Example #1
0
static void adau1781_spi_switch_mode(struct device *dev)
{
	struct spi_device *spi = to_spi_device(dev);

	/*
	 * To get the device into SPI mode CLATCH has to be pulled low three
	 * times.  Do this by issuing three dummy reads.
	 */
	spi_w8r8(spi, 0x00);
	spi_w8r8(spi, 0x00);
	spi_w8r8(spi, 0x00);
}
Example #2
0
static unsigned char rtc_read (unsigned char reg)
{
	int ret;

	ret = spi_w8r8(slave, reg);
	return ret < 0 ? 0 : ret;
}
Example #3
0
/*
 * Return the status of the DataFlash device.
 */
static inline int dataflash_status(struct spi_device *spi)
{
	/* NOTE:  at45db321c over 25 MHz wants to write
	 * a dummy byte after the opcode...
	 */
	return spi_w8r8(spi, OP_READ_STATUS);
}
Example #4
0
static int sx151x_spi_read(int chip, unsigned char reg)
{
	struct spi_slave *slave;
	int ret;

	slave = spi_setup_slave(CONFIG_SX151X_SPI_BUS, chip, 1000000,
				SPI_MODE_0);
	if (!slave)
		return 0;

	spi_claim_bus(slave);

	ret = spi_w8r8(slave, reg | 0x80);
	if (ret < 0)
		printf("spi%d.%d read fail: can't read %02x: %d\n",
			CONFIG_SX151X_SPI_BUS, chip, reg, ret);
	else
		printf("spi%d.%d read register 0x%02x: 0x%02x\n",
		       CONFIG_SX151X_SPI_BUS, chip, reg, ret);

	spi_release_bus(slave);
	spi_free_slave(slave);

	return ret;
}
Example #5
0
static int kxsd9_write_scale(struct iio_dev *indio_dev, int micro)
{
	int ret, i;
	struct kxsd9_state *st = iio_priv(indio_dev);
	bool foundit = false;

	for (i = 0; i < 4; i++)
		if (micro == kxsd9_micro_scales[i]) {
			foundit = true;
			break;
		}
	if (!foundit)
		return -EINVAL;

	mutex_lock(&st->buf_lock);
	ret = spi_w8r8(st->us, KXSD9_READ(KXSD9_REG_CTRL_C));
	if (ret)
		goto error_ret;
	st->tx[0] = KXSD9_WRITE(KXSD9_REG_CTRL_C);
	st->tx[1] = (ret & ~KXSD9_FS_MASK) | i;

	ret = spi_write(st->us, st->tx, 2);
error_ret:
	mutex_unlock(&st->buf_lock);
	return ret;
}
static int adxl34x_spi_read(struct spi_device *spi, unsigned char reg)
{
	unsigned char cmd;

	cmd = ADXL34X_READCMD(reg);

	return spi_w8r8(spi, cmd);
}
Example #7
0
static int lis3_spi_read(struct lis3lv02d *lis3, int reg, u8 *v)
{
	struct spi_device *spi = lis3->bus_priv;
	int ret = spi_w8r8(spi, reg | LIS3_SPI_READ);
	if (ret < 0)
		return -EINVAL;

	*v = (u8) ret;
	return 0;
}
Example #8
0
static int m41t94_read_time(struct device *dev, struct rtc_time *tm)
{
	struct spi_device *spi = to_spi_device(dev);
	u8 buf[2];
	int ret, hour;

	/* clear halt update bit */
	ret = spi_w8r8(spi, M41T94_REG_HT);
	if (ret < 0)
		return ret;
	if (ret & M41T94_BIT_HALT) {
		buf[0] = 0x80 | M41T94_REG_HT;
		buf[1] = ret & ~M41T94_BIT_HALT;
		spi_write(spi, buf, 2);
	}

