Example #1
0
static int tbf_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
	struct rtattr *tb[TCA_TBF_PTAB+1];
	struct tc_tbf_qopt *qopt;
	double buffer, mtu;
	double latency;
	SPRINT_BUF(b1);
	SPRINT_BUF(b2);

	if (opt == NULL)
		return 0;

	memset(tb, 0, sizeof(tb));
	parse_rtattr(tb, TCA_TBF_PTAB, RTA_DATA(opt), RTA_PAYLOAD(opt));

	if (tb[TCA_TBF_PARMS] == NULL)
		return -1;

	qopt = RTA_DATA(tb[TCA_TBF_PARMS]);
	if (RTA_PAYLOAD(tb[TCA_TBF_PARMS])  < sizeof(*qopt))
		return -1;
	fprintf(f, "rate %s ", sprint_rate(qopt->rate.rate, b1));
	buffer = ((double)qopt->rate.rate*tc_core_tick2usec(qopt->buffer))/1000000;
	if (show_details) {
		fprintf(f, "burst %s/%u mpu %s ", sprint_size(buffer, b1),
			1<<qopt->rate.cell_log, sprint_size(qopt->rate.mpu, b2));
	} else {
		fprintf(f, "burst %s ", sprint_size(buffer, b1));
	}
	if (show_raw)
		fprintf(f, "[%08x] ", qopt->buffer);
	if (qopt->peakrate.rate) {
		fprintf(f, "peakrate %s ", sprint_rate(qopt->peakrate.rate, b1));
		if (qopt->mtu || qopt->peakrate.mpu) {
			mtu = ((double)qopt->peakrate.rate*tc_core_tick2usec(qopt->mtu))/1000000;
			if (show_details) {
				fprintf(f, "mtu %s/%u mpu %s ", sprint_size(mtu, b1),
					1<<qopt->peakrate.cell_log, sprint_size(qopt->peakrate.mpu, b2));
			} else {
				fprintf(f, "minburst %s ", sprint_size(mtu, b1));
			}
			if (show_raw)
				fprintf(f, "[%08x] ", qopt->mtu);
		}
	}

	if (show_raw)
		fprintf(f, "limit %s ", sprint_size(qopt->limit, b1));

	latency = 1000000*(qopt->limit/(double)qopt->rate.rate) - tc_core_tick2usec(qopt->buffer);
	if (qopt->peakrate.rate) {
		double lat2 = 1000000*(qopt->limit/(double)qopt->peakrate.rate) - tc_core_tick2usec(qopt->mtu);
		if (lat2 > latency)
			latency = lat2;
	}
	fprintf(f, "lat %s ", sprint_usecs(tc_core_tick2usec(latency), b1));

	return 0;
}
Example #2
0
static int tbf_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
	struct rtattr *tb[TCA_TBF_PTAB+1];
	struct tc_tbf_qopt *qopt;
	double buffer, mtu;
	double latency;
	SPRINT_BUF(b1);
	SPRINT_BUF(b2);

	if (opt == NULL)
		return 0;

	parse_rtattr_nested(tb, TCA_TBF_PTAB, opt);

	if (tb[TCA_TBF_PARMS] == NULL)
		return -1;

	qopt = RTA_DATA(tb[TCA_TBF_PARMS]);
	if (RTA_PAYLOAD(tb[TCA_TBF_PARMS])  < sizeof(*qopt))
		return -1;
	fprintf(f, "rate %s ", sprint_rate(qopt->rate.rate, b1));
	buffer = tc_calc_xmitsize(qopt->rate.rate, qopt->buffer);
	if (show_details) {
		fprintf(f, "burst %s/%u mpu %s ", sprint_size(buffer, b1),
			1<<qopt->rate.cell_log, sprint_size(qopt->rate.mpu, b2));
	} else {
		fprintf(f, "burst %s ", sprint_size(buffer, b1));
	}
	if (show_raw)
		fprintf(f, "[%08x] ", qopt->buffer);
	if (qopt->peakrate.rate) {
		fprintf(f, "peakrate %s ", sprint_rate(qopt->peakrate.rate, b1));
		if (qopt->mtu || qopt->peakrate.mpu) {
			mtu = tc_calc_xmitsize(qopt->peakrate.rate, qopt->mtu);
			if (show_details) {
				fprintf(f, "mtu %s/%u mpu %s ", sprint_size(mtu, b1),
					1<<qopt->peakrate.cell_log, sprint_size(qopt->peakrate.mpu, b2));
			} else {
				fprintf(f, "minburst %s ", sprint_size(mtu, b1));
			}
			if (show_raw)
				fprintf(f, "[%08x] ", qopt->mtu);
		}
	}

