void ConcurrentMarkSweepThread::run() { assert(this == cmst(), "just checking"); this->record_stack_base_and_size(); this->initialize_thread_local_storage(); this->set_active_handles(JNIHandleBlock::allocate_block()); // From this time Thread::current() should be working. assert(this == Thread::current(), "just checking"); if (BindCMSThreadToCPU && !os::bind_to_processor(CPUForCMSThread)) { warning("Couldn't bind CMS thread to processor %u", CPUForCMSThread); } // Wait until Universe::is_fully_initialized() { CMSLoopCountWarn loopX("CMS::run", "waiting for " "Universe::is_fully_initialized()", 2); MutexLockerEx x(CGC_lock, true); set_CMS_flag(CMS_cms_wants_token); // Wait until Universe is initialized and all initialization is completed. while (!is_init_completed() && !Universe::is_fully_initialized() && !_should_terminate) { CGC_lock->wait(true, 200); loopX.tick(); } // Wait until the surrogate locker thread that will do // pending list locking on our behalf has been created. // We cannot start the SLT thread ourselves since we need // to be a JavaThread to do so. CMSLoopCountWarn loopY("CMS::run", "waiting for SLT installation", 2); while (_slt == NULL && !_should_terminate) { CGC_lock->wait(true, 200); loopY.tick(); } clear_CMS_flag(CMS_cms_wants_token); } while (!_should_terminate) { sleepBeforeNextCycle(); if (_should_terminate) break; GCCause::Cause cause = _collector->_full_gc_requested ? _collector->_full_gc_cause : GCCause::_cms_concurrent_mark; _collector->collect_in_background(false, cause); } assert(_should_terminate, "just checking"); // Check that the state of any protocol for synchronization // between background (CMS) and foreground collector is "clean" // (i.e. will not potentially block the foreground collector, // requiring action by us). verify_ok_to_terminate(); // Signal that it is terminated { MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag); assert(_cmst == this, "Weird!"); _cmst = NULL; Terminator_lock->notify(); } // Thread destructor usually does this.. ThreadLocalStorage::set_thread(NULL); }
void ConcurrentMarkThread::run() { initialize_in_thread(); _vtime_start = os::elapsedVTime(); wait_for_universe_init(); G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectorPolicy* g1_policy = g1h->g1_policy(); G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker(); Thread *current_thread = Thread::current(); while (!_should_terminate) { // wait until started is set. sleepBeforeNextCycle(); if (_should_terminate) { break; } { ResourceMark rm; HandleMark hm; double cycle_start = os::elapsedVTime(); // We have to ensure that we finish scanning the root regions // before the next GC takes place. To ensure this we have to // make sure that we do not join the STS until the root regions // have been scanned. If we did then it's possible that a // subsequent GC could block us from joining the STS and proceed // without the root regions have been scanned which would be a // correctness issue. if (!cm()->has_aborted()) { _cm->scanRootRegions(); } double mark_start_sec = os::elapsedTime(); cm_log(G1Log::fine(), true, "[GC concurrent-mark-start]"); int iter = 0; do { iter++; if (!cm()->has_aborted()) { _cm->markFromRoots(); } double mark_end_time = os::elapsedVTime(); double mark_end_sec = os::elapsedTime(); _vtime_mark_accum += (mark_end_time - cycle_start); if (!cm()->has_aborted()) { if (g1_policy->adaptive_young_list_length()) { double now = os::elapsedTime(); double remark_prediction_ms = g1_policy->predict_remark_time_ms(); jlong sleep_time_ms = mmu_tracker->when_ms(now, remark_prediction_ms); os::sleep(current_thread, sleep_time_ms, false); } cm_log(G1Log::fine(), true, "[GC concurrent-mark-end, %1.7lf secs]", mark_end_sec - mark_start_sec); CMCheckpointRootsFinalClosure final_cl(_cm); VM_CGC_Operation op(&final_cl, "GC remark", true /* needs_pll */); VMThread::execute(&op); } if (cm()->restart_for_overflow()) { cm_log(G1TraceMarkStackOverflow, true, "Restarting conc marking because of MS overflow in remark (restart #%d).", iter); cm_log(G1Log::fine(), true, "[GC concurrent-mark-restart-for-overflow]"); } } while (cm()->restart_for_overflow()); double end_time = os::elapsedVTime(); // Update the total virtual time before doing this, since it will try // to measure it to get the vtime for this marking. We purposely // neglect the presumably-short "completeCleanup" phase here. _vtime_accum = (end_time - _vtime_start); if (!cm()->has_aborted()) { if (g1_policy->adaptive_young_list_length()) { double now = os::elapsedTime(); double cleanup_prediction_ms = g1_policy->predict_cleanup_time_ms(); jlong sleep_time_ms = mmu_tracker->when_ms(now, cleanup_prediction_ms); os::sleep(current_thread, sleep_time_ms, false); } CMCleanUp cl_cl(_cm); VM_CGC_Operation op(&cl_cl, "GC cleanup", false /* needs_pll */); VMThread::execute(&op); } else { // We don't want to update the marking status if a GC pause // is already underway. SuspendibleThreadSetJoiner sts_join; g1h->collector_state()->set_mark_in_progress(false); } // Check if cleanup set the free_regions_coming flag. If it // hasn't, we can just skip the next step. if (g1h->free_regions_coming()) { // The following will finish freeing up any regions that we // found to be empty during cleanup. We'll do this part // without joining the suspendible set. If an evacuation pause // takes place, then we would carry on freeing regions in // case they are needed by the pause. If a Full GC takes // place, it would wait for us to process the regions // reclaimed by cleanup. double cleanup_start_sec = os::elapsedTime(); cm_log(G1Log::fine(), true, "[GC concurrent-cleanup-start]"); // Now do the concurrent cleanup operation. _cm->completeCleanup(); // Notify anyone who's waiting that there are no more free // regions coming. We have to do this before we join the STS // (in fact, we should not attempt to join the STS in the // interval between finishing the cleanup pause and clearing // the free_regions_coming flag) otherwise we might deadlock: // a GC worker could be blocked waiting for the notification // whereas this thread will be blocked for the pause to finish // while it's trying to join the STS, which is conditional on // the GC workers finishing. g1h->reset_free_regions_coming(); double cleanup_end_sec = os::elapsedTime(); cm_log(G1Log::fine(), true, "[GC concurrent-cleanup-end, %1.7lf secs]", cleanup_end_sec - cleanup_start_sec); } guarantee(cm()->cleanup_list_is_empty(), "at this point there should be no regions on the cleanup list"); // There is a tricky race before recording that the concurrent // cleanup has completed and a potential Full GC starting around // the same time. We want to make sure that the Full GC calls // abort() on concurrent mark after // record_concurrent_mark_cleanup_completed(), since abort() is // the method that will reset the concurrent mark state. If we // end up calling record_concurrent_mark_cleanup_completed() // after abort() then we might incorrectly undo some of the work // abort() did. Checking the has_aborted() flag after joining // the STS allows the correct ordering of the two methods. There // are two scenarios: // // a) If we reach here before the Full GC, the fact that we have // joined the STS means that the Full GC cannot start until we // leave the STS, so record_concurrent_mark_cleanup_completed() // will complete before abort() is called. // // b) If we reach here during the Full GC, we'll be held up from // joining the STS until the Full GC is done, which means that // abort() will have completed and has_aborted() will return // true to prevent us from calling // record_concurrent_mark_cleanup_completed() (and, in fact, it's // not needed any more as the concurrent mark state has been // already reset). { SuspendibleThreadSetJoiner sts_join; if (!cm()->has_aborted()) { g1_policy->record_concurrent_mark_cleanup_completed(); } else { cm_log(G1Log::fine(), false, "[GC concurrent-mark-abort]"); } } // We now want to allow clearing of the marking bitmap to be // suspended by a collection pause. // We may have aborted just before the remark. Do not bother clearing the // bitmap then, as it has been done during mark abort. if (!cm()->has_aborted()) { _cm->clearNextBitmap(); } else { assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear"); } } // Update the number of full collections that have been // completed. This will also notify the FullGCCount_lock in case a // Java thread is waiting for a full GC to happen (e.g., it // called System.gc() with +ExplicitGCInvokesConcurrent). { SuspendibleThreadSetJoiner sts_join; g1h->increment_old_marking_cycles_completed(true /* concurrent */); g1h->register_concurrent_cycle_end(); } } assert(_should_terminate, "just checking"); terminate(); }