	/* clear stop bit */
	ret = spi_w8r8(spi, M41T94_REG_SECONDS);
	if (ret < 0)
		return ret;
	if (ret & M41T94_BIT_STOP) {
		buf[0] = 0x80 | M41T94_REG_SECONDS;
		buf[1] = ret & ~M41T94_BIT_STOP;
		spi_write(spi, buf, 2);
	}

	tm->tm_sec  = bcd2bin(spi_w8r8(spi, M41T94_REG_SECONDS));
	tm->tm_min  = bcd2bin(spi_w8r8(spi, M41T94_REG_MINUTES));
	hour = spi_w8r8(spi, M41T94_REG_HOURS);
	tm->tm_hour = bcd2bin(hour & 0x3f);
	tm->tm_wday = bcd2bin(spi_w8r8(spi, M41T94_REG_WDAY)) - 1;
	tm->tm_mday = bcd2bin(spi_w8r8(spi, M41T94_REG_DAY));
	tm->tm_mon  = bcd2bin(spi_w8r8(spi, M41T94_REG_MONTH)) - 1;
	tm->tm_year = bcd2bin(spi_w8r8(spi, M41T94_REG_YEAR));
	if ((hour & M41T94_BIT_CB) || !(hour & M41T94_BIT_CEB))
		tm->tm_year += 100;

	dev_dbg(dev, "%s secs=%d, mins=%d, "
		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
		"read", tm->tm_sec, tm->tm_min,
		tm->tm_hour, tm->tm_mday,
		tm->tm_mon, tm->tm_year, tm->tm_wday);

	/* initial clock setting can be undefined */
	return rtc_valid_tm(tm);
}
Example #9
0
static int as3935_read(struct as3935_state *st, unsigned int reg, int *val)
{
	u8 cmd;
	int ret;

	cmd = (AS3935_READ_DATA | AS3935_ADDRESS(reg)) >> 8;
	ret = spi_w8r8(st->spi, cmd);
	if (ret < 0)
		return ret;
	*val = ret;

	return 0;
}
Example #10
0
static int ak4104_fill_cache(struct snd_soc_codec *codec)
{
	int i;
	u8 *reg_cache = codec->reg_cache;
	struct spi_device *spi = codec->control_data;

	for (i = 0; i < codec->driver->reg_cache_size; i++) {
		int ret = spi_w8r8(spi, i | AK4104_READ);
		if (ret < 0) {
			dev_err(&spi->dev, "SPI write failure\n");
			return ret;
		}

		reg_cache[i] = ret;
	}

	return 0;
}
Example #11
0
File: ade7754.c Project: 7799/linux
static int ade7754_spi_read_reg_8(struct device *dev,
		u8 reg_address,
		u8 *val)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct ade7754_state *st = iio_priv(indio_dev);
	int ret;

	ret = spi_w8r8(st->us, ADE7754_READ_REG(reg_address));
	if (ret < 0) {
		dev_err(&st->us->dev, "problem when reading 8 bit register 0x%02X",
				reg_address);
		return ret;
	}
	*val = ret;

	return 0;
}
Example #12
0
File: rf69.c Project: val2k/linux
u8 rf69_read_reg(struct spi_device *spi, u8 addr)
{
	int retval;

	retval = spi_w8r8(spi, addr);

	#ifdef DEBUG_VALUES
		if (retval < 0)
			/* should never happen, since we already checked,
			 * that module is connected. Therefore no error
			 * handling, just an optional error message...
			 */
			dev_dbg(&spi->dev, "read 0x%x FAILED\n",
				addr);
		else
			dev_dbg(&spi->dev, "read 0x%x from reg 0x%x\n",
				retval,
				addr);
	#endif

	return retval;
}
Example #13
0
static int __devinit m41t94_probe(struct spi_device *spi)
{
	struct rtc_device *rtc;
	int res;

	spi->bits_per_word = 8;
	spi_setup(spi);

	res = spi_w8r8(spi, M41T94_REG_SECONDS);
	if (res < 0) {
		dev_err(&spi->dev, "not found.\n");
		return res;
	}

	rtc = rtc_device_register(m41t94_driver.driver.name,
		&spi->dev, &m41t94_rtc_ops, THIS_MODULE);
	if (IS_ERR(rtc))
		return PTR_ERR(rtc);

	dev_set_drvdata(&spi->dev, rtc);

	return 0;
}
Example #14
0
/* When we cat /sys/bus/spi/devices/spi0.0/looptest this will be triggered */
static ssize_t dummy_looptest(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct spi_device *spi = to_spi_device(dev);
	struct dummy *p_dummy = dev_get_drvdata(&spi->dev);