	if (show_raw)
		fprintf(f, "limit %s ", sprint_size(qopt->limit, b1));

	latency = TIME_UNITS_PER_SEC*(qopt->limit/(double)qopt->rate.rate) - tc_core_tick2time(qopt->buffer);
	if (qopt->peakrate.rate) {
		double lat2 = TIME_UNITS_PER_SEC*(qopt->limit/(double)qopt->peakrate.rate) - tc_core_tick2time(qopt->mtu);
		if (lat2 > latency)
			latency = lat2;
	}
	fprintf(f, "lat %s ", sprint_time(latency, b1));

	return 0;
}
Example #3
0
static void
hfsc_print_sc(FILE *f, char *name, struct tc_service_curve *sc)
{
	SPRINT_BUF(b1);

	fprintf(f, "%s ", name);
	fprintf(f, "m1 %s ", sprint_rate(sc->m1, b1));
	fprintf(f, "d %s ", sprint_time(tc_core_ktime2time(sc->d), b1));
	fprintf(f, "m2 %s ", sprint_rate(sc->m2, b1));
}
Example #4
0
int
print_police(struct action_util *a, FILE *f, struct rtattr *arg)
{
	SPRINT_BUF(b1);
	SPRINT_BUF(b2);
	struct tc_police *p;
	struct rtattr *tb[TCA_POLICE_MAX+1];
	unsigned buffer;
	unsigned int linklayer;

	if (arg == NULL)
		return 0;

	parse_rtattr_nested(tb, TCA_POLICE_MAX, arg);

	if (tb[TCA_POLICE_TBF] == NULL) {
		fprintf(f, "[NULL police tbf]");
		return 0;
	}
#ifndef STOOPID_8BYTE
	if (RTA_PAYLOAD(tb[TCA_POLICE_TBF])  < sizeof(*p)) {
		fprintf(f, "[truncated police tbf]");
		return -1;
	}
#endif
	p = RTA_DATA(tb[TCA_POLICE_TBF]);

	fprintf(f, " police 0x%x ", p->index);
	fprintf(f, "rate %s ", sprint_rate(p->rate.rate, b1));
	buffer = tc_calc_xmitsize(p->rate.rate, p->burst);
	fprintf(f, "burst %s ", sprint_size(buffer, b1));
	fprintf(f, "mtu %s ", sprint_size(p->mtu, b1));
	if (show_raw)
		fprintf(f, "[%08x] ", p->burst);
	if (p->peakrate.rate)
		fprintf(f, "peakrate %s ", sprint_rate(p->peakrate.rate, b1));
	if (tb[TCA_POLICE_AVRATE])
		fprintf(f, "avrate %s ", sprint_rate(rta_getattr_u32(tb[TCA_POLICE_AVRATE]), b1));
	fprintf(f, "action %s", police_action_n2a(p->action, b1, sizeof(b1)));
	if (tb[TCA_POLICE_RESULT]) {
		fprintf(f, "/%s ", police_action_n2a(*(int*)RTA_DATA(tb[TCA_POLICE_RESULT]), b1, sizeof(b1)));
	} else
		fprintf(f, " ");
	fprintf(f, "overhead %ub ", p->rate.overhead);
	linklayer = (p->rate.linklayer & TC_LINKLAYER_MASK);
	if (linklayer > TC_LINKLAYER_ETHERNET || show_details)
		fprintf(f, "linklayer %s ", sprint_linklayer(linklayer, b2));
	fprintf(f, "\nref %d bind %d\n",p->refcnt, p->bindcnt);

	return 0;
}
Example #5
0
static int htb_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
	struct rtattr *tb[TCA_HTB_RTAB+1];
	struct tc_htb_opt *hopt;
	struct tc_htb_glob *gopt;
	double buffer,cbuffer;
	SPRINT_BUF(b1);
	SPRINT_BUF(b2);
	SPRINT_BUF(b3);

	if (opt == NULL)
		return 0;

