static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf) { u8 *read_addr; /* sanity checks */ if (!len) return (0); if (from + len > mtd->size) return (-EINVAL); /* we always read len bytes */ *retlen = len; if (!spiflash_wait_ready(FL_READING)) return -EINTR; read_addr = (u8 *)(spidata->readaddr + from); memcpy(buf, read_addr, len); spiflash_done(); return 0; }
static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr) { struct opcodes *ptr_opcode; u32 temp, reg; /* sanity checks */ if (instr->addr + instr->len > mtd->size) return (-EINVAL); if (!spiflash_wait_ready(FL_ERASING)) return -EINTR; spiflash_sendcmd(SPI_WRITE_ENABLE, 0); busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0); reg = spiflash_regread32(SPI_FLASH_CTL); ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE]; temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code); spiflash_regwrite32(SPI_FLASH_OPCODE, temp); reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START; spiflash_regwrite32(SPI_FLASH_CTL, reg); /* this will take some time */ spin_unlock_bh(&spidata->mutex); msleep(800); spin_lock_bh(&spidata->mutex); busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 20); spiflash_done(); instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return 0; }
return 0; } int spiflash_read(const struct hal_flash *hal_flash_dev, uint32_t addr, void *buf, uint32_t len) { int err = 0; uint8_t cmd[] = { SPIFLASH_READ, (uint8_t)(addr >> 16), (uint8_t)(addr >> 8), (uint8_t)(addr) }; struct spiflash_dev *dev; dev = (struct spiflash_dev *)hal_flash_dev; err = spiflash_wait_ready(dev, 100); if (!err) { spiflash_cs_activate(dev); /* Send command + address */ hal_spi_txrx(dev->spi_num, cmd, NULL, sizeof cmd); /* For security mostly, do not output random data, fill it with FF */ memset(buf, 0xFF, len); /* Tx buf does not matter, for simplicity pass read buffer */ hal_spi_txrx(dev->spi_num, buf, buf, len); spiflash_cs_deactivate(dev); } return 0; }
static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf) { u32 opcode, bytes_left; *retlen = 0; /* sanity checks */ if (!len) return (0); if (to + len > mtd->size) return (-EINVAL); opcode = stm_opcodes[SPI_PAGE_PROGRAM].code; bytes_left = len; do { u32 xact_len, reg, page_offset, spi_data = 0; xact_len = MIN(bytes_left, sizeof(__u32)); /* 32-bit writes cannot span across a page boundary * (256 bytes). This types of writes require two page * program operations to handle it correctly. The STM part * will write the overflow data to the beginning of the * current page as opposed to the subsequent page. */ page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len; if (page_offset > STM_PAGE_SIZE) { xact_len -= (page_offset - STM_PAGE_SIZE); } if (!spiflash_wait_ready(FL_WRITING)) return -EINTR; spiflash_sendcmd(SPI_WRITE_ENABLE, 0); switch (xact_len) { case 1: spi_data = (u32) ((u8) *buf); break; case 2: spi_data = (buf[1] << 8) | buf[0]; break; case 3: spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0]; break; case 4: spi_data = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; break; default: spi_data = 0; break; } spiflash_regwrite32(SPI_FLASH_DATA, spi_data); opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8); spiflash_regwrite32(SPI_FLASH_OPCODE, opcode); reg = spiflash_regread32(SPI_FLASH_CTL); reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START; spiflash_regwrite32(SPI_FLASH_CTL, reg); /* give the chip some time before we start busy waiting */ spin_unlock_bh(&spidata->mutex); schedule(); spin_lock_bh(&spidata->mutex); busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 0); spiflash_done(); bytes_left -= xact_len; to += xact_len; buf += xact_len; *retlen += xact_len; } while (bytes_left != 0); return 0; }