	/*
	 * WARNING! Do not dereference the chip-specific data in any normal
	 * driver for a chip. It is usually STATIC and shall not be read
	 * or written to. Your chip driver should NOT depend on fields in this
	 * struct, this is just used here to alter the behaviour of the chip
	 * in order to perform tests.
	 */
	struct pl022_config_chip *chip_info = spi->controller_data;
	int status;
	u8 txbuf[14] = {0xDE, 0xAD, 0xBE, 0xEF, 0x2B, 0xAD,
			0xCA, 0xFE, 0xBA, 0xBE, 0xB1, 0x05,
			0xF0, 0x0D};
	u8 rxbuf[14];
	u8 *bigtxbuf_virtual;
	u8 *bigrxbuf_virtual;

	if (mutex_lock_interruptible(&p_dummy->lock))
		return -ERESTARTSYS;

	bigtxbuf_virtual = kmalloc(DMA_TEST_SIZE, GFP_KERNEL);
	if (bigtxbuf_virtual == NULL) {
		status = -ENOMEM;
		goto out;
	}
	bigrxbuf_virtual = kmalloc(DMA_TEST_SIZE, GFP_KERNEL);

	/* Fill TXBUF with some happy pattern */
	memset(bigtxbuf_virtual, 0xAA, DMA_TEST_SIZE);

	/*
	 * Force chip to 8 bit mode
	 * WARNING: NEVER DO THIS IN REAL DRIVER CODE, THIS SHOULD BE STATIC!
	 */
	chip_info->data_size = SSP_DATA_BITS_8;
	/* You should NOT DO THIS EITHER */
	spi->master->setup(spi);

	/* Now run the tests for 8bit mode */
	pr_info("Simple test 1: write 0xAA byte, read back garbage byte "
		"in 8bit mode\n");
	status = spi_w8r8(spi, 0xAA);
	if (status < 0)
		pr_warning("Siple test 1: FAILURE: spi_write_then_read "
			   "failed with status %d\n", status);
	else
		pr_info("Simple test 1: SUCCESS!\n");

	pr_info("Simple test 2: write 8 bytes, read back 8 bytes garbage "
		"in 8bit mode (full FIFO)\n");
	status = spi_write_then_read(spi, &txbuf[0], 8, &rxbuf[0], 8);
	if (status < 0)
		pr_warning("Simple test 2: FAILURE: spi_write_then_read() "
			   "failed with status %d\n", status);
	else
		pr_info("Simple test 2: SUCCESS!\n");

	pr_info("Simple test 3: write 14 bytes, read back 14 bytes garbage "
		"in 8bit mode (see if we overflow FIFO)\n");
	status = spi_write_then_read(spi, &txbuf[0], 14, &rxbuf[0], 14);
	if (status < 0)
		pr_warning("Simple test 3: FAILURE: failed with status %d "
			   "(probably FIFO overrun)\n", status);
	else
		pr_info("Simple test 3: SUCCESS!\n");

	pr_info("Simple test 4: write 8 bytes with spi_write(), read 8 "
		"bytes garbage with spi_read() in 8bit mode\n");
	status = spi_write(spi, &txbuf[0], 8);
	if (status < 0)
		pr_warning("Simple test 4 step 1: FAILURE: spi_write() "
			   "failed with status %d\n", status);
	else
		pr_info("Simple test 4 step 1: SUCCESS!\n");
	status = spi_read(spi, &rxbuf[0], 8);
	if (status < 0)
		pr_warning("Simple test 4 step 2: FAILURE: spi_read() "
			   "failed with status %d\n", status);
	else
		pr_info("Simple test 4 step 2: SUCCESS!\n");

	pr_info("Simple test 5: write 14 bytes with spi_write(), read "
		"14 bytes garbage with spi_read() in 8bit mode\n");
	status = spi_write(spi, &txbuf[0], 14);
	if (status < 0)
		pr_warning("Simple test 5 step 1: FAILURE: spi_write() "
			   "failed with status %d (probably FIFO overrun)\n",
			   status);
	else
		pr_info("Simple test 5 step 1: SUCCESS!\n");
	status = spi_read(spi, &rxbuf[0], 14);
	if (status < 0)
		pr_warning("Simple test 5 step 2: FAILURE: spi_read() "
			   "failed with status %d (probably FIFO overrun)\n",
			   status);
	else
		pr_info("Simple test 5: SUCCESS!\n");