	memset(tb, 0, sizeof(tb));
	parse_rtattr(tb, TCA_HTB_RTAB, RTA_DATA(opt), RTA_PAYLOAD(opt));

	if (tb[TCA_HTB_PARMS]) {

	    hopt = RTA_DATA(tb[TCA_HTB_PARMS]);
	    if (RTA_PAYLOAD(tb[TCA_HTB_PARMS])  < sizeof(*hopt)) return -1;

		if (!hopt->level) {
			fprintf(f, "prio %d ", (int)hopt->prio);
			if (show_details)
				fprintf(f, "quantum %d ", (int)hopt->quantum);
		}
	    fprintf(f, "rate %s ", sprint_rate(hopt->rate.rate, b1));
	    buffer = ((double)hopt->rate.rate*tc_core_tick2usec(hopt->buffer))/1000000;
	    fprintf(f, "ceil %s ", sprint_rate(hopt->ceil.rate, b1));
	    cbuffer = ((double)hopt->ceil.rate*tc_core_tick2usec(hopt->cbuffer))/1000000;
	    if (show_details) {
		fprintf(f, "burst %s/%u mpu %s overhead %s ",
			sprint_size(buffer, b1),
			1<<hopt->rate.cell_log,
			sprint_size(hopt->rate.mpu&0xFF, b2),
			sprint_size((hopt->rate.mpu>>8)&0xFF, b3));
		fprintf(f, "cburst %s/%u mpu %s overhead %s ",
			sprint_size(cbuffer, b1),
			1<<hopt->ceil.cell_log,
			sprint_size(hopt->ceil.mpu&0xFF, b2),
			sprint_size((hopt->ceil.mpu>>8)&0xFF, b3));
		fprintf(f, "level %d ", (int)hopt->level);
	    } else {
		fprintf(f, "burst %s ", sprint_size(buffer, b1));
		fprintf(f, "cburst %s ", sprint_size(cbuffer, b1));
	    }
	    if (show_raw)
		fprintf(f, "buffer [%08x] cbuffer [%08x] ", 
			hopt->buffer,hopt->cbuffer);
	}
Example #6
0
static int psp_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
	struct rtattr *tb[TCA_PSP_MAX+1];
	struct tc_psp_copt *copt;
	struct tc_psp_qopt *qopt;
	SPRINT_BUF(b);

	if (opt == NULL)
		return 0;

	memset(tb, 0, sizeof(tb));
	parse_rtattr_nested(tb, TCA_PSP_MAX, opt);

	if (tb[TCA_PSP_COPT]) {
		copt = RTA_DATA(tb[TCA_PSP_COPT]);
		if (RTA_PAYLOAD(tb[TCA_PSP_COPT]) < sizeof(*copt))
			return -1;
		fprintf(f, "level %d ", (int)copt->level);
		switch (copt->mode) {
		case TC_PSP_MODE_NORMAL:
			fprintf(f, "mode NORMAL ");
			break;
		case TC_PSP_MODE_STATIC:
			fprintf(f, "mode STATIC (%s) ", 
				sprint_rate(copt->rate, b));
			break;
		}
	}
	if (tb[TCA_PSP_QOPT]) {
		qopt = RTA_DATA(tb[TCA_PSP_QOPT]);
		if (RTA_PAYLOAD(tb[TCA_PSP_QOPT])  < sizeof(*qopt))
			return -1;
		fprintf(f, "default %x direct pkts %u max rate %s ifg %u", 
			qopt->defcls, qopt->direct_pkts,
			sprint_rate(qopt->rate, b), qopt->ifg);
	}
	return 0;
}
Example #7
0
void print_tcstats(FILE *fp, struct tc_stats *st)
{
	SPRINT_BUF(b1);

	fprintf(fp, " Sent %llu bytes %u pkts (dropped %u, overlimits %u) ",
		(unsigned long long)st->bytes, st->packets, st->drops, st->overlimits);
	if (st->bps || st->pps || st->qlen || st->backlog) {
		fprintf(fp, "\n ");
		if (st->bps || st->pps) {
			fprintf(fp, "rate ");
			if (st->bps)
				fprintf(fp, "%s ", sprint_rate(st->bps, b1));
			if (st->pps)
				fprintf(fp, "%upps ", st->pps);
		}
		if (st->qlen || st->backlog) {
			fprintf(fp, "backlog ");
			if (st->backlog)
				fprintf(fp, "%s ", sprint_size(st->backlog, b1));
			if (st->qlen)
				fprintf(fp, "%up ", st->qlen);
		}
	}
}
Example #8
0
static int fq_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
	struct rtattr *tb[TCA_FQ_MAX + 1];
	unsigned int plimit, flow_plimit;
	unsigned int buckets_log;
	int pacing;
	unsigned int rate, quantum;
	unsigned int refill_delay;
	unsigned int orphan_mask;
	unsigned int ce_threshold;

