0, 5.0)); TEST_POLICY_SF(legendre_next(2, 2, 0.25, 12.0, 5.0)); TEST_POLICY_SF(laguerre(5, 12.2)); TEST_POLICY_SF(laguerre(7, 3, 5.0)); TEST_POLICY_SF(laguerre_next(2, 5.0, 12.0, 5.0)); TEST_POLICY_SF(laguerre_next(5, 3, 5.0, 20.0, 10.0)); TEST_POLICY_SF(hermite(1, 2.0)); TEST_POLICY_SF(hermite_next(2, 2.0, 3.0, 2.0)); TEST_POLICY_SF(spherical_harmonic_r(5, 4, 0.75, 0.25)); TEST_POLICY_SF(spherical_harmonic_i(5, 4, 0.75, 0.25)); TEST_POLICY_SF(ellint_1(0.25)); TEST_POLICY_SF(ellint_1(0.25, 0.75)); TEST_POLICY_SF(ellint_2(0.25)); TEST_POLICY_SF(ellint_2(0.25, 0.75)); TEST_POLICY_SF(ellint_3(0.25, 0.75)); TEST_POLICY_SF(ellint_3(0.25, 0.125, 0.75)); TEST_POLICY_SF(ellint_rc(3.0, 5.0)); TEST_POLICY_SF(ellint_rd(2.0, 3.0, 4.0)); TEST_POLICY_SF(ellint_rf(2.0, 3.0, 4.0)); TEST_POLICY_SF(ellint_rj(2.0, 3.0, 5.0, 0.25)); TEST_POLICY_SF(hypot(5.0, 3.0)); TEST_POLICY_SF(sinc_pi(3.0)); TEST_POLICY_SF(sinhc_pi(2.0)); TEST_POLICY_SF(asinh(12.0)); TEST_POLICY_SF(acosh(5.0)); TEST_POLICY_SF(atanh(0.75)); TEST_POLICY_SF(sin_pi(5.0)); TEST_POLICY_SF(cos_pi(6.0)); TEST_POLICY_SF(cyl_neumann(2.0, 5.0)); TEST_POLICY_SF(cyl_neumann(2, 5.0)); TEST_POLICY_SF(cyl_bessel_j(2.0, 5.0)); TEST_POLICY_SF(cyl_bessel_j(2, 5.0)); TEST_POLICY_SF(cyl_bessel_i(3.0, 5.0)); TEST_POLICY_SF(cyl_bessel_i(3, 5.0)); TEST_POLICY_SF(cyl_bessel_k(3.0, 5.0)); TEST_POLICY_SF(cyl_bessel_k(3, 5.0)); TEST_POLICY_SF(sph_bessel(3, 5.0)); TEST_POLICY_SF(sph_bessel(3, 5)); TEST_POLICY_SF(sph_neumann(3, 5.0)); TEST_POLICY_SF(sph_neumann(3, 5)); return 0; }
//------------------------------------------------------------------------------ double Cmath::__ieee754_lgamma_r( double x, int* signgamp ) { static const double zero = 0.00000000000000000000e+00; static const double half= 5.00000000000000000000e-01; // 0x3FE00000, 0x00000000 static const double one = 1.00000000000000000000e+00; // 0x3FF00000, 0x00000000 static const double pi = 3.14159265358979311600e+00; // 0x400921FB, 0x54442D18 static const double a0 = 7.72156649015328655494e-02; // 0x3FB3C467, 0xE37DB0C8 static const double a1 = 3.22467033424113591611e-01; // 0x3FD4A34C, 0xC4A60FAD static const double a2 = 6.73523010531292681824e-02; // 0x3FB13E00, 0x1A5562A7 static const double a3 = 2.05808084325167332806e-02; // 0x3F951322, 0xAC92547B static const double a4 = 7.38555086081402883957e-03; // 0x3F7E404F, 0xB68FEFE8 static const double a5 = 2.89051383673415629091e-03; // 0x3F67ADD8, 0xCCB7926B static const double a6 = 1.19270763183362067845e-03; // 0x3F538A94, 0x116F3F5D static const double a7 = 5.10069792153511336608e-04; // 0x3F40B6C6, 0x89B99C00 static const double a8 = 2.20862790713908385557e-04; // 0x3F2CF2EC, 0xED10E54D static const double a9 = 1.08011567247583939954e-04; // 0x3F1C5088, 0x987DFB07 static const double a10 = 2.52144565451257326939e-05; // 0x3EFA7074, 0x428CFA52 static const double a11 = 4.48640949618915160150e-05; // 0x3F07858E, 0x90A45837 static const double tc = 1.46163214496836224576e+00; // 0x3FF762D8, 0x6356BE3F static const double tf = -1.21486290535849611461e-01; // 0xBFBF19B9, 0xBCC38A42 static const double tt = -3.63867699703950536541e-18; // 0xBC50C7CA, 0xA48A971F static const double t0 = 4.83836122723810047042e-01; // 0x3FDEF72B, 