void NodalNormalsEvaluator::execute() { if (_current_node->processor_id() == processor_id()) { if (_current_node->n_dofs(_aux.number(), _fe_problem.getVariable(_tid, "nodal_normal_x").number()) > 0) { Threads::spin_mutex::scoped_lock lock(nodal_normals_evaluator_mutex); dof_id_type dof_x = _current_node->dof_number(_aux.number(), _fe_problem.getVariable(_tid, "nodal_normal_x").number(), 0); dof_id_type dof_y = _current_node->dof_number(_aux.number(), _fe_problem.getVariable(_tid, "nodal_normal_y").number(), 0); dof_id_type dof_z = _current_node->dof_number(_aux.number(), _fe_problem.getVariable(_tid, "nodal_normal_z").number(), 0); NumericVector<Number> & sln = _aux.solution(); Real nx = sln(dof_x); Real ny = sln(dof_y); Real nz = sln(dof_z); Real n = std::sqrt((nx * nx) + (ny * ny) + (nz * nz)); if (std::abs(n) >= 1e-13) { // divide by n only if it is not close to zero to avoid NaNs sln.set(dof_x, nx / n); sln.set(dof_y, ny / n); sln.set(dof_z, nz / n); } } } }
void dfs(int row, int n, vector<int> &c, vector<vector<string> > &res) { if (row == n) { vector<string> sln(n, string(n, '.')); for (int i = 0; i < n; ++i) { sln[i][c[i]] = 'Q'; } res.push_back(sln); return; } for (int j = 0; j < n; ++j) { c[row] = j; // put 'Q' at (row, j) bool valid = true; for (int i = 0; i < row; ++i) { if (c[row] == c[i] || row - i == c[row] - c[i] || row - i == c[i] - c[row]) { valid = false; break; } } if (valid) { dfs(row + 1, n, c, res); } } }
int main(int argc, char **args) { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Load the mesh. Mesh mesh; //CTUReader mloader; H3DReader mloader; info("Loading mesh..."); mloader.load("bridge.mesh3d", &mesh); // Create H1 space with default shapeset. H1Space space(&mesh, bc_types, essential_bc_values, Ord3(P_INIT_X, P_INIT_Y, P_INIT_Z)); // Initialize weak formulation. WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM); wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>, HERMES_ANY_INT); // Initialize discrete problem. bool is_linear = true; DiscreteProblem dp(&wf, &space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Assemble stiffness matrix and load vector. info("Assembling the linear problem (ndof: %d).", Space::get_num_dofs(&space)); dp.assemble(matrix, rhs); // Solve the linear system. If successful, obtain the solution. info("Solving the linear problem."); Solution sln(&mesh); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), &space, &sln); else error ("Matrix solver failed.\n"); // Output the solution for Paraview. if (solution_output) out_fn_vtk(&sln, "sln"); // Time measurement. cpu_time.tick(); // Print timing information. info("Solutions and mesh with polynomial orders saved. Total running time: %g s", cpu_time.accumulated()); // Clean up. delete matrix; delete rhs; delete solver; return 0; }
int totalNQueens(int n) { vector<vector<string>> res; string row(n, '.'); vector<string> sln(n, row); vector<int> col(n, 0); vector<int> diag0(2*n-1, 0); vector<int> diag1(2*n-1, 0); dfs(res, sln, col, diag0, diag1, 0, n); return res.size(); }
void test_mat(Mesh *mesh, StiffMatrix &mat) { #if defined WITH_UMFPACK MatrixSolverType matrix_solver = SOLVER_UMFPACK; #elif defined WITH_PETSC MatrixSolverType matrix_solver = SOLVER_PETSC; #elif defined WITH_MUMPS MatrixSolverType matrix_solver = SOLVER_MUMPS; #elif defined WITH_TRILINOS MatrixSolverType matrix_solver = SOLVER_AZTECOO; #endif m = n = o = 2; int mx = maxn(4, m, n, o, 4); Ord3 order(mx, mx, mx); // Create an H1 space with default shapeset. H1Space space(mesh, bc_types, essential_bc_values, order); WeakForm wf(1); wf.add_matrix_form(0, 0, bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM); wf.add_vector_form(0, linear_form<double, scalar>, linear_form<Ord, Ord>); // Initialize discrete problem. bool is_linear = true; DiscreteProblem dp(&wf, &space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble stiffness matrix and load vector. info("Assembling the linear problem (ndof: %d).", Space::get_num_dofs(&space)); dp.assemble(matrix, rhs); // Solve the linear system. If successful, obtain the solution. info("Solving the linear problem."); Solution sln(space.get_mesh()); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), &space, &sln); else error ("Matrix solver failed.\n"); }
int main(int argc, char **args) { // Test variable. int success_test = 1; // Load the initial mesh. Mesh mesh; H3DReader mesh_loader; mesh_loader.load("../hexahedron.mesh3d", &mesh); // Perform initial mesh refinement. for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); // Create H1 space with default shapeset. H1Space space(&mesh, bc_types, essential_bc_values, Ord3(P_INIT_X, P_INIT_Y, P_INIT_Z)); // Construct initial solution and set it to zero. Solution sln_prev(&mesh); sln_prev.set_zero(); // Initialize weak formulation. WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM); wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>, HERMES_ANY_INT, &sln_prev); // Initialize discrete problem. bool is_linear = true; DiscreteProblem dp(&wf, &space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Exact error for testing purposes. double err_exact; // Time stepping. int nsteps = (int) (FINAL_TIME/TAU + 0.5); for (int ts = 0; ts < nsteps; ts++) { info("---- Time step %d, time %3.5f.", ts, TIME); // Assemble the linear problem. info("Assembling the linear problem (ndof: %d).", Space::get_num_dofs(&space)); if (ts == 0) dp.assemble(matrix, rhs); else dp.assemble(NULL, rhs); // Solve the linear system. If successful, obtain the solution. info("Solving the linear problem."); Solution sln(space.get_mesh()); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), &space, &sln); else error ("Matrix solver failed.\n"); // Output solution. if (solution_output) out_fn_vtk(&sln, "sln", ts); // Calculate exact error. ExactSolution esln(&mesh, fndd); info("Calculating exact error."); Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM); bool solutions_for_adapt = false; err_exact = adaptivity->calc_err_exact(&sln, &esln, solutions_for_adapt, HERMES_TOTAL_ERROR_ABS) * 100; info("Err. exact: %g%%.", err_exact); // Next time step. sln_prev = sln; TIME += TAU; // Cleanup. delete adaptivity; } if(err_exact > 3.00) success_test = 0; // Clean up. delete matrix; delete rhs; delete solver; if (success_test) { info("Success!"); return ERR_SUCCESS; } else { info("Failure!"); return ERR_FAILURE; } }
int main(int argc, char **argv) { int res = ERR_SUCCESS; #ifdef WITH_PETSC PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL); #endif set_verbose(false); if (argc < 3) error("Not enough parameters"); printf("* Loading mesh '%s'\n", argv[1]); Mesh mesh; H3DReader mesh_loader; if (!mesh_loader.load(argv[1], &mesh)) error("Loading mesh file '%s'\n", argv[1]); int o; sscanf(argv[2], "%d", &o); printf(" - Setting uniform order to %d\n", o); printf("* Setting the space up\n"); H1Space space(&mesh, bc_types, NULL, o); int ndofs = space.assign_dofs(); printf(" - Number of DOFs: %d\n", ndofs); printf("* Calculating a solution\n"); #if defined WITH_UMFPACK UMFPackMatrix mat; UMFPackVector rhs; UMFPackLinearSolver solver(&mat, &rhs); #elif defined WITH_PARDISO PardisoMatrix mat; PardisoVector rhs; PardisoLinearSolver solver(&mat, &rhs); #elif defined WITH_PETSC PetscMatrix mat; PetscVector rhs; PetscLinearSolver solver(&mat, &rhs); #elif defined WITH_MUMPS MumpsMatrix mat; MumpsVector rhs; MumpsSolver solver(&mat, &rhs); #endif WeakForm wf; wf.add_matrix_form(FORM_CB(bilinear_form), SYM); wf.add_vector_form(FORM_CB(linear_form)); DiscreteProblem dp(&wf, &space, true); // assemble stiffness matrix Timer assemble_timer("Assembling stiffness matrix"); assemble_timer.start(); dp.assemble(&mat, &rhs); assemble_timer.stop(); // solve the stiffness matrix Timer solve_timer("Solving stiffness matrix"); solve_timer.start(); bool solved = solver.solve(); solve_timer.stop(); // output the measured values printf("%s: %s (%lf secs)\n", assemble_timer.get_name(), assemble_timer.get_human_time(), assemble_timer.get_seconds()); printf("%s: %s (%lf secs)\n", solve_timer.get_name(), solve_timer.get_human_time(), solve_timer.get_seconds()); // mat.dump(stdout, "a"); // rhs.dump(stdout, "b"); if (solved) { Solution sln(&mesh); sln.set_coeff_vector(&space, solver.get_solution() ); ExactSolution ex_sln(&mesh, exact_solution); // norm // double h1_sln_norm = h1_norm(&sln); double h1_err_norm = h1_error(&sln, &ex_sln); // printf(" - H1 solution norm: % le\n", h1_sln_norm); printf(" - H1 error norm: % le\n", h1_err_norm); // double l2_sln_norm = l2_norm(&sln); // double l2_err_norm = l2_error(&sln, &ex_sln); // printf(" - L2 solution norm: % le\n", l2_sln_norm); // printf(" - L2 error norm: % le\n", l2_err_norm); // if (h1_err_norm > EPS || l2_err_norm > EPS) { // calculated solution is not enough precise // res = ERR_FAILURE; // } #ifdef AOUTPUT_DIR // output const char *of_name = OUTPUT_DIR "/solution.pos"; FILE *ofile = fopen(of_name, "w"); if (ofile != NULL) { DiffFilter eh(&sln, &ex_sln); // DiffFilter eh_dx(&sln, &ex_sln, FN_DX, FN_DX); // DiffFilter eh_dy(&sln, &ex_sln, FN_DY, FN_DY); // DiffFilter eh_dz(&sln, &ex_sln, FN_DZ, FN_DZ); GmshOutputEngine output(ofile); output.out(&sln, "Uh"); // output.out(&sln, "Uh dx", FN_DX_0); // output.out(&sln, "Uh dy", FN_DY_0); // output.out(&sln, "Uh dz", FN_DZ_0); output.out(&eh, "Eh"); // output.out(&eh_dx, "Eh dx"); // output.out(&eh_dy, "Eh dy"); // output.out(&eh_dz, "Eh dz"); output.out(&ex_sln, "U"); // output.out(&ex_sln, "U dx", FN_DX_0); // output.out(&ex_sln, "U dy", FN_DY_0); // output.out(&ex_sln, "U dz", FN_DZ_0); fclose(ofile); } else { warning("Can not open '%s' for writing.", of_name); } #endif } #ifdef WITH_PETSC mat.free(); rhs.free(); PetscFinalize(); #endif return res; }
int main(int argc, char **args) { int res = ERR_SUCCESS; #ifdef WITH_PETSC PetscInitialize(&argc, &args, (char *) PETSC_NULL, PETSC_NULL); #endif set_verbose(false); TRACE_START("trace.txt"); DEBUG_OUTPUT_ON; SET_VERBOSE_LEVEL(0); if (argc < 5) error("Not enough parameters"); sscanf(args[2], "%d", &m); sscanf(args[3], "%d", &n); sscanf(args[4], "%d", &o); printf("* Loading mesh '%s'\n", args[1]); Mesh mesh; Mesh3DReader mloader; if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'\n", args[1]); H1ShapesetLobattoHex shapeset; printf("* Setting the space up\n"); H1Space space(&mesh, &shapeset); space.set_bc_types(bc_types); int mx = maxn(4, m, n, o, 4); order3_t order(mx, mx, mx); // order3_t order(1, 1, 1); // order3_t order(m, n, o); printf(" - Setting uniform order to (%d, %d, %d)\n", mx, mx, mx); space.set_uniform_order(order); int ndofs = space.assign_dofs(); printf(" - Number of DOFs: %d\n", ndofs); printf("* Calculating a solution\n"); #if defined WITH_UMFPACK UMFPackMatrix mat; UMFPackVector rhs; UMFPackLinearSolver solver(&mat, &rhs); #elif defined WITH_PARDISO PardisoMatrix mat; PardisoVector rhs; PardisoLinearSolver solver(&mat, &rhs); #elif defined WITH_PETSC PetscMatrix mat; PetscVector rhs; PetscLinearSolver solver(&mat, &rhs); #elif defined WITH_MUMPS MumpsMatrix mat; MumpsVector rhs; MumpsSolver solver(&mat, &rhs); #endif WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM); wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>); wf.add_vector_form_surf(linear_form_surf<double, scalar>, linear_form_surf<ord_t, ord_t>); LinearProblem lp(&wf, &space); // assemble stiffness matrix printf(" - assembling...