	SPRINT_BUF(b1);

	if (opt == NULL)
		return 0;

	parse_rtattr_nested(tb, TCA_FQ_MAX, opt);

	if (tb[TCA_FQ_PLIMIT] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PLIMIT]) >= sizeof(__u32)) {
		plimit = rta_getattr_u32(tb[TCA_FQ_PLIMIT]);
		fprintf(f, "limit %up ", plimit);
	}
	if (tb[TCA_FQ_FLOW_PLIMIT] &&
	    RTA_PAYLOAD(tb[TCA_FQ_FLOW_PLIMIT]) >= sizeof(__u32)) {
		flow_plimit = rta_getattr_u32(tb[TCA_FQ_FLOW_PLIMIT]);
		fprintf(f, "flow_limit %up ", flow_plimit);
	}
	if (tb[TCA_FQ_BUCKETS_LOG] &&
	    RTA_PAYLOAD(tb[TCA_FQ_BUCKETS_LOG]) >= sizeof(__u32)) {
		buckets_log = rta_getattr_u32(tb[TCA_FQ_BUCKETS_LOG]);
		fprintf(f, "buckets %u ", 1U << buckets_log);
	}
	if (tb[TCA_FQ_ORPHAN_MASK] &&
	    RTA_PAYLOAD(tb[TCA_FQ_ORPHAN_MASK]) >= sizeof(__u32)) {
		orphan_mask = rta_getattr_u32(tb[TCA_FQ_ORPHAN_MASK]);
		fprintf(f, "orphan_mask %u ", orphan_mask);
	}
	if (tb[TCA_FQ_RATE_ENABLE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_RATE_ENABLE]) >= sizeof(int)) {
		pacing = rta_getattr_u32(tb[TCA_FQ_RATE_ENABLE]);
		if (pacing == 0)
			fprintf(f, "nopacing ");
	}
	if (tb[TCA_FQ_QUANTUM] &&
	    RTA_PAYLOAD(tb[TCA_FQ_QUANTUM]) >= sizeof(__u32)) {
		quantum = rta_getattr_u32(tb[TCA_FQ_QUANTUM]);
		fprintf(f, "quantum %u ", quantum);
	}
	if (tb[TCA_FQ_INITIAL_QUANTUM] &&
	    RTA_PAYLOAD(tb[TCA_FQ_INITIAL_QUANTUM]) >= sizeof(__u32)) {
		quantum = rta_getattr_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
		fprintf(f, "initial_quantum %u ", quantum);
	}
	if (tb[TCA_FQ_FLOW_MAX_RATE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_FLOW_MAX_RATE]) >= sizeof(__u32)) {
		rate = rta_getattr_u32(tb[TCA_FQ_FLOW_MAX_RATE]);

		if (rate != ~0U)
			fprintf(f, "maxrate %s ", sprint_rate(rate, b1));
	}
	if (tb[TCA_FQ_FLOW_DEFAULT_RATE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_FLOW_DEFAULT_RATE]) >= sizeof(__u32)) {
		rate = rta_getattr_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);

		if (rate != 0)
			fprintf(f, "defrate %s ", sprint_rate(rate, b1));
	}
	if (tb[TCA_FQ_LOW_RATE_THRESHOLD] &&
	    RTA_PAYLOAD(tb[TCA_FQ_LOW_RATE_THRESHOLD]) >= sizeof(__u32)) {
		rate = rta_getattr_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);

		if (rate != 0)
			fprintf(f, "low_rate_threshold %s ", sprint_rate(rate, b1));
	}
	if (tb[TCA_FQ_FLOW_REFILL_DELAY] &&
	    RTA_PAYLOAD(tb[TCA_FQ_FLOW_REFILL_DELAY]) >= sizeof(__u32)) {
		refill_delay = rta_getattr_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]);
		fprintf(f, "refill_delay %s ", sprint_time(refill_delay, b1));
	}

