static CORE_ADDR
moxie_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr = 0, func_end = 0;
  char *func_name;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
  if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
	return max (pc, post_prologue_pc);
      else
	{
	  /* Can't determine prologue from the symbol table, need to examine
	     instructions.  */
	  struct symtab_and_line sal;
	  struct symbol *sym;
	  struct moxie_frame_cache cache;
	  CORE_ADDR plg_end;
	  
	  memset (&cache, 0, sizeof cache);
	  
	  plg_end = moxie_analyze_prologue (func_addr, 
					    func_end, &cache, NULL);
	  /* Found a function.  */
	  sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
	  /* Don't use line number debug info for assembly source
	     files. */
	  if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
	    {
	      sal = find_pc_line (func_addr, 0);
	      if (sal.end && sal.end < func_end)
		{
		  /* Found a line number, use it as end of
		     prologue.  */
		  return sal.end;
		}
	    }
	  /* No useable line symbol.  Use result of prologue parsing
	     method.  */
	  return plg_end;
	}
    }

  /* No function symbol -- just return the PC.  */
  return (CORE_ADDR) pc;
}
Example #2
0
static CORE_ADDR
amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr;
  CORE_ADDR unwind_info = 0;
  CORE_ADDR image_base, start_rva, end_rva;
  struct external_pex64_unwind_info ex_ui;

  /* Use prologue size from unwind info.  */
  if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
				      &image_base, &start_rva, &end_rva) == 0)
    {
      if (unwind_info == 0)
	{
	  /* Leaf function.  */
	  return pc;
	}
      else if (target_read_memory (image_base + unwind_info,
				   (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
	       && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
	return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
    }

  /* See if we can determine the end of the prologue via the symbol
     table.  If so, then return either the PC, or the PC after
     the prologue, whichever is greater.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);

      if (post_prologue_pc != 0)
	return max (pc, post_prologue_pc);
    }

  return pc;
}
Example #3
0
/* Scan an FR-V prologue, starting at PC, until frame->PC.
   If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
   We assume FRAME's saved_regs array has already been allocated and cleared.
   Return the first PC value after the prologue.

   Note that, for unoptimized code, we almost don't need this function
   at all; all arguments and locals live on the stack, so we just need
   the FP to find everything.  The catch: structures passed by value
   have their addresses living in registers; they're never spilled to
   the stack.  So if you ever want to be able to get to these
   arguments in any frame but the top, you'll need to do this serious
   prologue analysis.  */
static CORE_ADDR
frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
		      struct frame_info *this_frame,
                      struct frv_unwind_cache *info)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* When writing out instruction bitpatterns, we use the following
     letters to label instruction fields:
     P - The parallel bit.  We don't use this.
     J - The register number of GRj in the instruction description.
     K - The register number of GRk in the instruction description.
     I - The register number of GRi.
     S - a signed imediate offset.
     U - an unsigned immediate offset.

     The dots below the numbers indicate where hex digit boundaries
     fall, to make it easier to check the numbers.  */

  /* Non-zero iff we've seen the instruction that initializes the
     frame pointer for this function's frame.  */
  int fp_set = 0;

  /* If fp_set is non_zero, then this is the distance from
     the stack pointer to frame pointer: fp = sp + fp_offset.  */
  int fp_offset = 0;

  /* Total size of frame prior to any alloca operations.  */
  int framesize = 0;

  /* Flag indicating if lr has been saved on the stack.  */
  int lr_saved_on_stack = 0;

  /* The number of the general-purpose register we saved the return
     address ("link register") in, or -1 if we haven't moved it yet.  */
  int lr_save_reg = -1;

  /* Offset (from sp) at which lr has been saved on the stack.  */

  int lr_sp_offset = 0;

  /* If gr_saved[i] is non-zero, then we've noticed that general
     register i has been saved at gr_sp_offset[i] from the stack
     pointer.  */
  char gr_saved[64];
  int gr_sp_offset[64];

  /* The address of the most recently scanned prologue instruction.  */
  CORE_ADDR last_prologue_pc;

  /* The address of the next instruction.  */
  CORE_ADDR next_pc;

  /* The upper bound to of the pc values to scan.  */
  CORE_ADDR lim_pc;

  memset (gr_saved, 0, sizeof (gr_saved));

  last_prologue_pc = pc;

  /* Try to compute an upper limit (on how far to scan) based on the
     line number info.  */
  lim_pc = skip_prologue_using_sal (gdbarch, pc);
  /* If there's no line number info, lim_pc will be 0.  In that case,
     set the limit to be 100 instructions away from pc.  Hopefully, this
     will be far enough away to account for the entire prologue.  Don't
     worry about overshooting the end of the function.  The scan loop
     below contains some checks to avoid scanning unreasonably far.  */
  if (lim_pc == 0)
    lim_pc = pc + 400;