\n"); fflush(stdout); Timer assemble_timer; assemble_timer.start(); lp.assemble(&mat, &rhs); assemble_timer.stop(); printf("%s (%lf secs)\n", assemble_timer.get_human_time(), assemble_timer.get_seconds()); // solve the stiffness matrix printf(" - solving... "); fflush(stdout); Timer solve_timer; solve_timer.start(); bool solved = solver.solve(); solve_timer.stop(); printf("%s (%lf secs)\n", solve_timer.get_human_time(), solve_timer.get_seconds()); // mat.dump(stdout, "a"); // rhs.dump(stdout, "b"); if (solved) { Solution sln(&mesh); sln.set_coeff_vector(&space, solver.get_solution()); // printf("* Solution:\n"); // double *s = solver.get_solution(); // for (int i = 1; i <= ndofs; i++) { // printf(" x[% 3d] = % lf\n", i, s[i]); // } ExactSolution ex_sln(&mesh, exact_solution); // norm double h1_sln_norm = h1_norm(&sln); double h1_err_norm = h1_error(&sln, &ex_sln); printf(" - H1 solution norm: % le\n", h1_sln_norm); printf(" - H1 error norm: % le\n", h1_err_norm); double l2_sln_norm = l2_norm(&sln); double l2_err_norm = l2_error(&sln, &ex_sln); printf(" - L2 solution norm: % le\n", l2_sln_norm); printf(" - L2 error norm: % le\n", l2_err_norm); if (h1_err_norm > EPS || l2_err_norm > EPS) { // calculated solution is not enough precise res = ERR_FAILURE; } #if 0 //def OUTPUT_DIR printf("* Output\n"); // output const char *of_name = OUTPUT_DIR "/solution.pos"; FILE *ofile = fopen(of_name, "w"); if (ofile != NULL) { ExactSolution ex_sln(&mesh, exact_solution); DiffFilter eh(&sln, &ex_sln); // DiffFilter eh_dx(&mesh, &sln, &ex_sln, FN_DX, FN_DX); // DiffFilter eh_dy(&mesh, &sln, &ex_sln, FN_DY, FN_DY); // DiffFilter eh_dz(&mesh, &sln, &ex_sln, FN_DZ, FN_DZ); GmshOutputEngine output(ofile); output.out(&sln, "Uh"); // output.out(&sln, "Uh dx", FN_DX_0); // output.out(&sln, "Uh dy", FN_DY_0); // output.out(&sln, "Uh dz", FN_DZ_0); output.out(&eh, "Eh"); // output.out(&eh_dx, "Eh dx"); // output.out(&eh_dy, "Eh dy"); // output.out(&eh_dz, "Eh dz"); output.out(&ex_sln, "U"); // output.out(&ex_sln, "U dx", FN_DX_0); // output.out(&ex_sln, "U dy", FN_DY_0); // output.out(&ex_sln, "U dz", FN_DZ_0); fclose(ofile); } else { warning("Can not open '%s' for writing.", of_name); } #endif } else res = ERR_FAILURE; #ifdef WITH_PETSC mat.free(); rhs.free(); PetscFinalize(); #endif TRACE_END; return res; }
int main(int argc, char* argv[]) { // Define nonlinear magnetic permeability via a cubic spline. Hermes::vector<double> mu_inv_pts(0.0, 0.5, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.8, 1.9, 3.0, 5.0, 10.0); Hermes::vector<double> mu_inv_val(1/1500.0, 1/1480.0, 1/1440.0, 1/1400.0, 1/1300.0, 1/1150.0, 1/950.0, 1/750.0, 1/250.0, 1/180.0, 1/175.0, 1/150.0, 1/20.0, 1/10.0, 1/5.0); /* // This is for debugging (iron is assumed linear with mu_r = 300.0 Hermes::vector<double> mu_inv_pts(0.0, 10.0); Hermes::vector<double> mu_inv_val(1/300.0, 1/300.0); */ // Create the cubic spline (and plot it for visual control). double bc_left = 0.0; double bc_right = 0.0; bool first_der_left = false; bool first_der_right = false; bool extrapolate_der_left = false; bool extrapolate_der_right = false; CubicSpline mu_inv_iron(mu_inv_pts, mu_inv_val, bc_left, bc_right, first_der_left, first_der_right, extrapolate_der_left, extrapolate_der_right); info("Saving cubic spline into a Pylab file spline.dat."); // The interval of definition of the spline will be // extended by "interval_extension" on both sides. double interval_extension = 1.0; bool plot_derivative = false; mu_inv_iron.plot("spline.dat", interval_extension, plot_derivative); plot_derivative = true; mu_inv_iron.plot("spline_der.dat", interval_extension, plot_derivative); // Load the mesh. Mesh mesh; MeshReaderH2D mloader; mloader.load("actuator.mesh", &mesh); // Perform initial mesh refinements. for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(); //MeshView mv("Mesh", new WinGeom(0, 0, 400, 400)); //mv.show(&mesh); // Initialize boundary conditions. DefaultEssentialBCConst<double> bc_essential(BDY_DIRICHLET, 0.0); EssentialBCs<double> bcs(&bc_essential); // Create an H1 space with default shapeset. H1Space<double> space(&mesh, &bcs, P_INIT); info("ndof: %d", Space<double>::get_num_dofs(&space)); // Initialize the weak formulation // This determines the increase of integration order // for the axisymmetric term containing 1/r. Default is 3. int order_inc = 3; CustomWeakFormMagnetostatics wf(MAT_IRON_1, MAT_IRON_2, &mu_inv_iron, MAT_AIR, MAT_COPPER, MU_VACUUM, CURRENT_DENSITY, order_inc); // Initialize the FE problem. DiscreteProblem<double> dp(&wf, &space); // Initialize the solution. ConstantSolution<double> sln(&mesh, INIT_COND); // Project the initial condition on the FE space to obtain initial // coefficient vector for the Newton's method. info("Projecting to obtain initial vector for the Newton's method."); double* coeff_vec = new double[Space<double>::get_num_dofs(&space)] ; OGProjection<double>::project_global(&space, &sln, coeff_vec, matrix_solver_type); // Perform Newton's iteration. Hermes::Hermes2D::NewtonSolver<double> newton(&dp, matrix_solver_type); bool verbose = true; newton.set_verbose_output(verbose); try { newton.solve(coeff_vec, NEWTON_TOL, NEWTON_MAX_ITER); } catch(Hermes::Exceptions::Exception e) { e.printMsg(); error("Newton's iteration failed."); }; // Translate the resulting coefficient vector into the Solution sln. Solution<double>::vector_to_solution(coeff_vec, &space, &sln); // Cleanup. delete [] coeff_vec; // Visualise the solution and mesh. ScalarView s_view1("Vector potencial", new WinGeom(0, 0, 350, 450)); FilterVectorPotencial vector_potencial(Hermes::vector<MeshFunction<double> *>(&sln, &sln), Hermes::vector<int>(H2D_FN_VAL, H2D_FN_VAL)); s_view1.show_mesh(false); s_view1.show(&vector_potencial); ScalarView s_view2("Flux density", new WinGeom(360, 0, 350, 450)); FilterFluxDensity flux_density(Hermes::vector<MeshFunction<double> *>(&sln, &sln)); s_view2.show_mesh(false); s_view2.show(&flux_density); OrderView o_view("Mesh", new WinGeom(720, 0, 350, 450)); o_view.show(&space); // Wait for all views to be closed. View::wait(); return 0; }
int main(int argc, char **args) { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Load the mesh. Mesh mesh; ExodusIIReader mesh_loader; if (!mesh_loader.load("cylinder2.e", &mesh)) error("Loading mesh file '%s' failed.\n", "cylinder2.e"); // Perform initial mesh refinement. for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); // Create H1 space with default shapeset. H1Space space(&mesh, bc_types, essential_bc_values, Ord3(P_INIT_X, P_INIT_Y, P_INIT_Z)); info("Number of DOF: %d.", Space::get_num_dofs(&space)); // Initialize weak formulation. WeakForm wf; wf.add_matrix_form(callback(bilinear_form1), HERMES_SYM, 1); wf.add_matrix_form(callback(bilinear_form2), HERMES_SYM, 2); wf.add_vector_form(callback(linear_form), HERMES_ANY); // Initialize discrete problem. bool is_linear = true; DiscreteProblem dp(&wf, &space, is_linear); // Initialize the solver in the case of SOLVER_PETSC or SOLVER_MUMPS. initialize_solution_environment(matrix_solver, argc, args); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble stiffness amtrix and load vector. info("Assembling the linear problem (ndof: %d).", Space::get_num_dofs(&space)); dp.assemble(matrix, rhs); // Solve the linear system. If successful, obtain the solution. info("Solving the linear problem."); Solution sln(space.get_mesh()); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), &space, &sln); else error ("Matrix solver failed.\n"); // Output solution and the boundary condition. if (solution_output) { out_fn_vtk(&sln, "sln"); out_bc_vtk(&mesh, "bc"); } // Time measurement. cpu_time.tick(); // Print timing information. info("Solution and the boundary condition saved. Total running time: %g s", cpu_time.accumulated()); // Clean up. delete matrix; delete rhs; delete solver; // Properly terminate the solver in the case of SOLVER_PETSC or SOLVER_MUMPS. finalize_solution_environment(matrix_solver); return 0; }
int main(int argc, char **args) { // Test variable. int success_test = 1; // Check the number of command-line parameters. if (argc < 2) { info("Use x, y, z, xy, xz, yz, or xyz as a command-line parameter."); error("Not enough command-line parameters."); } // Determine anisotropy type from the command-line parameter. ANISO_TYPE = parse_aniso_type(args[1]); // Load the mesh. Mesh mesh; H3DReader mesh_loader; mesh_loader.load("hex-0-1.mesh3d", &mesh); // Assign the lowest possible directional polynomial degrees so that the problem's NDOF >= 1. assign_poly_degrees(); // Create an H1 space with default shapeset. info("Setting directional polynomial degrees %d, %d, %d.", P_INIT_X, P_INIT_Y, P_INIT_Z); H1Space space(&mesh, bc_types, essential_bc_values, Ord3(P_INIT_X, P_INIT_Y, P_INIT_Z)); // Initialize weak formulation. WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM, HERMES_ANY); wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>, HERMES_ANY); // Set exact solution. ExactSolution exact(&mesh, fndd); // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Adaptivity loop. int as = 1; bool done = false; do { info("---- Adaptivity step %d:", as); // Construct globally refined reference mesh and setup reference space. Space* ref_space = construct_refined_space(&space, 1); // Initialize discrete problem. bool is_linear = true; DiscreteProblem dp(&wf, ref_space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble the reference problem. info("Assembling on reference mesh (ndof: %d).", Space::get_num_dofs(ref_space)); dp.assemble(matrix, rhs); // Time measurement. cpu_time.tick(); // Solve the linear system on reference mesh. If successful, obtain the solution. info("Solving on reference mesh."); Solution ref_sln(ref_space->get_mesh()); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), ref_space, &ref_sln); else { error ("Matrix solver failed.\n"); success_test = 0; } // Time measurement. cpu_time.tick(); // Project the reference solution on the coarse mesh. Solution sln(space.get_mesh()); info("Projecting reference solution on coarse mesh."); OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver); // Time measurement. cpu_time.tick(); // Output solution and mesh with polynomial orders. if (solution_output) { out_fn_vtk(&sln, "sln", as); out_orders_vtk(&space, "order", as); } // Skip the visualization time. cpu_time.tick(HERMES_SKIP); // Calculate element errors and total error estimate. info("Calculating error estimate and exact error."); Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM); bool solutions_for_adapt = true; double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln, solutions_for_adapt) * 100; // Calculate exact error. solutions_for_adapt = false; double err_exact_rel = adaptivity->calc_err_exact(&sln, &exact, solutions_for_adapt) * 100; // Report results. info("ndof_coarse: %d, ndof_fine: %d.", Space::get_num_dofs(&space), Space::get_num_dofs(ref_space)); info("err_est_rel: %g%%, err_exact_rel: %g%%.", err_est_rel, err_exact_rel); // If err_est_rel is too large, adapt the mesh. if (err_est_rel < ERR_STOP) done = true; else { info("Adapting coarse mesh."); adaptivity->adapt(THRESHOLD); } if (Space::get_num_dofs(&space) >= NDOF_STOP) done = true; // Clean up. delete ref_space->get_mesh(); delete ref_space; delete matrix; delete rhs; delete solver; delete adaptivity; // Increase the counter of performed adaptivity steps. as++; } while (!done); // This is the actual test. #define ERROR_SUCCESS 0 #define ERROR_FAILURE -1 int ndof_allowed; switch (ANISO_TYPE) { case ANISO_X: ndof_allowed = 28; break; case ANISO_Y: ndof_allowed = 28; break; case ANISO_Z: ndof_allowed = 28; break; case ANISO_X | ANISO_Y: ndof_allowed = 98; break; case ANISO_X | ANISO_Z: ndof_allowed = 98; break; case ANISO_Y | ANISO_Z: ndof_allowed = 98; break; case ANISO_X | ANISO_Y | ANISO_Z: ndof_allowed = 343; break; default: error("Admissible command-line options are x, y, x, xy, xz, yz, xyz."); } int ndof = Space::get_num_dofs(&space); info("ndof_actual = %d", ndof); info("ndof_allowed = %d", ndof_allowed); if (ndof > ndof_allowed) success_test = 0; if (success_test) { info("Success!"); return ERR_SUCCESS; } else { info("Failure!"); return ERR_FAILURE; } }
