int maxPathSum(TreeNode *root) {
     // write your code here
     if (!root) return 0;
     ans = -0x7fffff;
     solve_dp(root);
     return ans;
 }
    int solve_dp(TreeNode *root) {
        if(root == NULL)
            return 0;
 
        int sum = root->val;
        int lf = 0, rt = 0;
        if(root->left)
            lf = solve_dp(root->left);
         
        if(root->right) 
            rt = solve_dp(root->right);
        if(lf > 0)
            sum += lf;
        if(rt > 0)
            sum += rt;
 
        ans = max(ans, sum);
        return max(0, max(lf, rt))+root->val;
    }
Example #3
0
static int solve_dp(char s1[], char s2[], int len1, int len2){
	callcount++;
	if (len1 == 0 || len2 == 0)
		return 0;

	if (s1[len1 - 1] == s2[len2 - 1]){
		if (cache[len1][len2] == -1)
			cache[len1][len2] = 1 + solve_dp(s1, s2, len1 - 1, len2 - 1);
		printf("%c(%d)[%d,%d] ", s1[len1 - 1], cache[len1][len2], len1, len2);
		return cache[len1][len2];
	}
	else{

		if (cache[len1 - 1][len2] == -1)
			cache[len1 - 1][len2] = solve_dp(s1, s2, len1 - 1, len2);

		if (cache[len1][len2 - 1] == -1)
			cache[len1][len2 - 1] = solve_dp(s1, s2, len1, len2 - 1);

		// guess why MAX here !!!
		return max(cache[len1 - 1][len2], cache[len1][len2 - 1]);
	}

}
Example #4
0
void dp_lcs(void){

	int r;
	int l1, l2;

	// naive
	callcount = 0;
	r = solve_naive(s1, s2, L1, L2);
	printf("common=%d, callcnt=%d\n", r, callcount);

	// DP
	for (l1 = 0; l1 <= L1; l1++)
		for (l2 = 0; l2 <= L2; l2++)
			cache[l1][l2] = -1;
	callcount = 0;
	r = solve_dp(s1, s2, L2, L2);
	printf("common=%d, callcnt=%d\n", r, callcount);

	br = 1;
	return;
}