	pr_info("Simple test 6: write %d bytes with spi_write(), "
		"read %d bytes garbage with spi_read() in 8bit mode\n",
		DMA_TEST_SIZE, DMA_TEST_SIZE);
	status = spi_write(spi, &bigtxbuf_virtual[0], DMA_TEST_SIZE);
	if (status < 0)
		pr_warning("Simple test 6 step 1: FAILURE: spi_write() "
			   "failed with status %d (probably FIFO overrun)\n",
			   status);
	else
		pr_info("Simple test 6 step 1: SUCCESS!\n");
	status = spi_read(spi, &bigrxbuf_virtual[0], DMA_TEST_SIZE);
	if (status < 0)
		pr_warning("Simple test 6 step 2: FAILURE: spi_read() "
			   "failed with status %d (probably FIFO overrun)\n",
			   status);
	else
		pr_info("Simple test 6: SUCCESS!\n");


	/*
	 * Force chip to 16 bit mode
	 * WARNING: NEVER DO THIS IN REAL DRIVER CODE, THIS SHOULD BE STATIC!
	 */
	chip_info->data_size = SSP_DATA_BITS_16;
	/* You should NOT DO THIS EITHER */
	spi->master->setup(spi);

	pr_info("Simple test 7: write 0xAA byte, read back garbage byte "
		"in 16bit bus mode\n");
	status = spi_w8r8(spi, 0xAA);
	if (status == -EIO)
		pr_info("Simple test 7: SUCCESS! (expected failure with "
			"status EIO)\n");
	else if (status < 0)
		pr_warning("Siple test 7: FAILURE: spi_write_then_read "
			   "failed with status %d\n", status);
	else
		pr_warning("Siple test 7: FAILURE: spi_write_then_read "
			   "succeeded but it was expected to fail!\n");

	pr_info("Simple test 8: write 8 bytes, read back 8 bytes garbage "
		"in 16bit mode (full FIFO)\n");
	status = spi_write_then_read(spi, &txbuf[0], 8, &rxbuf[0], 8);
	if (status < 0)
		pr_warning("Simple test 8: FAILURE: spi_write_then_read() "
			   "failed with status %d\n", status);
	else
		pr_info("Simple test 8: SUCCESS!\n");

	pr_info("Simple test 9: write 14 bytes, read back 14 bytes garbage "
		"in 16bit mode (see if we overflow FIFO)\n");
	status = spi_write_then_read(spi, &txbuf[0], 14, &rxbuf[0], 14);
	if (status < 0)
		pr_warning("Simple test 9: FAILURE: failed with status %d "
			   "(probably FIFO overrun)\n", status);
	else
		pr_info("Simple test 9: SUCCESS!\n");

	pr_info("Simple test 10: write %d bytes with spi_write(), "
	       "read %d bytes garbage with spi_read() in 16bit mode\n",
	       DMA_TEST_SIZE, DMA_TEST_SIZE);
	status = spi_write(spi, &bigtxbuf_virtual[0], DMA_TEST_SIZE);
	if (status < 0)
		pr_warning("Simple test 10 step 1: FAILURE: spi_write() "
			   "failed with status %d (probably FIFO overrun)\n",
			   status);
	else
		pr_info("Simple test 10 step 1: SUCCESS!\n");

	status = spi_read(spi, &bigrxbuf_virtual[0], DMA_TEST_SIZE);
	if (status < 0)
		pr_warning("Simple test 10 step 2: FAILURE: spi_read() "
			   "failed with status %d (probably FIFO overrun)\n",
			   status);
	else
		pr_info("Simple test 10: SUCCESS!\n");