int main(int argc, char* argv[]) { // Choose a Butcher's table or define your own. ButcherTable bt(butcher_table_type); if (bt.is_explicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage explicit R-K method.", bt.get_size()); if (bt.is_diagonally_implicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage diagonally implicit R-K method.", bt.get_size()); if (bt.is_fully_implicit()) Hermes::Mixins::Loggable::Static::info("Using a %d-stage fully implicit R-K method.", bt.get_size()); // Turn off adaptive time stepping if R-K method is not embedded. if (bt.is_embedded() == false && ADAPTIVE_TIME_STEP_ON == true) { Hermes::Mixins::Loggable::Static::warn("R-K method not embedded, turning off adaptive time stepping."); ADAPTIVE_TIME_STEP_ON = false; } // Load the mesh. MeshSharedPtr mesh(new Mesh), basemesh(new Mesh); MeshReaderH2D mloader; mloader.load("wall.mesh", basemesh); mesh->copy(basemesh); // Perform initial mesh refinements. for(int i = 0; i < INIT_REF_NUM; i++) mesh->refine_all_elements(); mesh->refine_towards_boundary(BDY_RIGHT, 2); mesh->refine_towards_boundary(BDY_FIRE, INIT_REF_NUM_BDY); // Initialize essential boundary conditions (none). EssentialBCs<double> bcs; // Initialize an H1 space with default shapeset. SpaceSharedPtr<double> space(new H1Space<double>(mesh, &bcs, P_INIT)); int ndof = Space<double>::get_num_dofs(space); Hermes::Mixins::Loggable::Static::info("ndof = %d.", ndof); // Convert initial condition into a Solution. MeshFunctionSharedPtr<double> sln_prev_time(new ConstantSolution<double> (mesh, TEMP_INIT)); // Initialize the weak formulation. double current_time = 0; CustomWeakFormHeatRK wf(BDY_FIRE, BDY_AIR, ALPHA_FIRE, ALPHA_AIR, RHO, HEATCAP, TEMP_EXT_AIR, TEMP_INIT, ¤t_time); // Initialize the FE problem. DiscreteProblem<double> dp(&wf, space); // Create a refinement selector. H1ProjBasedSelector<double> selector(CAND_LIST); // Visualize initial condition. char title[100]; ScalarView sln_view("Initial condition", new WinGeom(0, 0, 1500, 360)); OrderView ordview("Initial mesh", new WinGeom(0, 410, 1500, 360)); ScalarView time_error_view("Temporal error", new WinGeom(0, 800, 1500, 360)); time_error_view.fix_scale_width(40); ScalarView space_error_view("Spatial error", new WinGeom(0, 1220, 1500, 360)); space_error_view.fix_scale_width(40); sln_view.show(sln_prev_time); ordview.show(space); // Graph for time step history. SimpleGraph time_step_graph; if (ADAPTIVE_TIME_STEP_ON) Hermes::Mixins::Loggable::Static::info("Time step history will be saved to file time_step_history.dat."); // Class for projections. OGProjection<double> ogProjection; // Time stepping loop: int ts = 1; do { Hermes::Mixins::Loggable::Static::info("Begin time step %d.", ts); // Periodic global derefinement. if (ts > 1 && ts % UNREF_FREQ == 0) { Hermes::Mixins::Loggable::Static::info("Global mesh derefinement."); switch (UNREF_METHOD) { case 1: mesh->copy(basemesh); space->set_uniform_order(P_INIT); break; case 2: space->unrefine_all_mesh_elements(); space->set_uniform_order(P_INIT); break; case 3: space->unrefine_all_mesh_elements(); //space->adjust_element_order(-1, P_INIT); space->adjust_element_order(-1, -1, P_INIT, P_INIT); break; default: throw Hermes::Exceptions::Exception("Wrong global derefinement method."); } space->assign_dofs(); ndof = Space<double>::get_num_dofs(space); } // Spatial adaptivity loop. Note: sln_prev_time must not be // changed during spatial adaptivity. MeshFunctionSharedPtr<double> ref_sln(new Solution<double>()); MeshFunctionSharedPtr<double> time_error_fn(new Solution<double>(mesh)); bool done = false; int as = 1; double err_est; do { // Construct globally refined reference mesh and setup reference space. Mesh::ReferenceMeshCreator refMeshCreator(mesh); MeshSharedPtr ref_mesh = refMeshCreator.create_ref_mesh(); Space<double>::ReferenceSpaceCreator refSpaceCreator(space, ref_mesh); SpaceSharedPtr<double> ref_space = refSpaceCreator.create_ref_space(); // Initialize Runge-Kutta time stepping on the reference mesh. RungeKutta<double> runge_kutta(&wf, ref_space, &bt); try { ogProjection.project_global(ref_space, sln_prev_time, sln_prev_time); } catch(Exceptions::Exception& e) { std::cout << e.what() << std::endl; Hermes::Mixins::Loggable::Static::error("Projection failed."); return -1; } // Runge-Kutta step on the fine mesh-> Hermes::Mixins::Loggable::Static::info("Runge-Kutta time step on fine mesh (t = %g s, tau = %g s, stages: %d).", current_time, time_step, bt.get_size()); bool verbose = true; bool jacobian_changed = false; try { runge_kutta.set_time(current_time); runge_kutta.set_time_step(time_step); runge_kutta.set_max_allowed_iterations(NEWTON_MAX_ITER); runge_kutta.set_tolerance(NEWTON_TOL_FINE); runge_kutta.rk_time_step_newton(sln_prev_time, ref_sln, bt.is_embedded() ? time_error_fn : NULL); } catch(Exceptions::Exception& e) { std::cout << e.what() << std::endl; Hermes::Mixins::Loggable::Static::error("Runge-Kutta time step failed"); return -1; } /* If ADAPTIVE_TIME_STEP_ON == true, estimate temporal error. If too large or too small, then adjust it and restart the time step. */ double rel_err_time = 0; if (bt.is_embedded() == true) { Hermes::Mixins::Loggable::Static::info("Calculating temporal error estimate."); // Show temporal error. char title[100]; sprintf(title, "Temporal error est, spatial adaptivity step %d", as); time_error_view.set_title(title); //time_error_view.show_mesh(false); time_error_view.show(time_error_fn); rel_err_time = Global<double>::calc_norm(time_error_fn.get(), HERMES_H1_NORM) / Global<double>::calc_norm(ref_sln.get(), HERMES_H1_NORM) * 100; if (ADAPTIVE_TIME_STEP_ON == false) Hermes::Mixins::Loggable::Static::info("rel_err_time: %g%%", rel_err_time); } if (ADAPTIVE_TIME_STEP_ON) { if (rel_err_time > TIME_ERR_TOL_UPPER) { Hermes::Mixins::Loggable::Static::info("rel_err_time %g%% is above upper limit %g%%", rel_err_time, TIME_ERR_TOL_UPPER); Hermes::Mixins::Loggable::Static::info("Decreasing tau from %g to %g s and restarting time step.", time_step, time_step * TIME_STEP_DEC_RATIO); time_step *= TIME_STEP_DEC_RATIO; continue; } else if (rel_err_time < TIME_ERR_TOL_LOWER) { Hermes::Mixins::Loggable::Static::info("rel_err_time = %g%% is below lower limit %g%%", rel_err_time, TIME_ERR_TOL_LOWER); Hermes::Mixins::Loggable::Static::info("Increasing tau from %g to %g s.", time_step, time_step * TIME_STEP_INC_RATIO); time_step *= TIME_STEP_INC_RATIO; } else { Hermes::Mixins::Loggable::Static::info("rel_err_time = %g%% is in acceptable interval (%g%%, %g%%)", rel_err_time, TIME_ERR_TOL_LOWER, TIME_ERR_TOL_UPPER); } // Add entry to time step history graph. time_step_graph.add_values(current_time, time_step); time_step_graph.save("time_step_history.dat"); } /* Estimate spatial errors and perform mesh refinement */ Hermes::Mixins::Loggable::Static::info("Spatial adaptivity step %d.", as); // Project the fine mesh solution onto the coarse mesh. MeshFunctionSharedPtr<double> sln(new Solution<double>()); Hermes::Mixins::Loggable::Static::info("Projecting fine mesh solution on coarse mesh for error estimation."); ogProjection.project_global(space, ref_sln, sln); // Show spatial error. sprintf(title, "Spatial error est, spatial adaptivity step %d", as); MeshFunctionSharedPtr<double> space_error_fn(new DiffFilter<double>(Hermes::vector<MeshFunctionSharedPtr<double> >(ref_sln, sln))); space_error_view.set_title(title); //space_error_view.show_mesh(false); MeshFunctionSharedPtr<double> abs_sef(new AbsFilter(space_error_fn)); space_error_view.show(abs_sef); // Calculate element errors and spatial error estimate. Hermes::Mixins::Loggable::Static::info("Calculating spatial error estimate."); adaptivity.set_space(space); double err_rel_space = errorCalculator.get_total_error_squared() * 100; // Report results. Hermes::Mixins::Loggable::Static::info("ndof: %d, ref_ndof: %d, err_rel_space: %g%%", Space<double>::get_num_dofs(space), Space<double>::get_num_dofs(ref_space), err_rel_space); // If err_est too large, adapt the mesh. if (err_rel_space < SPACE_ERR_TOL) done = true; else { Hermes::Mixins::Loggable::Static::info("Adapting the coarse mesh."); done = adaptivity.adapt(&selector); if (Space<double>::get_num_dofs(space) >= NDOF_STOP) done = true; else // Increase the counter of performed adaptivity steps. as++; } // Clean up. if(!done) } while (done == false); // Visualize the solution and mesh-> char title[100]; sprintf(title, "Solution, time %g s", current_time); sln_view.set_title(title); //sln_view.show_mesh(false); sln_view.show(ref_sln); sprintf(title, "Mesh, time %g s", current_time); ordview.set_title(title); ordview.show(space); // Copy last reference solution into sln_prev_time sln_prev_time->copy(ref_sln); // Increase current time and counter of time steps. current_time += time_step; ts++; } while (current_time < T_FINAL); // Wait for all views to be closed. View::wait(); return 0; }
int main(int argc, char* argv[]) { // Load the mesh. MeshSharedPtr mesh(new Mesh); MeshReaderH2D mloader; mloader.load("domain.mesh", mesh); // Perform initial mesh refinements. for (int i = 0; i < INIT_REF_NUM; i++) mesh->refine_all_elements(); // Initialize boundary conditions. Hermes::Hermes2D::DefaultEssentialBCConst<complex> bc_essential("Dirichlet", complex(0.0, 0.0)); EssentialBCs<complex> bcs(&bc_essential); // Create an H1 space with default shapeset. SpaceSharedPtr<complex> space(new H1Space<complex>(mesh, &bcs, P_INIT)); // Initialize the weak formulation. CustomWeakForm wf("Air", MU_0, "Iron", MU_IRON, GAMMA_IRON, "Wire", MU_0, complex(J_EXT, 0.0), OMEGA); // Initialize coarse and reference mesh solution. MeshFunctionSharedPtr<complex> sln(new Hermes::Hermes2D::Solution<complex>()); MeshFunctionSharedPtr<complex> ref_sln(new Hermes::Hermes2D::Solution<complex>()); // Initialize refinement selector. H1ProjBasedSelector<complex> selector(CAND_LIST); // DOF and CPU convergence graphs initialization. SimpleGraph graph_dof, graph_cpu; DiscreteProblem<complex> dp(&wf, space); // Perform Newton's iteration and translate the resulting coefficient vector into a Solution. Hermes::Hermes2D::NewtonSolver<complex> newton(&dp); // Adaptivity loop: int as = 1; bool done = false; adaptivity.set_space(space); do { // Construct globally refined reference mesh and setup reference space-> Mesh::ReferenceMeshCreator ref_mesh_creator(mesh); MeshSharedPtr ref_mesh = ref_mesh_creator.create_ref_mesh(); Space<complex>::ReferenceSpaceCreator ref_space_creator(space, ref_mesh); SpaceSharedPtr<complex> ref_space = ref_space_creator.create_ref_space(); newton.set_space(ref_space); int ndof_ref = ref_space->get_num_dofs(); // Initialize reference problem. // Initial coefficient vector for the Newton's method. complex* coeff_vec = new complex[ndof_ref]; memset(coeff_vec, 0, ndof_ref * sizeof(complex)); // Perform Newton's iteration and translate the resulting coefficient vector into a Solution. try { newton.solve(coeff_vec); } catch(Hermes::Exceptions::Exception& e) { e.print_msg(); } Hermes::Hermes2D::Solution<complex>::vector_to_solution(newton.get_sln_vector(), ref_space, ref_sln); // Project the fine mesh solution onto the coarse mesh. OGProjection<complex> ogProjection; ogProjection.project_global(space, ref_sln, sln); // Calculate element errors and total error estimate. errorCalculator.calculate_errors(sln, ref_sln); // If err_est too large, adapt the mesh-> if(errorCalculator.get_total_error_squared() * 100. < ERR_STOP) done = true; else { adaptivity.adapt(&selector); } // Clean up. delete [] coeff_vec; // Increase counter. as++; } while (done == false); complex sum = 0; for (int i = 0; i < space->get_num_dofs(); i++) sum += newton.get_sln_vector()[i]; printf("coefficient sum = %f\n", sum); complex expected_sum; expected_sum.real(1.4685364e-005); expected_sum.imag(-5.45632171e-007); bool success = true; if(std::abs(sum - expected_sum) > 1e-6) success = false; int ndof = space->get_num_dofs(); if(ndof != 82) // Tested value as of May 2013. success = false; if(success) { printf("Success!\n"); return 0; } else { printf("Failure!\n"); return -1; } }