  /* If we have a frame, we don't want to scan past the frame's pc.  This
     will catch those cases where the pc is in the prologue.  */
  if (this_frame)
    {
      CORE_ADDR frame_pc = get_frame_pc (this_frame);
      if (frame_pc < lim_pc)
	lim_pc = frame_pc;
    }

  /* Scan the prologue.  */
  while (pc < lim_pc)
    {
      gdb_byte buf[frv_instr_size];
      LONGEST op;

      if (target_read_memory (pc, buf, sizeof buf) != 0)
	break;
      op = extract_signed_integer (buf, sizeof buf, byte_order);

      next_pc = pc + 4;

      /* The tests in this chain of ifs should be in order of
	 decreasing selectivity, so that more particular patterns get
	 to fire before less particular patterns.  */

      /* Some sort of control transfer instruction: stop scanning prologue.
	 Integer Conditional Branch:
	  X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
	 Floating-point / media Conditional Branch:
	  X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
	 LCR Conditional Branch to LR
	  X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
	 Integer conditional Branches to LR
	  X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
	  X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
	 Floating-point/Media Branches to LR
	  X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
	  X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
	 Jump and Link
	  X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
	  X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
	 Call
	  X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
	 Return from Trap
	  X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
	 Integer Conditional Trap
	  X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
	  X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
	 Floating-point /media Conditional Trap
	  X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
	  X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
	 Break
	  X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
	 Media Trap
	  X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
      if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
          || (op & 0x01f80000) == 0x00300000  /* Jump and Link */
	  || (op & 0x01f80000) == 0x00100000  /* Return from Trap, Trap */
	  || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
	{
	  /* Stop scanning; not in prologue any longer.  */
	  break;
	}

      /* Loading something from memory into fp probably means that
         we're in the epilogue.  Stop scanning the prologue.
         ld @(GRi, GRk), fp
	 X 000010 0000010 XXXXXX 000100 XXXXXX
	 ldi @(GRi, d12), fp
	 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
      else if ((op & 0x7ffc0fc0) == 0x04080100
               || (op & 0x7ffc0000) == 0x04c80000)
	{
	  break;
	}

      /* Setting the FP from the SP:
	 ori sp, 0, fp
	 P 000010 0100010 000001 000000000000 = 0x04881000
	 0 111111 1111111 111111 111111111111 = 0x7fffffff
             .    .   .    .   .    .   .   .
	 We treat this as part of the prologue.  */
      else if ((op & 0x7fffffff) == 0x04881000)
	{
	  fp_set = 1;
	  fp_offset = 0;
	  last_prologue_pc = next_pc;
	}

      /* Move the link register to the scratch register grJ, before saving:
         movsg lr, grJ
         P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
         0 111111 1111111 111111 111111 000000 = 0x7fffffc0
             .    .   .    .   .    .    .   .
	 We treat this as part of the prologue.  */
      else if ((op & 0x7fffffc0) == 0x080d01c0)
        {
          int gr_j = op & 0x3f;

          /* If we're moving it to a scratch register, that's fine.  */
          if (is_caller_saves_reg (gr_j))
	    {
	      lr_save_reg = gr_j;
	      last_prologue_pc = next_pc;
	    }
        }

      /* To save multiple callee-saves registers on the stack, at
         offset zero:

	 std grK,@(sp,gr0)
	 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
	 0 000000 1111111 111111 111111 111111 = 0x01ffffff

	 stq grK,@(sp,gr0)
	 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
	 0 000000 1111111 111111 111111 111111 = 0x01ffffff
             .    .   .    .   .    .    .   .
         We treat this as part of the prologue, and record the register's
	 saved address in the frame structure.  */
      else if ((op & 0x01ffffff) == 0x000c10c0
            || (op & 0x01ffffff) == 0x000c1100)
	{
	  int gr_k = ((op >> 25) & 0x3f);
	  int ope  = ((op >> 6)  & 0x3f);
          int count;
	  int i;

          /* Is it an std or an stq?  */
          if (ope == 0x03)
            count = 2;
          else
            count = 4;

	  /* Is it really a callee-saves register?  */
	  if (is_callee_saves_reg (gr_k))
	    {
	      for (i = 0; i < count; i++)
	        {
		  gr_saved[gr_k + i] = 1;
		  gr_sp_offset[gr_k + i] = 4 * i;
		}
	      last_prologue_pc = next_pc;
	    }
	}

      /* Adjusting the stack pointer.  (The stack pointer is GR1.)
	 addi sp, S, sp
         P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
         0 111111 1111111 111111 000000000000 = 0x7ffff000
             .    .   .    .   .    .   .   .
	 We treat this as part of the prologue.  */
      else if ((op & 0x7ffff000) == 0x02401000)