0xC8EE38A2 static const double t1 = -1.47587722994593911752e-01; // 0xBFC2E427, 0x8DC6C509 static const double t2 = 6.46249402391333854778e-02; // 0x3FB08B42, 0x94D5419B static const double t3 = -3.27885410759859649565e-02; // 0xBFA0C9A8, 0xDF35B713 static const double t4 = 1.79706750811820387126e-02; // 0x3F9266E7, 0x970AF9EC static const double t5 = -1.03142241298341437450e-02; // 0xBF851F9F, 0xBA91EC6A static const double t6 = 6.10053870246291332635e-03; // 0x3F78FCE0, 0xE370E344 static const double t7 = -3.68452016781138256760e-03; // 0xBF6E2EFF, 0xB3E914D7 static const double t8 = 2.25964780900612472250e-03; // 0x3F6282D3, 0x2E15C915 static const double t9 = -1.40346469989232843813e-03; // 0xBF56FE8E, 0xBF2D1AF1 static const double t10 = 8.81081882437654011382e-04; // 0x3F4CDF0C, 0xEF61A8E9 static const double t11 = -5.38595305356740546715e-04; // 0xBF41A610, 0x9C73E0EC static const double t12 = 3.15632070903625950361e-04; // 0x3F34AF6D, 0x6C0EBBF7 static const double t13 = -3.12754168375120860518e-04; // 0xBF347F24, 0xECC38C38 static const double t14 = 3.35529192635519073543e-04; // 0x3F35FD3E, 0xE8C2D3F4 static const double u0 = -7.72156649015328655494e-02; // 0xBFB3C467, 0xE37DB0C8 static const double u1 = 6.32827064025093366517e-01; // 0x3FE4401E, 0x8B005DFF static const double u2 = 1.45492250137234768737e+00; // 0x3FF7475C, 0xD119BD6F static const double u3 = 9.77717527963372745603e-01; // 0x3FEF4976, 0x44EA8450 static const double u4 = 2.28963728064692451092e-01; // 0x3FCD4EAE, 0xF6010924 static const double u5 = 1.33810918536787660377e-02; // 0x3F8B678B, 0xBF2BAB09 static const double v1 = 2.45597793713041134822e+00; // 0x4003A5D7, 0xC2BD619C static const double v2 = 2.12848976379893395361e+00; // 0x40010725, 0xA42B18F5 static const double v3 = 7.69285150456672783825e-01; // 0x3FE89DFB, 0xE45050AF static const double v4 = 1.04222645593369134254e-01; // 0x3FBAAE55, 0xD6537C88 static const double v5 = 3.21709242282423911810e-03; // 0x3F6A5ABB, 0x57D0CF61 static const double s0 = -7.72156649015328655494e-02; // 0xBFB3C467, 0xE37DB0C8 static const double s1 = 2.14982415960608852501e-01; // 0x3FCB848B, 0x36E20878 static const double s2 = 3.25778796408930981787e-01; // 0x3FD4D98F, 0x4F139F59 static const double s3 = 1.46350472652464452805e-01; // 0x3FC2BB9C, 0xBEE5F2F7 static const double s4 = 2.66422703033638609560e-02; // 0x3F9B481C, 0x7E939961 static const double s5 = 1.84028451407337715652e-03; // 0x3F5E26B6, 0x7368F239 static const double s6 = 3.19475326584100867617e-05; // 0x3F00BFEC, 0xDD17E945 static const double r1 = 1.39200533467621045958e+00; // 0x3FF645A7, 0x62C4AB74 static const double r2 = 7.21935547567138069525e-01; // 0x3FE71A18, 0x93D3DCDC static const double r3 = 1.71933865632803078993e-01; // 0x3FC601ED, 0xCCFBDF27 static const double r4 = 1.86459191715652901344e-02; // 0x3F9317EA, 0x742ED475 static const double r5 = 7.77942496381893596434e-04; // 0x3F497DDA, 0xCA41A95B static const double r6 = 7.32668430744625636189e-06; // 0x3EDEBAF7, 0xA5B38140 static const double w0 = 4.18938533204672725052e-01; // 0x3FDACFE3, 0x90C97D69 static const double w1 = 8.33333333333329678849e-02; // 0x3FB55555, 0x5555553B static const double w2 = -2.77777777728775536470e-03; // 0xBF66C16C, 0x16B02E5C static const double w3 = 7.93650558643019558500e-04; // 0x3F4A019F, 0x98CF38B6 static const double w4 = -5.95187557450339963135e-04; // 0xBF4380CB, 0x8C0FE741 static const double w5 = 8.36339918996282139126e-04; // 0x3F4B67BA, 0x4CDAD5D1 static const double w6 = -1.63092934096575273989e-03; // 0xBF5AB89D, 0x0B9E43E4 double t, y, z, nadj, p, p1, p2, p3, q, r, w; Cmp_signed__int32 i, hx, lx, ix; extract_words( hx, lx, x ); // purge off +-inf, NaN, +-0, and negative arguments *signgamp = 1; ix = hx & 0x7fffffff; if( ix >= 0x7ff00000 ) { return x * x; } if( ( ix | lx ) == 0 ) { return one / zero; } if( ix < 0x3b900000 ) { // |x|<2**-70, return -log(|x|) if( hx < 0 ) { *signgamp = -1; return -__ieee754_log( -x ); } else { return -__ieee754_log( x ); } } if( hx < 0 ) { if( ix >= 0x43300000 ) // |x|>=2**52, must be -integer { return one / zero; } t = sin_pi( x ); if( t == zero ) { return one / zero; // -integer } nadj = __ieee754_log( pi / fabs( t * x ) ); if( t < zero ) { *signgamp = -1; } x = -x; } // purge off 1 and 2 if( ( ( ( ix - 0x3ff00000 ) | lx ) == 0 ) || ( ( ( ix - 0x40000000 ) | lx ) == 0 ) ) { r = 0; }// for x < 2.0 else if( ix < 0x40000000 ) { if( ix <= 0x3feccccc ) { // lgamma(x) = lgamma(x+1)-log(x) r = -__ieee754_log( x ); if( ix >= 0x3FE76944 ) { y = one - x; i = 0; } else if( ix >= 0x3FCDA661 ) { y = x - ( tc - one ); i = 1; } else { y = x; i = 2; } } else { r = zero; if( ix >= 0x3FFBB4C3 ) { y = 2.0 - x; i = 0; } // [1.7316,2] else if( ix >= 0x3FF3B4C4 ) { y = x - tc; i = 1; } // [1.23,1.73] else { y = x - one; i = 2; } } switch( i ) { case 0: z = y * y; p1 = a0 + z * ( a2 + z * ( a4 + z * ( a6 + z * ( a8 + z * a10 ) ) ) ); p2 = z * ( a1 + z * ( a3 + z * ( a5 + z * ( a7 + z * ( a9 + z * a11 ) ) ) ) ); p = y * p1 + p2; r += ( p - 0.5 * y ); break; case 1: z = y * y; w = z * y; p1 = t0 + w * ( t3 + w * ( t6 + w * ( t9 + w * t12 ) ) ); // parallel comp p2 = t1 + w * ( t4 + w * ( t7 + w * ( t10 + w * t13 ) ) ); p3 = t2 + w * ( t5 + w * ( t8 + w * ( t11 + w * t14 ) ) ); p = z * p1 - ( tt - w * ( p2 + y * p3 ) ); r += ( tf + p ); break; case 2: p1 = y * ( u0 + y * ( u1 + y * ( u2 + y * ( u3 + y * ( u4 + y * u5 ) ) ) ) ); p2 = one + y * ( v1 + y * ( v2 + y * ( v3 + y * ( v4 + y * v5 ) ) ) ); r += ( -0.5 * y + p1 / p2 ); } } else if( ix < 0x40200000 ) { // x < 8.0 i = (Cmp_signed__int32)x; t = zero; y = x - (double)i; p = y * ( s0 + y * ( s1 + y * ( s2 + y * ( s3 + y * ( s4 + y * ( s5 + y * s6 ) ) ) ) ) ); q = one + y * ( r1 + y * ( r2 + y * ( r3 + y * ( r4 + y * ( r5 + y * r6 ) ) ) ) ); r = half * y + p / q; z = one; // lgamma(1+s) = log(s) + lgamma(s) switch( i ) { case 7: z *= ( y + 6.0 ); // FALLTHRU case 6: z *= ( y + 5.0 ); // FALLTHRU case 5: z *= ( y + 4.0 ); // FALLTHRU case 4: z *= ( y + 3.0 ); // FALLTHRU case 3: z *= ( y + 2.0 ); // FALLTHRU r += __ieee754_log( z ); break; } // 8.0 <= x < 2**58 } else if( ix < 0x43900000 ) { t = __ieee754_log( x ); z = one / x; y = z * z; w = w0 + z * ( w1 + y * ( w2 + y * ( w3 + y * ( w4 + y * ( w5 + y * w6 ) ) ) ) ); r = ( x - half ) * ( t - one ) + w; } else { // 2**58 <= x <= inf r = x * ( __ieee754_log( x ) - one ); } if( hx < 0 ) { r = nadj - r; } return r; }