int main(int argc, char **args) { int res = ERR_SUCCESS; #ifdef WITH_PETSC PetscInitialize(&argc, &args, (char *) PETSC_NULL, PETSC_NULL); #endif if (argc < 2) error("Not enough parameters."); printf("* Loading mesh '%s'\n", args[1]); Mesh mesh1; H3DReader mesh_loader; if (!mesh_loader.load(args[1], &mesh1)) error("Loading mesh file '%s'\n", args[1]); #if defined RHS2 Ord3 order(P_INIT_X, P_INIT_Y, P_INIT_Z); printf(" - Setting uniform order to (%d, %d, %d)\n", order.x, order.y, order.z); // Create an H1 space with default shapeset. printf("* Setting the space up\n"); H1Space space(&mesh1, bc_types, essential_bc_values, order); int ndofs = space.assign_dofs(); printf(" - Number of DOFs: %d\n", ndofs); printf("* Calculating a solution\n"); // duplicate the mesh Mesh mesh2; mesh2.copy(mesh1); // do some changes mesh2.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); mesh2.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); Solution fsln(&mesh2); fsln.set_const(-6.0); #else // duplicate the mesh Mesh mesh2; mesh2.copy(mesh1); Mesh mesh3; mesh3.copy(mesh1); // change meshes mesh1.refine_all_elements(H3D_REFT_HEX_X); mesh2.refine_all_elements(H3D_REFT_HEX_Y); mesh3.refine_all_elements(H3D_REFT_HEX_Z); printf("* Setup spaces\n"); Ord3 o1(2, 2, 2); printf(" - Setting uniform order to (%d, %d, %d)\n", o1.x, o1.y, o1.z); H1Space space1(&mesh1, bc_types_1, essential_bc_values_1, o1); Ord3 o2(2, 2, 2); printf(" - Setting uniform order to (%d, %d, %d)\n", o2.x, o2.y, o2.z); H1Space space2(&mesh2, bc_types_2, essential_bc_values_2, o2); Ord3 o3(1, 1, 1); printf(" - Setting uniform order to (%d, %d, %d)\n", o3.x, o3.y, o3.z); H1Space space3(&mesh3, bc_types_3, essential_bc_values_3, o3); int ndofs = 0; ndofs += space1.assign_dofs(); ndofs += space2.assign_dofs(ndofs); ndofs += space3.assign_dofs(ndofs); printf(" - Number of DOFs: %d\n", ndofs); #endif #if defined WITH_UMFPACK MatrixSolverType matrix_solver = SOLVER_UMFPACK; #elif defined WITH_PETSC MatrixSolverType matrix_solver = SOLVER_PETSC; #elif defined WITH_MUMPS MatrixSolverType matrix_solver = SOLVER_MUMPS; #endif #ifdef RHS2 WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM); wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>, HERMES_ANY_INT, &fsln); // Initialize discrete problem. bool is_linear = true; DiscreteProblem dp(&wf, &space, is_linear); #elif defined SYS3 WeakForm wf(3); wf.add_matrix_form(0, 0, biform_1_1<double, scalar>, biform_1_1<Ord, Ord>, HERMES_SYM); wf.add_matrix_form(0, 1, biform_1_2<double, scalar>, biform_1_2<Ord, Ord>, HERMES_NONSYM); wf.add_vector_form(0, liform_1<double, scalar>, liform_1<Ord, Ord>); wf.add_matrix_form(1, 1, biform_2_2<double, scalar>, biform_2_2<Ord, Ord>, HERMES_SYM); wf.add_matrix_form(1, 2, biform_2_3<double, scalar>, biform_2_3<Ord, Ord>, HERMES_NONSYM); wf.add_vector_form(1, liform_2<double, scalar>, liform_2<Ord, Ord>); wf.add_matrix_form(2, 2, biform_3_3<double, scalar>, biform_3_3<Ord, Ord>, HERMES_SYM); // Initialize discrete problem. bool is_linear = true; DiscreteProblem dp(&wf, Hermes::vector<Space *>(&space1, &space2, &space3), is_linear); #endif // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble stiffness matrix and load vector. dp.assemble(matrix, rhs); // Solve the linear system. If successful, obtain the solution. info("Solving the linear problem."); bool solved = solver->solve(); // Time measurement. cpu_time.tick(); // Print timing information. info("Solution and mesh with polynomial orders saved. Total running time: %g s", cpu_time.accumulated()); // Time measurement. TimePeriod sln_time; sln_time.tick(); if (solved) { #ifdef RHS2 // Solve the linear system. If successful, obtain the solution. info("Solving the linear problem."); Solution sln(&mesh1); Solution::vector_to_solution(solver->get_solution(), &space, &sln); // Set exact solution. ExactSolution ex_sln(&mesh1, exact_solution); // Norm. double h1_sln_norm = h1_norm(&sln); double h1_err_norm = h1_error(&sln, &ex_sln); printf(" - H1 solution norm: % le\n", h1_sln_norm); printf(" - H1 error norm: % le\n", h1_err_norm); double l2_sln_norm = l2_norm(&sln); double l2_err_norm = l2_error(&sln, &ex_sln); printf(" - L2 solution norm: % le\n", l2_sln_norm); printf(" - L2 error norm: % le\n", l2_err_norm); if (h1_err_norm > EPS || l2_err_norm > EPS) { // Calculated solution is not enough precise. res = ERR_FAILURE; } #elif defined SYS3 // Solution 1. Solution sln1(&mesh1); Solution sln2(&mesh2); Solution sln3(&mesh3); Solution::vector_to_solution(solver->get_solution(), &space1, &sln1); Solution::vector_to_solution(solver->get_solution(), &space2, &sln2); Solution::vector_to_solution(solver->get_solution(), &space3, &sln3); ExactSolution esln1(&mesh1, exact_sln_fn_1); ExactSolution esln2(&mesh2, exact_sln_fn_2); ExactSolution esln3(&mesh3, exact_sln_fn_3); // Norm. double h1_err_norm1 = h1_error(&sln1, &esln1); double h1_err_norm2 = h1_error(&sln2, &esln2); double h1_err_norm3 = h1_error(&sln3, &esln3); double l2_err_norm1 = l2_error(&sln1, &esln1); double l2_err_norm2 = l2_error(&sln2, &esln2); double l2_err_norm3 = l2_error(&sln3, &esln3); printf(" - H1 error norm: % le\n", h1_err_norm1); printf(" - L2 error norm: % le\n", l2_err_norm1); if (h1_err_norm1 > EPS || l2_err_norm1 > EPS) { // Calculated solution is not enough precise. res = ERR_FAILURE; } printf(" - H1 error norm: % le\n", h1_err_norm2); printf(" - L2 error norm: % le\n", l2_err_norm2); if (h1_err_norm2 > EPS || l2_err_norm2 > EPS) { // Calculated solution is not enough precise. res = ERR_FAILURE; } printf(" - H1 error norm: % le\n", h1_err_norm3); printf(" - L2 error norm: % le\n", l2_err_norm3); if (h1_err_norm3 > EPS || l2_err_norm3 > EPS) { // Calculated solution is not enough precise. res = ERR_FAILURE; } #endif #ifdef RHS2 out_fn_vtk(&sln, "solution"); #elif defined SYS3 out_fn_vtk(&sln1, "sln1"); out_fn_vtk(&sln2, "sln2"); out_fn_vtk(&sln3, "sln3"); #endif } else res = ERR_FAILURE; // Print timing information. info("Solution and mesh with polynomial orders saved. Total running time: %g s", sln_time.accumulated()); // Clean up. delete matrix; delete rhs; delete solver; return res; }
int main(int argc, char* argv[]) { int index = 0, c; static const struct longopt opts[] = {{"help", 0, NULL, 'h'}, {"verbose", 0, 0, 'v'}, {0}}; errmsg_iam(argv[0]); for(;;) { c = getopt_long(argc, argv, "hv", opts, &index); if(c == -1) break; if(c == '\0') continue; switch(c) { case 'h': usage(argv[0]); return 0; case 'v': verbose = 1; break; default: { usage(argv[0]); return 1; } } } while(optind < argc) { const char* a = argv[optind++]; int i = str_rchr(a, '.'); if(str_equal(&a[i], ".list")) { buffer in; if(!buffer_mmapread(&in, a)) { stralloc target, link; ssize_t ret; stralloc_init(&target); stralloc_init(&link); for(;;) { if((ret = buffer_get_new_token_sa(&in, &target, " \t\v", 2)) < 0) break; if(ret == 0 || target.s[0] == '\0') break; if(target.len > 0) --target.len; if((ret = buffer_get_new_token_sa(&in, &link, "\r\n", 2)) < 0) break; if(ret == 0 || link.s[0] == '\0') break; stralloc_chomp(&link); mklink_sa(&target, &link); if(!stralloc_endb(&link, ".so", 3)) { if(sln(link.s)) return 1; } } buffer_close(&in); } } else { if(sln(argv[i])) return 1; } } }
int main(int argc, char* argv[]) { info("Desired number of eigenvalues: %d.", NUMBER_OF_EIGENVALUES); // Load the mesh. info("Loading and refining mesh..."); Mesh mesh; H3DReader mloader; mloader.load("hexahedron.mesh3d", &mesh); // Perform initial mesh refinements (optional). for (int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); // Create an H1 space with default shapeset. H1Space space(&mesh, bc_types, essential_bc_values, Ord3(P_INIT_X, P_INIT_Y, P_INIT_Z)); int ndof = Space::get_num_dofs(&space); info("ndof: %d.", ndof); // Initialize the weak formulation for the left hand side, i.e., H. info("Initializing weak form..."); WeakForm wf_left, wf_right; wf_left.add_matrix_form(bilinear_form_left, bilinear_form_left_ord, HERMES_SYM, HERMES_ANY ); wf_right.add_matrix_form(callback(bilinear_form_right), HERMES_SYM, HERMES_ANY ); // Initialize matrices and matrix solver. SparseMatrix* matrix_left = create_matrix(matrix_solver); SparseMatrix* matrix_right = create_matrix(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix_left); // Assemble the matrices. info("Assembling matrices..."); bool is_linear = true; DiscreteProblem dp_left(&wf_left, &space, is_linear); dp_left.assemble(matrix_left); DiscreteProblem dp_right(&wf_right, &space, is_linear); dp_right.assemble(matrix_right); // Write matrix_left in MatrixMarket format. write_matrix_mm("mat_left.mtx", matrix_left); // Write matrix_right in MatrixMarket format. write_matrix_mm("mat_right.mtx", matrix_right); // Calling Python eigensolver. Solution will be written to "eivecs.dat". info("Using eigensolver..."); char call_cmd[255]; sprintf(call_cmd, "python solveGenEigenFromMtx.py mat_left.mtx mat_right.mtx %g %d %g %d", TARGET_VALUE, NUMBER_OF_EIGENVALUES, TOL, MAX_ITER); system(call_cmd); // Initializing solution vector, solution and ScalarView. info("Initializing solution vector..."); double* coeff_vec = new double[ndof]; Solution sln(space.get_mesh()); // Reading solution vectors from file and visualizing. info("Reading solution vectors from file and saving as solutions in paraview format..."); FILE *file = fopen("eivecs.dat", "r"); char line [64]; // Maximum line size. fgets(line, sizeof line, file); // ndof int n = atoi(line); if (n != ndof) error("Mismatched ndof in the eigensolver output file."); fgets(line, sizeof line, file); // Number of eigenvectors in the file. int neig = atoi(line); if (neig != NUMBER_OF_EIGENVALUES) error("Mismatched number of eigenvectors in the eigensolver output file."); for (int ieig = 0; ieig < neig; ieig++) { // Get next eigenvector from the file. for (int i = 0; i < ndof; i++) { fgets(line, sizeof line, file); coeff_vec[i] = atof(line); } // Convert coefficient vector into a Solution. Solution::vector_to_solution(coeff_vec, &space, &sln); out_fn_vtk(&sln, "sln", ieig ); } fclose(file); delete [] coeff_vec; return 0; };