	status = sprintf(buf, "loop test complete\n");
	kfree(bigrxbuf_virtual);
	kfree(bigtxbuf_virtual);
 out:
	mutex_unlock(&p_dummy->lock);
	return status;
}
Example #15
0
/**
 * sc16is7x2_read - Read back register content
 * @reg: Register offset
 * @ch:  Channel (0 or 1)
 *
 * Returns positive 8 bit value from the device if successful or a
 * negative value on error
 */
static int sc16is7x2_read(struct sc16is7x2_chip *ts, unsigned reg, unsigned ch)
{
	return spi_w8r8(ts->spi, read_cmd(reg, ch));
}
static int __devinit rs5c348_probe(struct spi_device *spi)
{
	int ret;
	struct rtc_device *rtc;
	struct rs5c348_plat_data *pdata;

	pdata = kzalloc(sizeof(struct rs5c348_plat_data), GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;
	spi->dev.platform_data = pdata;

	/* Check D7 of SECOND register */
	ret = spi_w8r8(spi, RS5C348_CMD_R(RS5C348_REG_SECS));
	if (ret < 0 || (ret & 0x80)) {
		dev_err(&spi->dev, "not found.\n");
		goto kfree_exit;
	}

	dev_info(&spi->dev, "chip found, driver version " DRV_VERSION "\n");
	dev_info(&spi->dev, "spiclk %u KHz.\n",
		 (spi->max_speed_hz + 500) / 1000);

	/* turn RTC on if it was not on */
	ret = spi_w8r8(spi, RS5C348_CMD_R(RS5C348_REG_CTL2));
	if (ret < 0)
		goto kfree_exit;
	if (ret & (RS5C348_BIT_XSTP | RS5C348_BIT_VDET)) {
		u8 buf[2];
		struct rtc_time tm;
		if (ret & RS5C348_BIT_VDET)
			dev_warn(&spi->dev, "voltage-low detected.\n");
		if (ret & RS5C348_BIT_XSTP)
			dev_warn(&spi->dev, "oscillator-stop detected.\n");
		rtc_time_to_tm(0, &tm);	/* 1970/1/1 */
		ret = rs5c348_rtc_set_time(&spi->dev, &tm);
		if (ret < 0)
			goto kfree_exit;
		buf[0] = RS5C348_CMD_W(RS5C348_REG_CTL2);
		buf[1] = 0;
		ret = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
		if (ret < 0)
			goto kfree_exit;
	}

	ret = spi_w8r8(spi, RS5C348_CMD_R(RS5C348_REG_CTL1));
	if (ret < 0)
		goto kfree_exit;
	if (ret & RS5C348_BIT_24H)
		pdata->rtc_24h = 1;

	rtc = rtc_device_register(rs5c348_driver.driver.name, &spi->dev,
				  &rs5c348_rtc_ops, THIS_MODULE);

	if (IS_ERR(rtc)) {
		ret = PTR_ERR(rtc);
		goto kfree_exit;
	}

	pdata->rtc = rtc;

	return 0;
 kfree_exit:
	kfree(pdata);
	return ret;
}
Example #17
0
static uint8_t lis_reg_read(struct lis302dl_info *lis, uint8_t reg)
{
    return spi_w8r8(lis->spi, 0xc0 | reg);
}
Example #18
0
static inline int bma220_read_reg(struct spi_device *spi, u8 reg)
{
	return spi_w8r8(spi, reg | BMA220_READ_MASK);
}
Example #19
0
static int pi433_probe(struct spi_device *spi)
{
	struct pi433_device	*device;
	int			retval;

	/* setup spi parameters */
	spi->mode = 0x00;
	spi->bits_per_word = 8;
	/*
	 * spi->max_speed_hz = 10000000;
	 * 1MHz already set by device tree overlay
	 */

	retval = spi_setup(spi);
	if (retval) {
		dev_dbg(&spi->dev, "configuration of SPI interface failed!\n");
		return retval;
	}

	dev_dbg(&spi->dev,
		"spi interface setup: mode 0x%2x, %d bits per word, %dhz max speed",
		spi->mode, spi->bits_per_word, spi->max_speed_hz);

	/* Ping the chip by reading the version register */
	retval = spi_w8r8(spi, 0x10);
	if (retval < 0)
		return retval;

	switch (retval) {
	case 0x24:
		dev_dbg(&spi->dev, "found pi433 (ver. 0x%x)", retval);
		break;
	default:
		dev_dbg(&spi->dev, "unknown chip version: 0x%x", retval);
		return -ENODEV;
	}