	if (tb[TCA_FQ_CE_THRESHOLD] &&
	    RTA_PAYLOAD(tb[TCA_FQ_CE_THRESHOLD]) >= sizeof(__u32)) {
		ce_threshold = rta_getattr_u32(tb[TCA_FQ_CE_THRESHOLD]);
		if (ce_threshold != ~0U)
			fprintf(f, "ce_threshold %s ", sprint_time(ce_threshold, b1));
	}

	return 0;
}
Example #9
0
static int fq_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
	struct rtattr *tb[TCA_FQ_MAX + 1];
	unsigned int plimit, flow_plimit;
	unsigned int buckets_log;
	int pacing;
	unsigned int rate, quantum;
	SPRINT_BUF(b1);

	if (opt == NULL)
		return 0;

	parse_rtattr_nested(tb, TCA_FQ_MAX, opt);

	if (tb[TCA_FQ_PLIMIT] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PLIMIT]) >= sizeof(__u32)) {
		plimit = rta_getattr_u32(tb[TCA_FQ_PLIMIT]);
		fprintf(f, "limit %up ", plimit);
	}
	if (tb[TCA_FQ_FLOW_PLIMIT] &&
	    RTA_PAYLOAD(tb[TCA_FQ_FLOW_PLIMIT]) >= sizeof(__u32)) {
		flow_plimit = rta_getattr_u32(tb[TCA_FQ_FLOW_PLIMIT]);
		fprintf(f, "flow_limit %up ", flow_plimit);
	}
	if (tb[TCA_FQ_BUCKETS_LOG] &&
	    RTA_PAYLOAD(tb[TCA_FQ_BUCKETS_LOG]) >= sizeof(__u32)) {
		buckets_log = rta_getattr_u32(tb[TCA_FQ_BUCKETS_LOG]);
		fprintf(f, "buckets %u ", 1U << buckets_log);
	}
	if (tb[TCA_FQ_RATE_ENABLE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_RATE_ENABLE]) >= sizeof(int)) {
		pacing = rta_getattr_u32(tb[TCA_FQ_RATE_ENABLE]);
		if (pacing == 0)
			fprintf(f, "nopacing ");
	}
	if (tb[TCA_FQ_QUANTUM] &&
	    RTA_PAYLOAD(tb[TCA_FQ_QUANTUM]) >= sizeof(__u32)) {
		quantum = rta_getattr_u32(tb[TCA_FQ_QUANTUM]);
		fprintf(f, "quantum %u ", quantum);
	}
	if (tb[TCA_FQ_INITIAL_QUANTUM] &&
	    RTA_PAYLOAD(tb[TCA_FQ_INITIAL_QUANTUM]) >= sizeof(__u32)) {
		quantum = rta_getattr_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
		fprintf(f, "initial_quantum %u ", quantum);
	}
	if (tb[TCA_FQ_FLOW_MAX_RATE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_FLOW_MAX_RATE]) >= sizeof(__u32)) {
		rate = rta_getattr_u32(tb[TCA_FQ_FLOW_MAX_RATE]);

		if (rate != ~0U)
			fprintf(f, "maxrate %s ", sprint_rate(rate, b1));
	}
	if (tb[TCA_FQ_FLOW_DEFAULT_RATE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_FLOW_DEFAULT_RATE]) >= sizeof(__u32)) {
		rate = rta_getattr_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);

		if (rate != 0)
			fprintf(f, "defrate %s ", sprint_rate(rate, b1));
	}

	return 0;
}
Example #10
0
static int netem_parse_opt(struct qdisc_util *qu, int argc, char **argv,
			   struct nlmsghdr *n)
{
	int dist_size = 0;
	struct rtattr *tail;
	struct tc_netem_qopt opt = { .limit = 1000 };
	struct tc_netem_corr cor;
	struct tc_netem_reorder reorder;
	struct tc_netem_corrupt corrupt;
	struct tc_netem_gimodel gimodel;
	struct tc_netem_gemodel gemodel;
	struct tc_netem_rate rate;
	__s16 *dist_data = NULL;
	__u16 loss_type = NETEM_LOSS_UNSPEC;
	int present[__TCA_NETEM_MAX];
	__u64 rate64 = 0;