int main(int argc, char **argv) { int res = ERR_SUCCESS; #ifdef WITH_PETSC PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL); #endif set_verbose(false); if (argc < 5) error("Not enough parameters."); H1ShapesetLobattoHex shapeset; printf("* Loading mesh '%s'\n", argv[1]); Mesh mesh; Mesh3DReader mloader; if (!mloader.load(argv[1], &mesh)) error("Loading mesh file '%s'\n", argv[1]); printf("* Setting the space up\n"); H1Space space(&mesh, &shapeset); space.set_bc_types(bc_types); space.set_essential_bc_values(essential_bc_values); int o[3] = { 0, 0, 0 }; sscanf(argv[2], "%d", o + 0); sscanf(argv[3], "%d", o + 1); sscanf(argv[4], "%d", o + 2); order3_t order(o[0], o[1], o[2]); printf(" - Setting uniform order to (%d, %d, %d)\n", order.x, order.y, order.z); space.set_uniform_order(order); WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM, ANY); wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>, ANY); LinearProblem lp(&wf); lp.set_space(&space); bool done = false; int iter = 0; do { Timer assemble_timer("Assembling stiffness matrix"); Timer solve_timer("Solving stiffness matrix"); printf("\n=== Iter #%d ================================================================\n", iter); printf("\nSolution\n"); #if defined WITH_UMFPACK UMFPackMatrix mat; UMFPackVector rhs; UMFPackLinearSolver solver(&mat, &rhs); #elif defined WITH_PARDISO PardisoMatrix mat; PardisoVector rhs; PardisoLinearSolver solver(&mat, &rhs); #elif defined WITH_PETSC PetscMatrix mat; PetscVector rhs; PetscLinearSolver solver(&mat, &rhs); #elif defined WITH_MUMPS MumpsMatrix mat; MumpsVector rhs; MumpsSolver solver(&mat, &rhs); #endif int ndofs = space.assign_dofs(); printf(" - Number of DOFs: %d\n", ndofs); // assemble stiffness matrix printf(" - Assembling... "); fflush(stdout); assemble_timer.reset(); assemble_timer.start(); lp.assemble(&mat, &rhs); assemble_timer.stop(); printf("done in %s (%lf secs)\n", assemble_timer.get_human_time(), assemble_timer.get_seconds()); // solve the stiffness matrix printf(" - Solving... "); fflush(stdout); solve_timer.reset(); solve_timer.start(); bool solved = solver.solve(); solve_timer.stop(); if (solved) printf("done in %s (%lf secs)\n", solve_timer.get_human_time(), solve_timer.get_seconds()); else { res = ERR_FAILURE; printf("failed\n"); break; } printf("Reference solution\n"); #if defined WITH_UMFPACK UMFPackLinearSolver rsolver(&mat, &rhs); #elif defined WITH_PARDISO PardisoLinearSolver rsolver(&mat, &rhs); #elif defined WITH_PETSC PetscLinearSolver rsolver(&mat, &rhs); #elif defined WITH_MUMPS MumpsSolver rsolver(&mat, &rhs); #endif Mesh rmesh; rmesh.copy(mesh); rmesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); Space *rspace = space.dup(&rmesh); rspace->copy_orders(space, 1); LinearProblem rlp(&wf); rlp.set_space(rspace); int rndofs = rspace->assign_dofs(); printf(" - Number of DOFs: %d\n", rndofs); printf(" - Assembling... "); fflush(stdout); assemble_timer.reset(); assemble_timer.start(); rlp.assemble(&mat, &rhs); assemble_timer.stop(); printf("done in %s (%lf secs)\n", assemble_timer.get_human_time(), assemble_timer.get_seconds()); printf(" - Solving... "); fflush(stdout); solve_timer.reset(); solve_timer.start(); bool rsolved = rsolver.solve(); solve_timer.stop(); if (rsolved) printf("done in %s (%lf secs)\n", solve_timer.get_human_time(), solve_timer.get_seconds()); else { res = ERR_FAILURE; printf("failed\n"); break; } Solution sln(&mesh); sln.set_coeff_vector(&space, solver.get_solution()); Solution rsln(&rmesh); rsln.set_coeff_vector(rspace, rsolver.get_solution()); printf("Adaptivity:\n"); H1Adapt hp(&space); double tol = hp.calc_error(&sln, &rsln) * 100; printf(" - tolerance: "); fflush(stdout); printf("% lf\n", tol); if (tol < TOLERANCE) { printf("\nDone\n"); ExactSolution ex_sln(&mesh, exact_solution); // norm double h1_sln_norm = h1_norm(&sln); double h1_err_norm = h1_error(&sln, &ex_sln); printf(" - H1 solution norm: % le\n", h1_sln_norm); printf(" - H1 error norm: % le\n", h1_err_norm); double l2_sln_norm = l2_norm(&sln); double l2_err_norm = l2_error(&sln, &ex_sln); printf(" - L2 solution norm: % le\n", l2_sln_norm); printf(" - L2 error norm: % le\n", l2_err_norm); if (h1_err_norm > EPS || l2_err_norm > EPS) { // calculated solution is not enough precise res = ERR_FAILURE; } break; } Timer t(""); printf(" - adapting... "); fflush(stdout); t.start(); hp.adapt(THRESHOLD); t.stop(); printf("done in %lf secs (refined %d element(s))\n", t.get_seconds(), hp.get_num_refined_elements()); iter++; } while (!done); #ifdef WITH_PETSC PetscFinalize(); #endif return res; }
int main(int argc, char **args) { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Load the mesh. Mesh mesh; H3DReader mloader; mloader.load("lshape_hex.mesh3d", &mesh); // Perform initial mesh refinement. for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); // Create an Hcurl space with default shapeset. HcurlSpace space(&mesh, bc_types, essential_bc_values, Ord3(P_INIT_X, P_INIT_Y, P_INIT_Z)); // Initialize weak formulation. WeakForm wf; wf.add_matrix_form(biform<double, scalar>, biform<Ord, Ord>, HERMES_SYM); wf.add_matrix_form_surf(biform_surf, biform_surf_ord); wf.add_vector_form_surf(liform_surf, liform_surf_ord); // Initialize discrete problem. bool is_linear = true; DiscreteProblem dp(&wf, &space, is_linear); // Initialize the solver in the case of SOLVER_PETSC or SOLVER_MUMPS. initialize_solution_environment(matrix_solver, argc, args); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble stiffness matrix and load vector. info("Assembling the linear problem (ndof: %d).", Space::get_num_dofs(&space)); dp.assemble(matrix, rhs); // Solve the linear system. If successful, obtain the solution. info("Solving the linear problem."); Solution sln(space.get_mesh()); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), &space, &sln); else error ("Matrix solver failed.\n"); // Output solution and mesh with polynomial orders. if (solution_output) { out_fn_vtk(&sln, "sln"); out_orders_vtk(&space, "order"); } // Time measurement. cpu_time.tick(); // Print timing information. info("Solution and mesh with polynomial orders saved. Total running time: %g s", cpu_time.accumulated()); // Clean up. delete matrix; delete rhs; delete solver; // Properly terminate the solver in the case of SOLVER_PETSC or SOLVER_MUMPS. finalize_solution_environment(matrix_solver); return 0; }
int main(int argc, char **argv) { int res = ERR_SUCCESS; #ifdef WITH_PETSC PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL); #endif set_verbose(false); if (argc < 3) error("Not enough parameters"); HcurlShapesetLobattoHex shapeset; printf("* Loading mesh '%s'\n", argv[1]); Mesh mesh; Mesh3DReader mesh_loader; if (!mesh_loader.load(argv[1], &mesh)) error("Loading mesh file '%s'\n", argv[1]); printf("* Setting the space up\n"); HcurlSpace space(&mesh, &shapeset); space.set_bc_types(bc_types); int order; sscanf(argv[2], "%d", &order); int dir_x = order, dir_y = order, dir_z = order; order3_t o(dir_x, dir_y, dir_z); printf(" - Setting uniform order to (%d, %d, %d)\n", o.x, o.y ,o.z); space.set_uniform_order(o); int ndofs = space.assign_dofs(); printf(" - Number of DOFs: %d\n", ndofs); printf("* Calculating a solution\n"); #if defined WITH_UMFPACK UMFPackMatrix mat; UMFPackVector rhs; UMFPackLinearSolver solver(&mat, &rhs); #elif defined WITH_PARDISO PardisoMatrix mat; PardisoVector rhs; PardisoSolver solver(&mat, &rhs); #elif defined WITH_PETSC PetscMatrix mat; PetscVector rhs; PetscLinearSolver solver(&mat, &rhs); #elif defined WITH_MUMPS MumpsMatrix mat; MumpsVector rhs; MumpsSolver solver(&mat, &rhs); #endif WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM); wf.add_matrix_form_surf(bilinear_form_surf<double, scalar>, bilinear_form_surf<ord_t, ord_t>); wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>); wf.add_vector_form_surf(linear_form_surf<double, scalar>, linear_form_surf<ord_t, ord_t>); LinearProblem lp(&wf, &space); // assemble stiffness matrix Timer assemble_timer("Assembling stiffness matrix"); assemble_timer.start(); lp.assemble(&mat, &rhs); assemble_timer.stop(); // solve the stiffness matrix Timer solve_timer("Solving stiffness matrix"); solve_timer.start(); bool solved = solver.solve(); solve_timer.stop(); //#ifdef OUTPUT_DIR mat.dump(stdout, "a"); rhs.dump(stdout, "b"); //#endif if (solved) { scalar *s = solver.get_solution(); Solution sln(&mesh); sln.set_coeff_vector(&space, s); printf("* Solution:\n"); for (int i = 1; i <= ndofs; i++) { printf(" x[% 3d] = " SCALAR_FMT "\n", i, SCALAR(s[i])); } // output the measured values printf("%s: %s (%lf secs)\n", assemble_timer.get_name(), assemble_timer.get_human_time(), assemble_timer.get_seconds()); printf("%s: %s (%lf secs)\n", solve_timer.get_name(), solve_timer.get_human_time(), solve_timer.get_seconds()); // norm ExactSolution ex_sln(&mesh, exact_solution); double hcurl_sln_norm = hcurl_norm(&sln); double hcurl_err_norm = hcurl_error(&sln, &ex_sln); printf(" - Hcurl solution norm: % le\n", hcurl_sln_norm); printf(" - Hcurl error norm: % le\n", hcurl_err_norm); double l2_sln_norm = l2_norm_hcurl(&sln); double l2_err_norm = l2_error_hcurl(&sln, &ex_sln); printf(" - L2 solution norm: % le\n", l2_sln_norm); printf(" - L2 error norm: % le\n", l2_err_norm); if (hcurl_err_norm > EPS || l2_err_norm > EPS) { // calculated solution is not enough precise res = ERR_FAILURE; } #if 0 //def OUTPUT_DIR // output printf("starting output\n"); const char *of_name = OUTPUT_DIR "/solution.vtk"; FILE *ofile = fopen(of_name, "w"); if (ofile != NULL) { ExactSolution ex_sln(&mesh, exact_solution_0, exact_solution_1, exact_solution_2); RealPartFilter real_sln(&mesh, &sln, FN_VAL); ImagPartFilter imag_sln(&mesh, &sln, FN_VAL); DiffFilter eh(&mesh, &sln, &ex_sln); DiffFilter eh_dx(&mesh, &sln, &ex_sln, FN_DX, FN_DX); // DiffFilter eh_dy(&mesh, &sln, &ex_sln, FN_DY, FN_DY); // DiffFilter eh_dz(&mesh, &sln, &ex_sln, FN_DZ, FN_DZ); // GmshOutputEngine output(ofile); VtkOutputEngine output(ofile); output.out(&real_sln, "real_Uh", FN_VAL); output.out(&imag_sln, "imag_Uh", FN_VAL); output.out(&real_sln, "real_Uh_0", FN_VAL_0); output.out(&real_sln, "real_Uh_1", FN_VAL_1); output.out(&real_sln, "real_Uh_2", FN_VAL_2); output.out(&imag_sln, "imag_Uh_0", FN_VAL_0); output.out(&imag_sln, "imag_Uh_1", FN_VAL_1); output.out(&imag_sln, "imag_Uh_2", FN_VAL_2); fclose(ofile); } else { warning("Can not open '%s' for writing.", of_name); } #endif } #ifdef WITH_PETSC mat.free(); rhs.free(); PetscFinalize(); #endif return res; }