void ConcurrentMarkThread::run() { initialize_in_thread(); _vtime_start = os::elapsedVTime(); wait_for_universe_init(); G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectorPolicy* g1_policy = g1h->g1_policy(); G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker(); Thread *current_thread = Thread::current(); while (!_should_terminate) { // wait until started is set. sleepBeforeNextCycle(); { ResourceMark rm; HandleMark hm; double cycle_start = os::elapsedVTime(); double mark_start_sec = os::elapsedTime(); char verbose_str[128]; if (PrintGC) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-mark-start]"); } if (!g1_policy->in_young_gc_mode()) { // this ensures the flag is not set if we bail out of the marking // cycle; normally the flag is cleared immediately after cleanup g1h->set_marking_complete(); if (g1_policy->adaptive_young_list_length()) { double now = os::elapsedTime(); double init_prediction_ms = g1_policy->predict_init_time_ms(); jlong sleep_time_ms = mmu_tracker->when_ms(now, init_prediction_ms); os::sleep(current_thread, sleep_time_ms, false); } // We don't have to skip here if we've been asked to restart, because // in the worst case we just enqueue a new VM operation to start a // marking. Note that the init operation resets has_aborted() CMCheckpointRootsInitialClosure init_cl(_cm); strcpy(verbose_str, "GC initial-mark"); VM_CGC_Operation op(&init_cl, verbose_str); VMThread::execute(&op); } int iter = 0; do { iter++; if (!cm()->has_aborted()) { _cm->markFromRoots(); } double mark_end_time = os::elapsedVTime(); double mark_end_sec = os::elapsedTime(); _vtime_mark_accum += (mark_end_time - cycle_start); if (!cm()->has_aborted()) { if (g1_policy->adaptive_young_list_length()) { double now = os::elapsedTime(); double remark_prediction_ms = g1_policy->predict_remark_time_ms(); jlong sleep_time_ms = mmu_tracker->when_ms(now, remark_prediction_ms); os::sleep(current_thread, sleep_time_ms, false); } if (PrintGC) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-mark-end, %1.7lf sec]", mark_end_sec - mark_start_sec); } CMCheckpointRootsFinalClosure final_cl(_cm); sprintf(verbose_str, "GC remark"); VM_CGC_Operation op(&final_cl, verbose_str); VMThread::execute(&op); } if (cm()->restart_for_overflow() && G1TraceMarkStackOverflow) { gclog_or_tty->print_cr("Restarting conc marking because of MS overflow " "in remark (restart #%d).", iter); } if (cm()->restart_for_overflow()) { if (PrintGC) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-mark-restart-for-overflow]"); } } } while (cm()->restart_for_overflow()); double counting_start_time = os::elapsedVTime(); // YSR: These look dubious (i.e. redundant) !!! FIX ME slt()->manipulatePLL(SurrogateLockerThread::acquirePLL); slt()->manipulatePLL(SurrogateLockerThread::releaseAndNotifyPLL); if (!cm()->has_aborted()) { double count_start_sec = os::elapsedTime(); if (PrintGC) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-count-start]"); } _sts.join(); _cm->calcDesiredRegions(); _sts.leave(); if (!cm()->has_aborted()) { double count_end_sec = os::elapsedTime(); if (PrintGC) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-count-end, %1.7lf]", count_end_sec - count_start_sec); } } } double end_time = os::elapsedVTime(); _vtime_count_accum += (end_time - counting_start_time); // Update the total virtual time before doing this, since it will try // to measure it to get the vtime for this marking. We purposely // neglect the presumably-short "completeCleanup" phase here. _vtime_accum = (end_time - _vtime_start); if (!cm()->has_aborted()) { if (g1_policy->adaptive_young_list_length()) { double now = os::elapsedTime(); double cleanup_prediction_ms = g1_policy->predict_cleanup_time_ms(); jlong sleep_time_ms = mmu_tracker->when_ms(now, cleanup_prediction_ms); os::sleep(current_thread, sleep_time_ms, false); } CMCleanUp cl_cl(_cm); sprintf(verbose_str, "GC cleanup"); VM_CGC_Operation op(&cl_cl, verbose_str); VMThread::execute(&op); } else { g1h->set_marking_complete(); } // Check if