	memset(&cor, 0, sizeof(cor));
	memset(&reorder, 0, sizeof(reorder));
	memset(&corrupt, 0, sizeof(corrupt));
	memset(&rate, 0, sizeof(rate));
	memset(present, 0, sizeof(present));

	for( ; argc > 0; --argc, ++argv) {
		if (matches(*argv, "limit") == 0) {
			NEXT_ARG();
			if (get_size(&opt.limit, *argv)) {
				explain1("limit");
				return -1;
			}
		} else if (matches(*argv, "latency") == 0 ||
			   matches(*argv, "delay") == 0) {
			NEXT_ARG();
			if (get_ticks(&opt.latency, *argv)) {
				explain1("latency");
				return -1;
			}

			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				if (get_ticks(&opt.jitter, *argv)) {
					explain1("latency");
					return -1;
				}

				if (NEXT_IS_NUMBER()) {
					NEXT_ARG();
					++present[TCA_NETEM_CORR];
					if (get_percent(&cor.delay_corr, *argv)) {
						explain1("latency");
						return -1;
					}
				}
			}
		} else if (matches(*argv, "loss") == 0 ||
			   matches(*argv, "drop") == 0) {
			if (opt.loss > 0 || loss_type != NETEM_LOSS_UNSPEC) {
				explain1("duplicate loss argument\n");
				return -1;
			}

			NEXT_ARG();
			/* Old (deprecated) random loss model syntax */
			if (isdigit(argv[0][0]))
				goto random_loss_model;

			if (!strcmp(*argv, "random")) {
				NEXT_ARG();
	random_loss_model:
				if (get_percent(&opt.loss, *argv)) {
					explain1("loss percent");
					return -1;
				}
				if (NEXT_IS_NUMBER()) {
					NEXT_ARG();
					++present[TCA_NETEM_CORR];
					if (get_percent(&cor.loss_corr, *argv)) {
						explain1("loss correllation");
						return -1;
					}
				}
			} else if (!strcmp(*argv, "state")) {
				double p13;

				NEXT_ARG();
				if (parse_percent(&p13, *argv)) {
					explain1("loss p13");
					return -1;
				}

				/* set defaults */
				set_percent(&gimodel.p13, p13);
				set_percent(&gimodel.p31, 1. - p13);
				set_percent(&gimodel.p32, 0);
				set_percent(&gimodel.p23, 1.);
				set_percent(&gimodel.p14, 0);
				loss_type = NETEM_LOSS_GI;

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gimodel.p31, *argv)) {
					explain1("loss p31");
					return -1;
				}

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gimodel.p32, *argv)) {
					explain1("loss p32");
					return -1;
				}

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gimodel.p23, *argv)) {
					explain1("loss p23");
					return -1;
				}
				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gimodel.p14, *argv)) {
					explain1("loss p14");
					return -1;
				}

			} else if (!strcmp(*argv, "gemodel")) {
				NEXT_ARG();
				if (get_percent(&gemodel.p, *argv)) {
					explain1("loss gemodel p");
					return -1;
				}

				/* set defaults */
				set_percent(&gemodel.r, 1.);
				set_percent(&gemodel.h, 0);
				set_percent(&gemodel.k1, 0);
				loss_type = NETEM_LOSS_GE;

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gemodel.r, *argv)) {
					explain1("loss gemodel r");
					return -1;
				}

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gemodel.h, *argv)) {
					explain1("loss gemodel h");
					return -1;
				}
				/* netem option is "1-h" but kernel
				 * expects "h".
				 */
				gemodel.h = max_percent_value - gemodel.h;