	/* Allocate driver data */
	device = kzalloc(sizeof(*device), GFP_KERNEL);
	if (!device)
		return -ENOMEM;

	/* Initialize the driver data */
	device->spi = spi;
	device->rx_active = false;
	device->tx_active = false;
	device->interrupt_rx_allowed = false;

	/* init rx buffer */
	device->rx_buffer = kmalloc(MAX_MSG_SIZE, GFP_KERNEL);
	if (!device->rx_buffer) {
		retval = -ENOMEM;
		goto RX_failed;
	}

	/* init wait queues */
	init_waitqueue_head(&device->tx_wait_queue);
	init_waitqueue_head(&device->rx_wait_queue);
	init_waitqueue_head(&device->fifo_wait_queue);

	/* init fifo */
	INIT_KFIFO(device->tx_fifo);

	/* init mutexes and locks */
	mutex_init(&device->tx_fifo_lock);
	mutex_init(&device->rx_lock);

	/* setup GPIO (including irq_handler) for the different DIOs */
	retval = setup_gpio(device);
	if (retval) {
		dev_dbg(&spi->dev, "setup of GPIOs failed");
		goto GPIO_failed;
	}

	/* setup the radio module */
	retval = rf69_set_mode(spi, standby);
	if (retval < 0)
		goto minor_failed;
	retval = rf69_set_data_mode(spi, DATAMODUL_MODE_PACKET);
	if (retval < 0)
		goto minor_failed;
	retval = rf69_enable_amplifier(spi, MASK_PALEVEL_PA0);
	if (retval < 0)
		goto minor_failed;
	retval = rf69_disable_amplifier(spi, MASK_PALEVEL_PA1);
	if (retval < 0)
		goto minor_failed;
	retval = rf69_disable_amplifier(spi, MASK_PALEVEL_PA2);
	if (retval < 0)
		goto minor_failed;
	retval = rf69_set_output_power_level(spi, 13);
	if (retval < 0)
		goto minor_failed;
	retval = rf69_set_antenna_impedance(spi, fifty_ohm);
	if (retval < 0)
		goto minor_failed;

	/* determ minor number */
	retval = pi433_get_minor(device);
	if (retval) {
		dev_dbg(&spi->dev, "get of minor number failed");
		goto minor_failed;
	}

	/* create device */
	device->devt = MKDEV(MAJOR(pi433_dev), device->minor);
	device->dev = device_create(pi433_class,
				    &spi->dev,
				    device->devt,
				    device,
				    "pi433.%d",
				    device->minor);
	if (IS_ERR(device->dev)) {
		pr_err("pi433: device register failed\n");
		retval = PTR_ERR(device->dev);
		goto device_create_failed;
	} else {
		dev_dbg(device->dev,
			"created device for major %d, minor %d\n",
			MAJOR(pi433_dev),
			device->minor);
	}

	/* start tx thread */
	device->tx_task_struct = kthread_run(pi433_tx_thread,
					     device,
					     "pi433.%d_tx_task",
					     device->minor);
	if (IS_ERR(device->tx_task_struct)) {
		dev_dbg(device->dev, "start of send thread failed");
		retval = PTR_ERR(device->tx_task_struct);
		goto send_thread_failed;
	}

	/* create cdev */
	device->cdev = cdev_alloc();
	if (!device->cdev) {
		dev_dbg(device->dev, "allocation of cdev failed");
		goto cdev_failed;
	}
	device->cdev->owner = THIS_MODULE;
	cdev_init(device->cdev, &pi433_fops);
	retval = cdev_add(device->cdev, device->devt, 1);
	if (retval) {
		dev_dbg(device->dev, "register of cdev failed");
		goto del_cdev;
	}

