static snd_pcm_sframes_t snd_pcm_file_rewind(snd_pcm_t *pcm, snd_pcm_uframes_t frames)
{
	snd_pcm_file_t *file = pcm->private_data;
	snd_pcm_sframes_t err;
	snd_pcm_uframes_t n;
	
	n = snd_pcm_frames_to_bytes(pcm, frames);
	if (n > file->wbuf_used_bytes)
		frames = snd_pcm_bytes_to_frames(pcm, file->wbuf_used_bytes);
	err = snd_pcm_rewind(file->gen.slave, frames);
	if (err > 0) {
		file->appl_ptr = (file->appl_ptr - err + file->wbuf_size) % file->wbuf_size;
		n = snd_pcm_frames_to_bytes(pcm, err);
		file->wbuf_used_bytes -= n;
	}
	return err;
}
Example #2
0
/**
 * The process callback for this JACK application.
 * It is called by JACK at the appropriate times.
 */
int process (jack_nframes_t nframes, void *arg) {

    int rlen;
    int err;
    snd_pcm_sframes_t delay = target_delay;
    int i;

    delay = (num_periods*period_size)-snd_pcm_avail( alsa_handle ) ;

    delay -= jack_frames_since_cycle_start( client );
    // Do it the hard way.
    // this is for compensating xruns etc...

    if( delay > (target_delay+max_diff) ) {
	snd_pcm_rewind( alsa_handle, delay - target_delay );
	output_new_delay = (int) delay;

	delay = target_delay;

	// Set the resample_rate... we need to adjust the offset integral, to do this.
	// first look at the PI controller, this code is just a special case, which should never execute once
	// everything is swung in. 
	offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2;
	// Also clear the array. we are beginning a new control cycle.
	for( i=0; i<smooth_size; i++ )
		offset_array[i] = 0.0;
    }
    if( delay < (target_delay-max_diff) ) {

	output_new_delay = (int) delay;

	while ((target_delay-delay) > 0) {
	    snd_pcm_uframes_t to_write = ((target_delay-delay) > 512) ? 512 : (target_delay-delay);
	    snd_pcm_writei( alsa_handle, tmpbuf, to_write );
	    delay += to_write;
	}

	delay = target_delay;

	// Set the resample_rate... we need to adjust the offset integral, to do this.
	offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2;
	// Also clear the array. we are beginning a new control cycle.
	for( i=0; i<smooth_size; i++ )
		offset_array[i] = 0.0;
    }
    /* ok... now we should have target_delay +- max_diff on the alsa side.
     *
     * calculate the number of frames, we want to get.
     */

    double offset = delay - target_delay;

    // Save offset.
    offset_array[(offset_differential_index++)% smooth_size ] = offset;

    // Build the mean of the windowed offset array
    // basically fir lowpassing.
    double smooth_offset = 0.0;
    for( i=0; i<smooth_size; i++ )
	    smooth_offset +=
		    offset_array[ (i + offset_differential_index-1) % smooth_size] * window_array[i];
    smooth_offset /= (double) smooth_size;

    // this is the integral of the smoothed_offset
    offset_integral += smooth_offset;

    // Clamp offset.
    // the smooth offset still contains unwanted noise
    // which would go straigth onto the resample coeff.
    // it only used in the P component and the I component is used for the fine tuning anyways.
    if( fabs( smooth_offset ) < pclamp )
	    smooth_offset = 0.0;

    // ok. now this is the PI controller. 
    // u(t) = K * ( e(t) + 1/T \int e(t') dt' )
    // K = 1/catch_factor and T = catch_factor2
    double current_resample_factor = static_resample_factor - smooth_offset / (double) catch_factor - offset_integral / (double) catch_factor / (double)catch_factor2;

    // now quantize this value around resample_mean, so that the noise which is in the integral component doesnt hurt.
    current_resample_factor = floor( (current_resample_factor - resample_mean) * controlquant + 0.5 ) / controlquant + resample_mean;

    // Output "instrumentatio" gonna change that to real instrumentation in a few.
    output_resampling_factor = (float) current_resample_factor;
    output_diff = (float) smooth_offset;
    output_integral = (float) offset_integral;
    output_offset = (float) offset;

    // Clamp a bit.
    if( current_resample_factor < resample_lower_limit ) current_resample_factor = resample_lower_limit;
    if( current_resample_factor > resample_upper_limit ) current_resample_factor = resample_upper_limit;

    // Now Calculate how many samples we need.
    rlen = ceil( ((double)nframes) * current_resample_factor )+2;
    assert( rlen > 2 );

    // Calculate resample_mean so we can init ourselves to saner values.
    resample_mean = 0.9999 * resample_mean + 0.0001 * current_resample_factor;
    /*
     * now this should do it...
     */

    outbuf = alloca( rlen * formats[format].sample_size * num_channels );

    resampbuf = alloca( rlen * sizeof( float ) );
    /*
     * render jack ports to the outbuf...
     */

    int chn = 0;
    JSList *node = playback_ports;
    JSList *src_node = playback_srcs;
    SRC_DATA src;

    while ( node != NULL)
    {
	jack_port_t *port = (jack_port_t *) node->data;
	float *buf = jack_port_get_buffer (port, nframes);

	SRC_STATE *src_state = src_node->data;

	src.data_in = buf;
	src.input_frames = nframes;

	src.data_out = resampbuf;
	src.output_frames = rlen;
	src.end_of_input = 0;

	src.src_ratio = current_resample_factor;

	src_process( src_state, &src );

	formats[format].jack_to_soundcard( outbuf + format[formats].sample_size * chn, resampbuf, src.output_frames_gen, num_channels*format[formats].sample_size, NULL);

	src_node = jack_slist_next (src_node);
	node = jack_slist_next (node);
	chn++;
    }

    // now write the output...
again:
  err = snd_pcm_writei(alsa_handle, outbuf, src.output_frames_gen);
  //err = snd_pcm_writei(alsa_handle, outbuf, src.output_frames_gen);
  if( err < 0 ) {
      printf( "err = %d\n", err );
      if (xrun_recovery(alsa_handle, err) < 0) {
	  printf("Write error: %s\n", snd_strerror(err));
	  exit(EXIT_FAILURE);
      }
      goto again;
  }

    return 0;      
}
Example #3
0
snd_pcm_sframes_t snd_pcm_generic_rewind(snd_pcm_t *pcm, snd_pcm_uframes_t frames)
{
    snd_pcm_generic_t *generic = pcm->private_data;
    return snd_pcm_rewind(generic->slave, frames);
}