				if (!NEXT_IS_NUMBER())
					continue;
				NEXT_ARG();
				if (get_percent(&gemodel.k1, *argv)) {
					explain1("loss gemodel k");
					return -1;
				}
			} else {
				fprintf(stderr, "Unknown loss parameter: %s\n",
					*argv);
				return -1;
			}
		} else if (matches(*argv, "ecn") == 0) {
				present[TCA_NETEM_ECN] = 1;
		} else if (matches(*argv, "reorder") == 0) {
			NEXT_ARG();
			present[TCA_NETEM_REORDER] = 1;
			if (get_percent(&reorder.probability, *argv)) {
				explain1("reorder");
				return -1;
			}
			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				++present[TCA_NETEM_CORR];
				if (get_percent(&reorder.correlation, *argv)) {
					explain1("reorder");
					return -1;
				}
			}
		} else if (matches(*argv, "corrupt") == 0) {
			NEXT_ARG();
			present[TCA_NETEM_CORRUPT] = 1;
			if (get_percent(&corrupt.probability, *argv)) {
				explain1("corrupt");
				return -1;
			}
			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				++present[TCA_NETEM_CORR];
				if (get_percent(&corrupt.correlation, *argv)) {
					explain1("corrupt");
					return -1;
				}
			}
		} else if (matches(*argv, "gap") == 0) {
			NEXT_ARG();
			if (get_u32(&opt.gap, *argv, 0)) {
				explain1("gap");
				return -1;
			}
		} else if (matches(*argv, "duplicate") == 0) {
			NEXT_ARG();
			if (get_percent(&opt.duplicate, *argv)) {
				explain1("duplicate");
				return -1;
			}
			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				if (get_percent(&cor.dup_corr, *argv)) {
					explain1("duplicate");
					return -1;
				}
			}
		} else if (matches(*argv, "distribution") == 0) {
			NEXT_ARG();
			dist_data = calloc(sizeof(dist_data[0]), MAX_DIST);
			dist_size = get_distribution(*argv, dist_data, MAX_DIST);
			if (dist_size <= 0) {
				free(dist_data);
				return -1;
			}
		} else if (matches(*argv, "rate") == 0) {
			++present[TCA_NETEM_RATE];
			NEXT_ARG();
			if (get_rate64(&rate64, *argv)) {
				explain1("rate");
				return -1;
			}
			if (NEXT_IS_SIGNED_NUMBER()) {
				NEXT_ARG();
				if (get_s32(&rate.packet_overhead, *argv, 0)) {
					explain1("rate");
					return -1;
				}
			}
			if (NEXT_IS_NUMBER()) {
				NEXT_ARG();
				if (get_u32(&rate.cell_size, *argv, 0)) {
					explain1("rate");
					return -1;
				}
			}
			if (NEXT_IS_SIGNED_NUMBER()) {
				NEXT_ARG();
				if (get_s32(&rate.cell_overhead, *argv, 0)) {
					explain1("rate");
					return -1;
				}
			}
		} else if (strcmp(*argv, "help") == 0) {
			explain();
			return -1;
		} else {
			fprintf(stderr, "What is \"%s\"?\n", *argv);
			explain();
			return -1;
		}
	}

	tail = NLMSG_TAIL(n);

	if (reorder.probability) {
		if (opt.latency == 0) {
			fprintf(stderr, "reordering not possible without specifying some delay\n");
			explain();
			return -1;
		}
		if (opt.gap == 0)
			opt.gap = 1;
	} else if (opt.gap > 0) {
		fprintf(stderr, "gap specified without reorder probability\n");
		explain();
		return -1;
	}

	if (present[TCA_NETEM_ECN]) {
		if (opt.loss <= 0 && loss_type == NETEM_LOSS_UNSPEC) {
			fprintf(stderr, "ecn requested without loss model\n");
			explain();
			return -1;
		}
	}

	if (dist_data && (opt.latency == 0 || opt.jitter == 0)) {
		fprintf(stderr, "distribution specified but no latency and jitter values\n");
		explain();
		return -1;
	}

	if (addattr_l(n, 1024, TCA_OPTIONS, &opt, sizeof(opt)) < 0)
		return -1;

	if (present[TCA_NETEM_CORR] &&
	    addattr_l(n, 1024, TCA_NETEM_CORR, &cor, sizeof(cor)) < 0)
			return -1;

	if (present[TCA_NETEM_REORDER] &&
	    addattr_l(n, 1024, TCA_NETEM_REORDER, &reorder, sizeof(reorder)) < 0)
		return -1;

	if (present[TCA_NETEM_ECN] &&
	    addattr_l(n, 1024, TCA_NETEM_ECN, &present[TCA_NETEM_ECN],
		      sizeof(present[TCA_NETEM_ECN])) < 0)
			return -1;

	if (present[TCA_NETEM_CORRUPT] &&
	    addattr_l(n, 1024, TCA_NETEM_CORRUPT, &corrupt, sizeof(corrupt)) < 0)
		return -1;

	if (loss_type != NETEM_LOSS_UNSPEC) {
		struct rtattr *start;