cleanup set the free_regions_coming flag. If it // hasn't, we can just skip the next step. if (g1h->free_regions_coming()) { // The following will finish freeing up any regions that we // found to be empty during cleanup. We'll do this part // without joining the suspendible set. If an evacuation pause // takes places, then we would carry on freeing regions in // case they are needed by the pause. If a Full GC takes // places, it would wait for us to process the regions // reclaimed by cleanup. double cleanup_start_sec = os::elapsedTime(); if (PrintGC) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-cleanup-start]"); } // Now do the remainder of the cleanup operation. _cm->completeCleanup(); // Notify anyone who's waiting that there are no more free // regions coming. We have to do this before we join the STS, // otherwise we might deadlock: a GC worker could be blocked // waiting for the notification whereas this thread will be // blocked for the pause to finish while it's trying to join // the STS, which is conditional on the GC workers finishing. g1h->reset_free_regions_coming(); _sts.join(); g1_policy->record_concurrent_mark_cleanup_completed(); _sts.leave(); double cleanup_end_sec = os::elapsedTime(); if (PrintGC) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-cleanup-end, %1.7lf]", cleanup_end_sec - cleanup_start_sec); } } guarantee(cm()->cleanup_list_is_empty(), "at this point there should be no regions on the cleanup list"); if (cm()->has_aborted()) { if (PrintGC) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-mark-abort]"); } } // we now want to allow clearing of the marking bitmap to be // suspended by a collection pause. _sts.join(); _cm->clearNextBitmap(); _sts.leave(); } // Update the number of full collections that have been // completed. This will also notify the FullGCCount_lock in case a // Java thread is waiting for a full GC to happen (e.g., it // called System.gc() with +ExplicitGCInvokesConcurrent). _sts.join(); g1h->increment_full_collections_completed(true /* concurrent */); _sts.leave(); } assert(_should_terminate, "just checking"); terminate(); }
void ConcurrentMarkThread::run_service() { _vtime_start = os::elapsedVTime(); G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectorPolicy* g1_policy = g1h->g1_policy(); while (!_should_terminate) { // wait until started is set. sleepBeforeNextCycle(); if (_should_terminate) { break; } assert(GCId::current() != GCId::undefined(), "GC id should have been set up by the initial mark GC."); { ResourceMark rm; HandleMark hm; double cycle_start = os::elapsedVTime(); // We have to ensure that we finish scanning the root regions // before the next GC takes place. To ensure this we have to // make sure that we do not join the STS until the root regions // have been scanned. If we did then it's possible that a // subsequent GC could block us from joining the STS and proceed // without the root regions have been scanned which would be a // correctness issue. if (!cm()->has_aborted()) { GCConcPhaseTimer(_cm, "Concurrent Root Region Scanning"); _cm->scanRootRegions(); } // It would be nice to use the GCTraceConcTime class here but // the "end" logging is inside the loop and not at the end of // a scope. Mimicking the same log output as GCTraceConcTime instead. jlong mark_start = os::elapsed_counter(); log_info(gc)("Concurrent Mark (%.3fs)", TimeHelper::counter_to_seconds(mark_start)); int iter = 0; do { iter++; if (!cm()->has_aborted()) { GCConcPhaseTimer(_cm, "Concurrent Mark"); _cm->markFromRoots(); } double mark_end_time = os::elapsedVTime(); jlong mark_end = os::elapsed_counter(); _vtime_mark_accum += (mark_end_time - cycle_start); if (!cm()->has_aborted()) { delay_to_keep_mmu(g1_policy, true /* remark */); log_info(gc)("Concurrent Mark (%.3fs, %.3fs) %.3fms", TimeHelper::counter_to_seconds(mark_start), TimeHelper::counter_to_seconds(mark_end), TimeHelper::counter_to_millis(mark_end - mark_start)); CMCheckpointRootsFinalClosure final_cl(_cm); VM_CGC_Operation op(&final_cl, "Pause Remark", true /* needs_pll */); VMThread::execute(&op); } if (cm()->restart_for_overflow()) { log_debug(gc)("Restarting conc marking because of MS overflow in remark (restart #%d).", iter); log_info(gc)("Concurrent Mark restart