int main(int argc, char **args) { // Load the mesh. Mesh mesh; H3DReader mesh_loader; mesh_loader.load("fichera-corner.mesh3d", &mesh); // Perform initial mesh refinement. for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); // Create an H1 space with default shapeset. H1Space space(&mesh, bc_types, essential_bc_values, Ord3(P_INIT_X, P_INIT_Y, P_INIT_Z)); // Initialize weak formulation. WeakForm wf; wf.add_matrix_form(bilinear_form<double, double>, bilinear_form<Ord, Ord>, HERMES_SYM, HERMES_ANY); wf.add_vector_form(linear_form<double, double>, linear_form<Ord, Ord>, HERMES_ANY); // Set exact solution. ExactSolution exact(&mesh, fndd); // DOF and CPU convergence graphs. SimpleGraph graph_dof_est, graph_cpu_est, graph_dof_exact, graph_cpu_exact; // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Initialize the solver in the case of SOLVER_PETSC or SOLVER_MUMPS. initialize_solution_environment(matrix_solver, argc, args); // Adaptivity loop. int as = 1; bool done = false; do { info("---- Adaptivity step %d:", as); // Construct globally refined reference mesh and setup reference space. Space* ref_space = construct_refined_space(&space,1 , H3D_H3D_H3D_REFT_HEX_XYZ); // Initialize discrete problem. bool is_linear = true; DiscreteProblem dp(&wf, ref_space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble the reference problem. info("Assembling on reference mesh (ndof: %d).", Space::get_num_dofs(ref_space)); dp.assemble(matrix, rhs); // Time measurement. cpu_time.tick(); // Solve the linear system on reference mesh. If successful, obtain the solution. info("Solving on reference mesh."); Solution ref_sln(ref_space->get_mesh()); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), ref_space, &ref_sln); else error ("Matrix solver failed.\n"); // Time measurement. cpu_time.tick(); // Project the reference solution on the coarse mesh. Solution sln(space.get_mesh()); info("Projecting reference solution on coarse mesh."); OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver); // Time measurement. cpu_time.tick(); // Output solution and mesh with polynomial orders. if (solution_output) { out_fn_vtk(&sln, "sln", as); out_orders_vtk(&space, "order", as); } // Skip the visualization time. cpu_time.tick(HERMES_SKIP); // Calculate element errors and total error estimate. info("Calculating error estimate and exact error."); Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM); bool solutions_for_adapt = true; double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln, solutions_for_adapt) * 100; // Calculate exact error. solutions_for_adapt = false; double err_exact_rel = adaptivity->calc_err_exact(&sln, &exact, solutions_for_adapt) * 100; // Report results. info("ndof_coarse: %d, ndof_fine: %d.", Space::get_num_dofs(&space), Space::get_num_dofs(ref_space)); info("err_est_rel: %g%%, err_exact_rel: %g%%.", err_est_rel, err_exact_rel); // Add entry to DOF and CPU convergence graphs. graph_dof_est.add_values(Space::get_num_dofs(&space), err_est_rel); graph_dof_est.save("conv_dof_est.dat"); graph_cpu_est.add_values(cpu_time.accumulated(), err_est_rel); graph_cpu_est.save("conv_cpu_est.dat"); graph_dof_exact.add_values(Space::get_num_dofs(&space), err_exact_rel); graph_dof_exact.save("conv_dof_exact.dat"); graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel); graph_cpu_exact.save("conv_cpu_exact.dat"); // If err_est_rel is too large, adapt the mesh. if (err_est_rel < ERR_STOP) done = true; else { info("Adapting coarse mesh."); adaptivity->adapt(THRESHOLD); } if (Space::get_num_dofs(&space) >= NDOF_STOP) done = true; // Clean up. delete ref_space->get_mesh(); delete ref_space; delete matrix; delete rhs; delete solver; delete adaptivity; // Increase the counter of performed adaptivity steps. as++; } while (!done); // Properly terminate the solver in the case of SOLVER_PETSC or SOLVER_MUMPS. finalize_solution_environment(matrix_solver); return 1; }
int main(int argc, char **args) { // Test variable. int success_test = 1; if (argc < 2) error("Not enough parameters."); // Load the mesh. Mesh mesh; H3DReader mloader; if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'.", args[1]); // Initialize the space. #if defined NONLIN1 Ord3 order(1, 1, 1); #else Ord3 order(2, 2, 2); #endif H1Space space(&mesh, bc_types, essential_bc_values, order); #if defined NONLIN2 // Do L2 projection of zero function. WeakForm proj_wf; proj_wf.add_matrix_form(biproj_form<double, scalar>, biproj_form<Ord, Ord>, HERMES_SYM); proj_wf.add_vector_form(liproj_form<double, scalar>, liproj_form<Ord, Ord>); bool is_linear = true; DiscreteProblem lp(&proj_wf, &space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver_proj = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver_proj)->set_solver(iterative_method); ((AztecOOSolver*) solver_proj)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble the linear problem. info("Assembling (ndof: %d).", Space::get_num_dofs(&space)); lp.assemble(matrix, rhs); // Solve the linear system. info("Solving."); if(!solver_proj->solve()) error ("Matrix solver failed.\n"); delete matrix; delete rhs; #endif // Initialize the weak formulation. WeakForm wf(1); wf.add_matrix_form(0, 0, jacobi_form<double, scalar>, jacobi_form<Ord, Ord>, HERMES_NONSYM); wf.add_vector_form(0, resid_form<double, scalar>, resid_form<Ord, Ord>); // Initialize the FE problem. #if defined NONLIN2 is_linear = false; #else bool is_linear = false; #endif DiscreteProblem dp(&wf, &space, is_linear); NoxSolver solver(&dp); #if defined NONLIN2 solver.set_init_sln(solver_proj->get_solution()); delete solver_proj; #endif solver.set_conv_iters(10); info("Solving."); Solution sln(&mesh); if(solver.solve()) Solution::vector_to_solution(solver.get_solution(), &space, &sln); else error ("Matrix solver failed.\n"); Solution ex_sln(&mesh); #ifdef NONLIN1 ex_sln.set_const(100.0); #else ex_sln.set_exact(exact_solution); #endif // Calculate exact error. info("Calculating exact error."); Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM); bool solutions_for_adapt = false; double err_exact = adaptivity->calc_err_exact(&sln, &ex_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_ABS); if (err_exact > EPS) // Calculated solution is not precise enough. success_test = 0; if (success_test) { info("Success!"); return ERR_SUCCESS; } else { info("Failure!"); return ERR_FAILURE; } }
int main(int argc, char* argv[]) { // Load the mesh. MeshSharedPtr mesh(new Mesh); if (USE_XML_FORMAT == true) { MeshReaderH2DXML mloader; Hermes::Mixins::Loggable::Static::info("Reading mesh in XML format."); try { mloader.load("domain.xml", mesh); } catch(Hermes::Exceptions::Exception& e) { e.print_msg(); } } else { MeshReaderH2D mloader; Hermes::Mixins::Loggable::Static::info("Reading mesh in original format."); mloader.load("domain.mesh", mesh); } // Perform initial mesh refinements (optional). for (int i = 0; i < INIT_REF_NUM; i++) mesh->refine_all_elements(); // Initialize the weak formulation. CustomWeakFormPoisson wf("Aluminum", new Hermes1DFunction<double>(LAMBDA_AL), "Copper", new Hermes1DFunction<double>(LAMBDA_CU), new Hermes2DFunction<double>(-VOLUME_HEAT_SRC)); // Initialize essential boundary conditions. DefaultEssentialBCConst<double> bc_essential( Hermes::vector<std::string>("Bottom", "Inner", "Outer", "Left"), FIXED_BDY_TEMP); EssentialBCs<double> bcs(&bc_essential); // Create an H1 space with default shapeset. SpaceSharedPtr<double> space(new H1Space<double>(mesh, &bcs, P_INIT)); int ndof = space->get_num_dofs(); Hermes::Mixins::Loggable::Static::info("ndof = %d", ndof); // Initialize the FE problem. DiscreteProblem<double> dp(&wf, space); // Initialize Newton solver. NewtonSolver<double> newton(&dp); // Perform Newton's iteration. try { // When newton.solve() is used without any parameters, this means that the initial coefficient // vector will be the zero vector, tolerance will be 1e-8, maximum allowed number of iterations // will be 100, and residual will be measured using Euclidean vector norm. newton.solve(); } catch(std::exception& e) { std::cout << e.what(); } // Translate the resulting coefficient vector into a Solution. MeshFunctionSharedPtr<double> sln(new Solution<double>); Solution<double>::vector_to_solution(newton.get_sln_vector(), space, sln); // VTK output. if (VTK_VISUALIZATION) { // Output solution in VTK format. Linearizer lin; bool mode_3D = true; lin.save_solution_vtk(sln, "sln.vtk", "Temperature", mode_3D); Hermes::Mixins::Loggable::Static::info("Solution in VTK format saved to file %s.", "sln.vtk"); // Output mesh and element orders in VTK format. Orderizer ord; ord.save_orders_vtk(space, "ord.vtk"); Hermes::Mixins::Loggable::Static::info("Element orders in VTK format saved to file %s.", "ord.vtk"); } // Visualize the solution. if (HERMES_VISUALIZATION) { ScalarView view("Solution", new WinGeom(0, 0, 440, 350)); // Hermes uses adaptive FEM to approximate higher-order FE solutions with linear // triangles for OpenGL. The second parameter of View::show() sets the error // tolerance for that. Options are HERMES_EPS_LOW, HERMES_EPS_NORMAL (default), // HERMES_EPS_HIGH and HERMES_EPS_VERYHIGH. The size of the graphics file grows // considerably with more accurate representation, so use it wisely. view.show(sln, HERMES_EPS_HIGH); View::wait(); } return 0; }
int main(int argc, char **args) { // Test variable. int success_test = 1; if (argc < 2) error("Not enough parameters."); // Load the mesh. Mesh mesh; H3DReader mloader; if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'.", args[1]); // Initialize the space. int mx = 2; Ord3 order(mx, mx, mx); H1Space space(&mesh, bc_types, NULL, order); #if defined LIN_DIRICHLET || defined NLN_DIRICHLET space.set_essential_bc_values(essential_bc_values); #endif // Initialize the weak formulation. WeakForm wf; wf.add_vector_form(form_0<double, scalar>, form_0<Ord, Ord>); #if defined LIN_NEUMANN || defined LIN_NEWTON wf.add_vector_form_surf(form_0_surf<double, scalar>, form_0_surf<Ord, Ord>); #endif #if defined LIN_DIRICHLET || defined NLN_DIRICHLET // preconditioner wf.add_matrix_form(precond_0_0<double, scalar>, precond_0_0<Ord, Ord>, HERMES_SYM); #endif // Initialize the FE problem. DiscreteProblem fep(&wf, &space); #if defined LIN_DIRICHLET || defined NLN_DIRICHLET // use ML preconditioner to speed-up things MlPrecond pc("sa"); pc.set_param("max levels", 6); pc.set_param("increasing or decreasing", "decreasing"); pc.set_param("aggregation: type", "MIS"); pc.set_param("coarse: type", "Amesos-KLU"); #endif NoxSolver solver(&fep); #if defined LIN_DIRICHLET || defined NLN_DIRICHLET // solver.set_precond(&pc); #endif info("Solving."); Solution sln(&mesh); if(solver.solve()) Solution::vector_to_solution(solver.get_solution(), &space, &sln); else error ("Matrix solver failed.\n"); Solution ex_sln(&mesh); ex_sln.set_exact(exact_solution); // Calculate exact error. info("Calculating exact error."); Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM); bool solutions_for_adapt = false; double err_exact = adaptivity->calc_err_exact(&sln, &ex_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_ABS); if (err_exact > EPS) // Calculated solution is not precise enough. success_test = 0; if (success_test) { info("Success!"); return ERR_SUCCESS; } else { info("Failure!"); return ERR_FAILURE; } }