	/* spi setup */
	spi_set_drvdata(spi, device);

	return 0;

del_cdev:
	cdev_del(device->cdev);
cdev_failed:
	kthread_stop(device->tx_task_struct);
send_thread_failed:
	device_destroy(pi433_class, device->devt);
device_create_failed:
	pi433_free_minor(device);
minor_failed:
	free_gpio(device);
GPIO_failed:
	kfree(device->rx_buffer);
RX_failed:
	kfree(device);

	return retval;
}
Example #20
0
static int __devinit r2113s_probe(struct spi_device *spi)
{
	int ret=0;
	struct rtc_device *rtc;
	struct r2113s_plat_data *pdata=NULL;

    /* check spi device mode */
    if((spi->mode & (SPI_CPHA|SPI_CPOL)) != (SPI_CPHA|SPI_CPOL)){
		dev_err(&spi->dev, "mode setting error: NOT mode-2.\n");
        ret = -EINVAL;
        goto kfree_exit;
    }
    if(!(spi->mode & SPI_CS_HIGH)){
		dev_err(&spi->dev, "mode setting error: chipselect is NOT active high.\n");
        ret = -EINVAL;
        goto kfree_exit;
    }
    if(!(spi->mode & SPI_3WIRE)){
		dev_err(&spi->dev, "mode setting error: SI/SO signals is NOT shared.\n");
        ret = -EINVAL;
        goto kfree_exit;
    }
    if(spi->mode & SPI_LSB_FIRST){
		dev_err(&spi->dev, "mode setting error: not MSB first send/recieve.\n");
        ret = -EINVAL;
        goto kfree_exit;
    }

	pdata = kzalloc(sizeof(struct r2113s_plat_data), GFP_KERNEL);
	if (!pdata){
		dev_err(&spi->dev, "not enough memory.\n");
		ret = -ENOMEM;
        goto kfree_exit;
    }
	spi->dev.platform_data = pdata;

	/* Check D7 of SECOND register */
	ret = spi_w8r8(spi, R2113S_CMD_R(R2113S_REG_SECS));
	if (ret < 0 || (ret & 0x80)) {
		dev_err(&spi->dev, "not found.(%d)\n",ret);
		goto kfree_exit;
	}

	dev_info(&spi->dev, "chip found, driver version " DRV_VERSION "\n");
	dev_info(&spi->dev, "spiclk %u KHz.\n",
		 (spi->max_speed_hz + 500) / 1000);

	/* turn RTC on if it was not on */
	ret = spi_w8r8(spi, R2113S_CMD_R(R2113S_REG_CTL2));
	if (ret < 0)
		goto kfree_exit;
	pdata->pon_stat = ret & (R2113S_BIT_XSTP | R2113S_BIT_VDET | R2113S_BIT_PON);
	if (pdata->pon_stat) {
        //		u8 buf[2];
        //		struct rtc_time tm;
        if (pdata->pon_stat & R2113S_BIT_PON)
            dev_err(&spi->dev, "voltage-zero detected.\n");
        else {
            if (pdata->pon_stat & R2113S_BIT_VDET)
                dev_err(&spi->dev, "voltage-low detected.\n");
            if (pdata->pon_stat & R2113S_BIT_XSTP)
                dev_err(&spi->dev, "oscillator-stop detected.\n");
        }
/* 		rtc_time_to_tm(0, &tm);	/\* 1970/1/1 *\/ */
/* 		ret = r2113s_rtc_set_time(&spi->dev, &tm); */
/* 		if (ret < 0) */
/* 			goto kfree_exit; */
/* 		buf[0] = R2113S_CMD_W(R2113S_REG_CTL2); */
/* 		buf[1] = 0; */
/* 		ret = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0); */
/* 		if (ret < 0) */
/* 			goto kfree_exit; */
	}

	ret = spi_w8r8(spi, R2113S_CMD_R(R2113S_REG_CTL1));
	if (ret < 0)
		goto kfree_exit;
	if (ret & R2113S_BIT_24H)
		pdata->rtc_24h = 1;

	rtc = rtc_device_register(r2113s_driver.driver.name, &spi->dev,
				  &r2113s_rtc_ops, THIS_MODULE);

	if (IS_ERR(rtc)) {
		ret = PTR_ERR(rtc);
		goto kfree_exit;
	}

	pdata->rtc = rtc;

	return 0;
 kfree_exit:
    if(NULL!=pdata)
        kfree(pdata);
	return ret;
}