for overflow"); } } while (cm()->restart_for_overflow()); double end_time = os::elapsedVTime(); // Update the total virtual time before doing this, since it will try // to measure it to get the vtime for this marking. We purposely // neglect the presumably-short "completeCleanup" phase here. _vtime_accum = (end_time - _vtime_start); if (!cm()->has_aborted()) { delay_to_keep_mmu(g1_policy, false /* cleanup */); CMCleanUp cl_cl(_cm); VM_CGC_Operation op(&cl_cl, "Pause Cleanup", false /* needs_pll */); VMThread::execute(&op); } else { // We don't want to update the marking status if a GC pause // is already underway. SuspendibleThreadSetJoiner sts_join; g1h->collector_state()->set_mark_in_progress(false); } // Check if cleanup set the free_regions_coming flag. If it // hasn't, we can just skip the next step. if (g1h->free_regions_coming()) { // The following will finish freeing up any regions that we // found to be empty during cleanup. We'll do this part // without joining the suspendible set. If an evacuation pause // takes place, then we would carry on freeing regions in // case they are needed by the pause. If a Full GC takes // place, it would wait for us to process the regions // reclaimed by cleanup. GCTraceConcTime(Info, gc) tt("Concurrent Cleanup"); GCConcPhaseTimer(_cm, "Concurrent Cleanup"); // Now do the concurrent cleanup operation. _cm->completeCleanup(); // Notify anyone who's waiting that there are no more free // regions coming. We have to do this before we join the STS // (in fact, we should not attempt to join the STS in the // interval between finishing the cleanup pause and clearing // the free_regions_coming flag) otherwise we might deadlock: // a GC worker could be blocked waiting for the notification // whereas this thread will be blocked for the pause to finish // while it's trying to join the STS, which is conditional on // the GC workers finishing. g1h->reset_free_regions_coming(); } guarantee(cm()->cleanup_list_is_empty(), "at this point there should be no regions on the cleanup list"); // There is a tricky race before recording that the concurrent // cleanup has completed and a potential Full GC starting around // the same time. We want to make sure that the Full GC calls // abort() on concurrent mark after // record_concurrent_mark_cleanup_completed(), since abort() is // the method that will reset the concurrent mark state. If we // end up calling record_concurrent_mark_cleanup_completed() // after abort() then we might incorrectly undo some of the work // abort() did. Checking the has_aborted() flag after joining // the STS allows the correct ordering of the two methods. There // are two scenarios: // // a) If we reach here before the Full GC, the fact that we have // joined the STS means that the Full GC cannot start until we // leave the STS, so record_concurrent_mark_cleanup_completed() // will complete before abort() is called. // // b) If we reach here during the Full GC, we'll be held up from // joining the STS until the Full GC is done, which means that // abort() will have completed and has_aborted() will return // true to prevent us from calling // record_concurrent_mark_cleanup_completed() (and, in fact, it's // not needed any more as the concurrent mark state has been // already reset). { SuspendibleThreadSetJoiner sts_join; if (!cm()->has_aborted()) { g1_policy->record_concurrent_mark_cleanup_completed(); } else { log_info(gc)("Concurrent Mark abort"); } } // We now want to allow clearing of the marking bitmap to be // suspended by a collection pause. // We may have aborted just before the remark. Do not bother clearing the // bitmap then, as it has been done during mark abort. if (!cm()->has_aborted()) { GCConcPhaseTimer(_cm, "Concurrent Bitmap Clearing"); _cm->clearNextBitmap(); } else { assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear"); } } // Update the number of full collections that have been // completed. This will also notify the FullGCCount_lock in case a // Java thread is waiting for a full GC to happen (e.g., it // called System.gc() with +ExplicitGCInvokesConcurrent). { SuspendibleThreadSetJoiner sts_join; g1h->increment_old_marking_cycles_completed(true /* concurrent */); g1h->register_concurrent_cycle_end(); } } }