int main(int argc, char **args) { int res = ERR_SUCCESS; #ifdef WITH_PETSC PetscInitialize(NULL, NULL, (char *) PETSC_NULL, PETSC_NULL); #endif set_verbose(false); TRACE_START("trace.txt"); DEBUG_OUTPUT_ON; SET_VERBOSE_LEVEL(0); try { for (int i = 0; i < 48; i++) { for (int j = 0; j < 48; j++) { // int i = 5; { // int j = 0; { printf("Config: %d, %d ", i, j); Mesh mesh; for (Word_t k = 0; k < countof(vtcs); k++) mesh.add_vertex(vtcs[k].x, vtcs[k].y, vtcs[k].z); Word_t h1[] = { hexs[0][i][0] + 1, hexs[0][i][1] + 1, hexs[0][i][2] + 1, hexs[0][i][3] + 1, hexs[0][i][4] + 1, hexs[0][i][5] + 1, hexs[0][i][6] + 1, hexs[0][i][7] + 1 }; mesh.add_hex(h1); Word_t h2[] = { hexs[1][j][0] + 1, hexs[1][j][1] + 1, hexs[1][j][2] + 1, hexs[1][j][3] + 1, hexs[1][j][4] + 1, hexs[1][j][5] + 1, hexs[1][j][6] + 1, hexs[1][j][7] + 1 }; mesh.add_hex(h2); // bc for (Word_t k = 0; k < countof(bnd); k++) { Word_t facet_idxs[Quad::NUM_VERTICES] = { bnd[k][0] + 1, bnd[k][1] + 1, bnd[k][2] + 1, bnd[k][3] + 1 }; mesh.add_quad_boundary(facet_idxs, bnd[k][4]); } mesh.ugh(); // mesh.dump(); // Element *hx[] = { mesh.elements[1], mesh.elements[2] }; // printf("[%d, %d]\n", hx[0]->get_face_orientation(1), hx[1]->get_face_orientation(2)); // Word_t fidx[4]; // hx[1]->get_face_vertices(2, fidx); // printf("FI: %d, %d, %d, %d\n", fidx[0], fidx[1], fidx[2], fidx[3]); printf("\n"); #ifdef OUTPUT_DIR BEGIN_BLOCK // output the mesh const char *of_name = OUTPUT_DIR "/ref.msh"; FILE *ofile = fopen(of_name, "w"); if (ofile != NULL) { GmshOutputEngine output(ofile); output.out(&mesh); fclose(ofile); } else { warning("Can not open '%s' for writing.", of_name); } END_BLOCK #endif H1ShapesetLobattoHex shapeset; // printf("* Setting the space up\n"); H1Space space(&mesh, &shapeset); space.set_bc_types(bc_types); space.set_essential_bc_values(essential_bc_values); #ifdef XM_YN_ZO order3_t ord(4, 4, 4); #elif defined XM_YN_ZO_2 order3_t ord(4, 4, 4); #elif defined X2_Y2_Z2 order3_t ord(2, 2, 2); #endif // printf(" - Setting uniform order to (%d, %d, %d)\n", dir_x, dir_y, dir_z); space.set_uniform_order(ord); space.assign_dofs(); // printf("* Calculating a solution\n"); #if defined WITH_UMFPACK UMFPackMatrix mat; UMFPackVector rhs; UMFPackLinearSolver solver(&mat, &rhs); #elif defined WITH_PARDISO PardisoLinearSolver solver; #elif defined WITH_PETSC PetscMatrix mat; PetscVector rhs; PetscLinearSolver solver(&mat, &rhs); #elif defined WITH_MUMPS MumpsMatrix mat; MumpsVector rhs; MumpsSolver solver(&mat, &rhs); #endif WeakForm wf; #ifdef DIRICHLET wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM); wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>); #elif defined NEWTON wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM); wf.add_matrix_form_surf(bilinear_form_surf<double, scalar>, bilinear_form_surf<ord_t, ord_t>); wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>); wf.add_vector_form_surf(linear_form_surf<double, scalar>, linear_form_surf<ord_t, ord_t>); #endif LinProblem lp(&wf); lp.set_space(&space); // assemble stiffness matrix lp.assemble(&mat, &rhs); // solve the stiffness matrix bool solved = solver.solve(); if (!solved) throw ERR_FAILURE; // { // char file_name[1024]; // sprintf(file_name, "%s/matrix-%d-%d", OUTPUT_DIR, i, j); // FILE *file = fopen(file_name, "w"); // if (file != NULL) { // solver.dump_matrix(file, "A"); // solver.dump_rhs(file, "b"); // // fclose(file); // } // } Solution sln(&mesh); sln.set_fe_solution(&space, solver.get_solution()); ExactSolution exsln(&mesh, exact_solution); // norm double h1_sln_norm = h1_norm(&sln); double h1_err_norm = h1_error(&sln, &exsln); printf(" - H1 solution norm: % le\n", h1_sln_norm); printf(" - H1 error norm: % le\n", h1_err_norm); double l2_sln_norm = l2_norm(&sln); double l2_err_norm = l2_error(&sln, &exsln); printf(" - L2 solution norm: % le\n", l2_sln_norm); printf(" - L2 error norm: % le\n", l2_err_norm); assert(h1_sln_norm > 0 && h1_err_norm > 0); assert(l2_sln_norm > 0 && l2_err_norm > 0); // // out fn // char fname[4096]; // sprintf(fname, "%s/cfg-%d-%d.pos", OUTPUT_DIR, i, j); // FILE *fnf = fopen(fname, "w"); // assert(fnf != NULL); // GmshOutputEngine out(fnf); // char var[64]; // sprintf(var, "%d_%d", i, j); // out.out(&sln, var); // fclose(fnf); // // char mfname[4096]; // sprintf(mfname, "%s/mesh-%d-%d.ref", OUTPUT_DIR, i, j); // FILE *mfnf = fopen(mfname, "w"); // assert(mfnf != NULL); // GmshOutputEngine outm(mfnf); // outm.out(&mesh); // fclose(mfnf); if (h1_err_norm > EPS || l2_err_norm > EPS) { // calculated solution is not enough precise printf("Solution is not precise enough.\n"); throw ERR_FAILURE; } printf("Passed\n"); } } } catch (int e) { res = e; printf("Failed\n"); } #ifdef WITH_PETSC PetscFinalize(); #endif TRACE_END; return res; }
int main(int argc, char **args) { // Test variable. int success_test = 1; for (int i = 0; i < 48; i++) { for (int j = 0; j < 48; j++) { info("Config: %d, %d ", i, j); Mesh mesh; for (unsigned int k = 0; k < countof(vtcs); k++) mesh.add_vertex(vtcs[k].x, vtcs[k].y, vtcs[k].z); unsigned int h1[] = { hexs[0][i][0] + 1, hexs[0][i][1] + 1, hexs[0][i][2] + 1, hexs[0][i][3] + 1, hexs[0][i][4] + 1, hexs[0][i][5] + 1, hexs[0][i][6] + 1, hexs[0][i][7] + 1 }; mesh.add_hex(h1); unsigned int h2[] = { hexs[1][j][0] + 1, hexs[1][j][1] + 1, hexs[1][j][2] + 1, hexs[1][j][3] + 1, hexs[1][j][4] + 1, hexs[1][j][5] + 1, hexs[1][j][6] + 1, hexs[1][j][7] + 1 }; mesh.add_hex(h2); // bc for (unsigned int k = 0; k < countof(bnd); k++) { unsigned int facet_idxs[Quad::NUM_VERTICES] = { bnd[k][0] + 1, bnd[k][1] + 1, bnd[k][2] + 1, bnd[k][3] + 1 }; mesh.add_quad_boundary(facet_idxs, bnd[k][4]); } mesh.ugh(); // Initialize the space. H1Space space(&mesh, bc_types, essential_bc_values); #ifdef XM_YN_ZO Ord3 ord(4, 4, 4); #elif defined XM_YN_ZO_2 Ord3 ord(4, 4, 4); #elif defined X2_Y2_Z2 Ord3 ord(2, 2, 2); #endif space.set_uniform_order(ord); // Initialize the weak formulation. WeakForm wf; #ifdef DIRICHLET wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM); wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>); #elif defined NEWTON wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM); wf.add_matrix_form_surf(bilinear_form_surf<double, scalar>, bilinear_form_surf<Ord, Ord>); wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>); wf.add_vector_form_surf(linear_form_surf<double, scalar>, linear_form_surf<Ord, Ord>); #endif // Initialize the FE problem. bool is_linear = true; DiscreteProblem dp(&wf, &space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble the linear problem. info("Assembling (ndof: %d).", Space::get_num_dofs(&space)); dp.assemble(matrix, rhs); // Solve the linear system. If successful, obtain the solution. info("Solving."); Solution sln(space.get_mesh()); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), &space, &sln); else error ("Matrix solver failed.\n"); ExactSolution ex_sln(&mesh, exact_solution); // Calculate exact error. info("Calculating exact error."); Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM); bool solutions_for_adapt = false; double err_exact = adaptivity->calc_err_exact(&sln, &ex_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_ABS); if (err_exact > EPS) { // Calculated solution is not precise enough. success_test = 0; info("failed, error:%g", err_exact); } else info("passed"); // Clean up. delete matrix; delete rhs; delete solver; delete adaptivity; } } if (success_test) { info("Success!"); return ERR_SUCCESS; } else { info("Failure!"); return ERR_FAILURE; } }
/*********************************************************************************** * main program * ************************************************************************************/ int main(int argc, char **args) { #ifdef WITH_PETSC PetscInitialize(NULL, NULL, PETSC_NULL, PETSC_NULL); PetscPushErrorHandler(PetscIgnoreErrorHandler, PETSC_NULL); // Disable PETSc error handler. #endif // Load the inital mesh. Mesh mesh; Mesh3DReader mesh_loader; mesh_loader.load("hexahedron.mesh3d", &mesh); // Initial uniform mesh refinements. printf("Performing %d initial mesh refinements.\n", INIT_REF_NUM); for (int i=0; i < INIT_REF_NUM; i++) mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); Word_t (nelem) = mesh.get_num_elements(); printf("New number of elements is %d.\n", nelem); //Initialize the shapeset and the cache. H1ShapesetLobattoHex shapeset; //Matrix solver. #if defined WITH_UMFPACK UMFPackMatrix mat; UMFPackVector rhs; UMFPackLinearSolver solver(&mat, &rhs); #elif defined WITH_PETSC PetscMatrix mat; PetscVector rhs; PetscLinearSolver solver(&mat, &rhs); #elif defined WITH_MUMPS MumpsMatrix mat; MumpsVector rhs; MumpsSolver solver(&mat, &rhs); #endif // Graphs of DOF convergence. GnuplotGraph graph; graph.set_captions("", "Degrees of Freedom", "Error [%]"); graph.set_log_y(); graph.add_row("Total error", "k", "-", "O"); // Create H1 space to setup the problem. H1Space space(&mesh, &shapeset); space.set_bc_types(bc_types); space.set_essential_bc_values(essential_bc_values); space.set_uniform_order(order3_t(P_INIT, P_INIT, P_INIT)); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(biform<double, double>, biform<ord_t, ord_t>, SYM, ANY); wf.add_vector_form(liform<double, double>, liform<ord_t, ord_t>, ANY); // Initialize the coarse mesh problem. LinProblem lp(&wf); lp.set_space(&space); // Adaptivity loop. int as = 0; bool done = false; do { printf("\n---- Adaptivity step %d:\n", as); printf("\nSolving on coarse mesh:\n"); // Procedures for coarse mesh problem. // Assign DOF. int ndof = space.assign_dofs(); printf(" - Number of DOF: %d\n", ndof); // Assemble stiffness matrix and rhs. printf(" - Assembling... "); fflush(stdout); if (lp.assemble(&mat, &rhs)) printf("done in %lf secs.\n", lp.get_time()); else error("failed!"); // Solve the system. printf(" - Solving... "); fflush(stdout); bool solved = solver.solve(); if (solved) printf("done in %lf secs.\n", solver.get_time()); else { printf("Failed.\n"); break; } // Construct a solution. Solution sln(&mesh); sln.set_fe_solution(&space, solver.get_solution()); // Output the orders and the solution. if (do_output) { out_orders(&space, "order", as); out_fn(&sln, "sln", as); } // Solving fine mesh problem. printf("Solving on fine mesh:\n"); // Matrix solver. #if defined WITH_UMFPACK UMFPackLinearSolver rsolver(&mat, &rhs); #elif defined WITH_PETSC PetscLinearSolver rsolver(&mat, &rhs); #elif defined WITH_MUMPS MumpsSolver rsolver(&mat, &rhs); #endif // Construct the refined mesh for reference(refined) solution. Mesh rmesh; rmesh.copy(mesh); rmesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); // Setup space for the reference (globally refined) solution. Space *rspace = space.dup(&rmesh); rspace->copy_orders(space, 1); // Initialize the mesh problem for reference solution. LinProblem rlp(&wf); rlp.set_space(rspace); // Assign DOF. int rndof = rspace->assign_dofs(); printf(" - Number of DOF: %d\n", rndof); // Assemble stiffness matric and rhs. printf(" - Assembling... "); fflush(stdout); if (rlp.assemble(&mat, &rhs)) printf("done in %lf secs.\n", rlp.get_time()); else error("failed!"); // Solve the system. printf(" - Solving... "); fflush(stdout); bool rsolved = rsolver.solve(); if (rsolved) printf("done in %lf secs.\n", rsolver.get_time()); else { printf("failed.\n"); break; } // Construct the reference(refined) solution. Solution rsln(&rmesh); rsln.set_fe_solution(rspace, rsolver.get_solution()); // Compare coarse and fine mesh. // Calculate the error estimate wrt. refined mesh solution. double err = h1_error(&sln, &rsln); printf(" - H1 error: % lf\n", err * 100); // Save it to the graph. graph.add_value(0, ndof, err * 100); if (do_output) graph.save("conv.gp"); // Calculate error estimates for adaptivity. printf("Adaptivity\n"); printf(" - calculating error: "); fflush(stdout); H1Adapt hp(&space); double err_est = hp.calc_error(&sln, &rsln) * 100; printf("% lf %%\n", err_est); // If error is too large, adapt the mesh. if (err_est < ERR_STOP) { printf("\nDone\n"); break; } printf(" - adapting... "); fflush(stdout); hp.adapt(THRESHOLD); printf("done in %lf secs (refined %d element(s)).\n", hp.get_adapt_time(), hp.get_num_refined_elements()); if (rndof >= NDOF_STOP) { printf("\nDone.\n"); break; } // Clean up. delete rspace; // Next adaptivity step. as++; mat.free(); rhs.free(); } while (!done); #ifdef WITH_PETSC PetscFinalize(); #endif return 1; }
int main(int argc, char **argv) { int res = ERR_SUCCESS; set_verbose(false); if (argc < 2) error("Not enough parameters"); printf("* Loading mesh '%s'\n", argv[1]); Mesh mesh; Mesh3DReader mesh_loader; if (!mesh_loader.load(argv[1], &mesh)) error("loading mesh file '%s'\n", argv[1]); H1ShapesetLobattoHex shapeset; #if defined NONLIN1 order3_t order(1, 1, 1); #else order3_t order(2, 2, 2); #endif printf("* Setting the space up\n"); H1Space space(&mesh, &shapeset); space.set_bc_types(bc_types); space.set_essential_bc_values(essential_bc_values); printf(" - Setting uniform order to (%d, %d, %d)\n", order.x, order.y, order.z); space.set_uniform_order(order); int ndofs = space.assign_dofs(); printf(" - Number of DOFs: %d\n", ndofs); #if defined NONLIN2 // do L2 projection of zero function WeakForm proj_wf; proj_wf.add_matrix_form(biproj_form<double, scalar>, biproj_form<ord_t, ord_t>, SYM); proj_wf.add_vector_form(liproj_form<double, scalar>, liproj_form<ord_t, ord_t>); LinearProblem lp(&proj_wf, &space); #ifdef WITH_UMFPACK UMFPackMatrix m; UMFPackVector v; UMFPackLinearSolver sl(&m, &v); #elif defined WITH_MUMPS MumpsMatrix m; MumpsVector v; MumpsSolver sl(&m, &v); #endif lp.assemble(&m, &v); sl.solve(); double *ps = sl.get_solution(); #endif printf("* Calculating a solution\n"); WeakForm wf(1); wf.add_matrix_form(0, 0, jacobi_form<double, scalar>, jacobi_form<ord_t, ord_t>, UNSYM); wf.add_vector_form(0, resid_form<double, scalar>, resid_form<ord_t, ord_t>); DiscreteProblem dp(&wf, &space); NoxSolver solver(&dp); #if defined NONLIN2 solver.set_init_sln(ps); #endif solver.set_conv_iters(10); printf(" - solving..."); fflush(stdout); Timer solve_timer; solve_timer.start(); bool solved = solver.solve(); solve_timer.stop(); if (solved) { printf(" done in %s (%lf secs), iters = %d\n", solve_timer.get_human_time(), solve_timer.get_seconds(), solver.get_num_iters()); double *s = solver.get_solution(); Solution sln(&mesh); sln.set_coeff_vector(&space, s); Solution ex_sln(&mesh); #ifdef NONLIN1 ex_sln.set_const(100.0); #else ex_sln.set_exact(exact_solution); #endif double h1_err = h1_error(&sln, &ex_sln); printf(" - H1 error norm: % le\n", h1_err); double l2_err = l2_error(&sln, &ex_sln); printf(" - L2 error norm: % le\n", l2_err); if (h1_err > EPS || l2_err > EPS) { // calculated solution is not enough precise res = ERR_FAILURE; } #ifdef OUTPUT_DIR printf("* Output\n"); // output const char *of_name = OUTPUT_DIR "/solution.vtk"; FILE *ofile = fopen(of_name, "w"); if (ofile != NULL) { VtkOutputEngine output(ofile); output.out(&sln, "Uh", FN_VAL_0); fclose(ofile); } else { warning("Cann not open '%s' for writing.", of_name); } #endif } else res = ERR_FAILURE; return res; }
int main(int argc, char **args) { // Test variable. int success_test = 1; if (argc < 3) error("Not enough parameters."); if (strcmp(args[1], "h1") != 0 && strcmp(args[1], "h1-ipol")) error("Unknown type of the projection."); // Load the mesh. Mesh mesh; H3DReader mloader; if (!mloader.load(args[2], &mesh)) error("Loading mesh file '%s'.", args[1]); // Refine the mesh. mesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ); // Initialize the space. #if defined X2_Y2_Z2 Ord3 order(2, 2, 2); #elif defined X3_Y3_Z3 Ord3 order(3, 3, 3); #elif defined XN_YM_ZO Ord3 order(2, 3, 4); #endif H1Space space(&mesh, bc_types, essential_bc_values, order); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM, HERMES_ANY_INT); wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>, HERMES_ANY_INT); // Initialize the FE problem. bool is_linear = true; DiscreteProblem dp(&wf, &space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble the linear problem. dp.assemble(matrix, rhs); // Solve the linear system. If successful, obtain the solution. info("Solving the linear problem."); Solution sln(&mesh); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), &space, &sln); else { info("Matrix solver failed."); success_test = 0; } unsigned int ne = mesh.get_num_base_elements(); for(std::map<unsigned int, Element*>::iterator it = mesh.elements.begin(); it != mesh.elements.end(); it++) { // We are done with base elements. if(it->first > ne) break; Element *e = it->second; Ord3 order(4, 4, 4); double error; Projection *proj; if (strcmp(args[1], "h1") == 0) proj = new H1Projection(&sln, e, space.get_shapeset()); else if (strcmp(args[1], "h1-ipol") == 0) proj = new H1ProjectionIpol(&sln, e, space.get_shapeset()); else success_test = 0; error = 0.0; error += proj->get_error(H3D_REFT_HEX_NONE, -1, order); error = sqrt(error); if (error > EPS) // Calculated solution is not precise enough. success_test = 0; // error = 0.0; error += proj->get_error(H3D_REFT_HEX_X, 20, order); error += proj->get_error(H3D_REFT_HEX_X, 21, order); error = sqrt(error); if (error > EPS) // Calculated solution is not precise enough. success_test = 0; // error = 0.0; error += proj->get_error(H3D_REFT_HEX_Y, 22, order); error += proj->get_error(H3D_REFT_HEX_Y, 23, order); error = sqrt(error); if (error > EPS) // Calculated solution is not precise enough. success_test = 0; // error = 0.0; error += proj->get_error(H3D_REFT_HEX_Z, 24, order); error += proj->get_error(H3D_REFT_HEX_Z, 25, order); error = sqrt(error); if (error > EPS) // Calculated solution is not precise enough. success_test = 0; // error = 0.0; error += proj->get_error(H3D_H3D_REFT_HEX_XY, 8, order); error += proj->get_error(H3D_H3D_REFT_HEX_XY, 9, order); error += proj->get_error(H3D_H3D_REFT_HEX_XY, 10, order); error += proj->get_error(H3D_H3D_REFT_HEX_XY, 11, order); error = sqrt(error); if (error > EPS) // Calculated solution is not precise enough. success_test = 0; // error = 0.0; error += proj->get_error(H3D_H3D_REFT_HEX_XZ, 12, order); error += proj->get_error(H3D_H3D_REFT_HEX_XZ, 13, order); error += proj->get_error(H3D_H3D_REFT_HEX_XZ, 14, order); error += proj->get_error(H3D_H3D_REFT_HEX_XZ, 15, order); error = sqrt(error); if (error > EPS) // Calculated solution is not precise enough. success_test = 0; // error = 0.0; error += proj->get_error(H3D_H3D_REFT_HEX_YZ, 16, order); error += proj->get_error(H3D_H3D_REFT_HEX_YZ, 17, order); error += proj->get_error(H3D_H3D_REFT_HEX_YZ, 18, order); error += proj->get_error(H3D_H3D_REFT_HEX_YZ, 19, order); error = sqrt(error); if (error > EPS) // Calculated solution is not precise enough. success_test = 0; // error = 0.0; for (int j = 0; j < 8; j++) error += proj->get_error(H3D_H3D_H3D_REFT_HEX_XYZ, j, order); error = sqrt(error); delete proj; if (error > EPS) // Calculated solution is not precise enough. success_test = 0; } if (success_test) { info("Success!"); return ERR_SUCCESS; } else { info("Failure!"); return ERR_FAILURE; } }
int main(int argc, char **args) { // Test variable. int success_test = 1; if (argc < 3) error("Not enough parameters."); // Load the mesh. Mesh mesh; H3DReader mloader; if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'.", args[1]); // Initialize the space according to the // command-line parameters passed. int o = 4; sscanf(args[2], "%d", &o); H1Space space(&mesh, bc_types, NULL, o); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM); wf.add_matrix_form_surf(bilinear_form_surf<double, scalar>, bilinear_form_surf<Ord, Ord>); wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>); wf.add_vector_form_surf(linear_form_surf<double, scalar>, linear_form_surf<Ord, Ord>); // Initialize the FE problem. bool is_linear = true; DiscreteProblem dp(&wf, &space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble the linear problem. info("Assembling (ndof: %d).", Space::get_num_dofs(&space)); dp.assemble(matrix, rhs); // Solve the linear system. If successful, obtain the solution. info("Solving."); Solution sln(&mesh); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), &space, &sln); else error ("Matrix solver failed.\n"); ExactSolution ex_sln(&mesh, exact_solution); // Calculate exact error. info("Calculating exact error."); Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM); bool solutions_for_adapt = false; double err_exact = adaptivity->calc_err_exact(&sln, &ex_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_ABS); if (err_exact > EPS) // Calculated solution is not precise enough. success_test = 0; // Clean up. delete matrix; delete rhs; delete solver; delete adaptivity; if (success_test) { info("Success!"); return ERR_SUCCESS; } else { info("Failure!"); return ERR_FAILURE; } }
int main(int argc, char **args) { // Test variable. int success_test = 1; if (argc < 5) error("Not enough parameters."); // Load the mesh. Mesh mesh; H3DReader mloader; if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'.", args[1]); // Initialize the space according to the // command-line parameters passed. sscanf(args[2], "%d", &P_INIT_X); sscanf(args[3], "%d", &P_INIT_Y); sscanf(args[4], "%d", &P_INIT_Z); Ord3 order(P_INIT_X, P_INIT_Y, P_INIT_Z); H1Space space(&mesh, bc_types, essential_bc_values, order); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM, HERMES_ANY); wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>, HERMES_ANY); // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Initialize the solver in the case of SOLVER_PETSC or SOLVER_MUMPS. initialize_solution_environment(matrix_solver, argc, args); // Adaptivity loop. int as = 1; bool done = false; do { info("---- Adaptivity step %d:", as); // Construct globally refined reference mesh and setup reference space. Space* ref_space = construct_refined_space(&space,1 , H3D_H3D_H3D_REFT_HEX_XYZ); out_orders_vtk(ref_space, "space", as); // Initialize the FE problem. bool is_linear = true; DiscreteProblem lp(&wf, ref_space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Initialize the preconditioner in the case of SOLVER_AZTECOO. if (matrix_solver == SOLVER_AZTECOO) { ((AztecOOSolver*) solver)->set_solver(iterative_method); ((AztecOOSolver*) solver)->set_precond(preconditioner); // Using default iteration parameters (see solver/aztecoo.h). } // Assemble the reference problem. info("Assembling on reference mesh (ndof: %d).", Space::get_num_dofs(ref_space)); lp.assemble(matrix, rhs); // Time measurement. cpu_time.tick(); // Solve the linear system on reference mesh. If successful, obtain the solution. info("Solving on reference mesh."); Solution ref_sln(ref_space->get_mesh()); if(solver->solve()) Solution::vector_to_solution(solver->get_solution(), ref_space, &ref_sln); else { printf("Matrix solver failed.\n"); success_test = 0; } // Time measurement. cpu_time.tick(); // Project the reference solution on the coarse mesh. Solution sln(space.get_mesh()); info("Projecting reference solution on coarse mesh."); OGProjection::project_global(&space, &ref_sln, &sln, matrix_solver); // Time measurement. cpu_time.tick(); // Calculate element errors and total error estimate. info("Calculating error estimate and exact error."); Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM); bool solutions_for_adapt = true; double err_est_rel = adaptivity->calc_err_est(&sln, &ref_sln, solutions_for_adapt) * 100; // Report results. info("ndof_coarse: %d, ndof_fine: %d.", Space::get_num_dofs(&space), Space::get_num_dofs(ref_space)); info("err_est_rel: %g%%.", err_est_rel); // If err_est_rel is too large, adapt the mesh. if (err_est_rel < ERR_STOP) { done = true; ExactSolution ex_sln(&mesh, exact_solution); // Calculate exact error. info("Calculating exact error."); Adapt *adaptivity = new Adapt(&space, HERMES_H1_NORM); bool solutions_for_adapt = false; double err_exact = adaptivity->calc_err_exact(&sln, &ex_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_ABS); if (err_exact > EPS) // Calculated solution is not precise enough. success_test = 0; break; } else { info("Adapting coarse mesh."); adaptivity->adapt(THRESHOLD); } // If we reached the maximum allowed number of degrees of freedom, set the return flag to failure. if (Space::get_num_dofs(&space) >= NDOF_STOP) { done = true; success_test = 0; } // Clean up. delete ref_space->get_mesh(); delete ref_space; delete matrix; delete rhs; delete solver; delete adaptivity; // Increase the counter of performed adaptivity steps. as++; } while (!done); // Properly terminate the solver in the case of SOLVER_PETSC or SOLVER_MUMPS. finalize_solution_environment(matrix_solver); if (success_test) { info("Success!"); return ERR_SUCCESS; } else { info("Failure!"); return ERR_FAILURE; } }