		start = addattr_nest(n, 1024, TCA_NETEM_LOSS | NLA_F_NESTED);
		if (loss_type == NETEM_LOSS_GI) {
			if (addattr_l(n, 1024, NETEM_LOSS_GI,
				      &gimodel, sizeof(gimodel)) < 0)
			    return -1;
		} else if (loss_type == NETEM_LOSS_GE) {
			if (addattr_l(n, 1024, NETEM_LOSS_GE,
				      &gemodel, sizeof(gemodel)) < 0)
			    return -1;
		} else {
			fprintf(stderr, "loss in the weeds!\n");
			return -1;
		}
		
		addattr_nest_end(n, start);
	}

	if (present[TCA_NETEM_RATE]) {
		if (rate64 >= (1ULL << 32)) {
			if (addattr_l(n, 1024,
				      TCA_NETEM_RATE64, &rate64, sizeof(rate64)) < 0)
				return -1;
			rate.rate = ~0U;
		} else {
			rate.rate = rate64;
		}
		if (addattr_l(n, 1024, TCA_NETEM_RATE, &rate, sizeof(rate)) < 0)
			return -1;
	}

	if (dist_data) {
		if (addattr_l(n, MAX_DIST * sizeof(dist_data[0]),
			      TCA_NETEM_DELAY_DIST,
			      dist_data, dist_size * sizeof(dist_data[0])) < 0)
			return -1;
		free(dist_data);
	}
	tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail;
	return 0;
}

static int netem_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
	const struct tc_netem_corr *cor = NULL;
	const struct tc_netem_reorder *reorder = NULL;
	const struct tc_netem_corrupt *corrupt = NULL;
	const struct tc_netem_gimodel *gimodel = NULL;
	const struct tc_netem_gemodel *gemodel = NULL;
	int *ecn = NULL;
	struct tc_netem_qopt qopt;
	const struct tc_netem_rate *rate = NULL;
	int len = RTA_PAYLOAD(opt) - sizeof(qopt);
	__u64 rate64 = 0;
	SPRINT_BUF(b1);

	if (opt == NULL)
		return 0;

	if (len < 0) {
		fprintf(stderr, "options size error\n");
		return -1;
	}
	memcpy(&qopt, RTA_DATA(opt), sizeof(qopt));

	if (len > 0) {
		struct rtattr *tb[TCA_NETEM_MAX+1];
		parse_rtattr(tb, TCA_NETEM_MAX, RTA_DATA(opt) + sizeof(qopt),
			     len);

		if (tb[TCA_NETEM_CORR]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_CORR]) < sizeof(*cor))
				return -1;
			cor = RTA_DATA(tb[TCA_NETEM_CORR]);
		}
		if (tb[TCA_NETEM_REORDER]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_REORDER]) < sizeof(*reorder))
				return -1;
			reorder = RTA_DATA(tb[TCA_NETEM_REORDER]);
		}
		if (tb[TCA_NETEM_CORRUPT]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_CORRUPT]) < sizeof(*corrupt))
				return -1;
			corrupt = RTA_DATA(tb[TCA_NETEM_CORRUPT]);
		}
		if (tb[TCA_NETEM_LOSS]) {
			struct rtattr *lb[NETEM_LOSS_MAX + 1];

			parse_rtattr_nested(lb, NETEM_LOSS_MAX, tb[TCA_NETEM_LOSS]);
			if (lb[NETEM_LOSS_GI])
				gimodel = RTA_DATA(lb[NETEM_LOSS_GI]);
			if (lb[NETEM_LOSS_GE])
				gemodel = RTA_DATA(lb[NETEM_LOSS_GE]);
		}			
		if (tb[TCA_NETEM_RATE]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_RATE]) < sizeof(*rate))
				return -1;
			rate = RTA_DATA(tb[TCA_NETEM_RATE]);
		}
		if (tb[TCA_NETEM_ECN]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_ECN]) < sizeof(*ecn))
				return -1;
			ecn = RTA_DATA(tb[TCA_NETEM_ECN]);
		}
		if (tb[TCA_NETEM_RATE64]) {
			if (RTA_PAYLOAD(tb[TCA_NETEM_RATE64]) < sizeof(rate64))
				return -1;
			rate64 = rta_getattr_u64(tb[TCA_NETEM_RATE64]);
		}
	}

	fprintf(f, "limit %d", qopt.limit);

	if (qopt.latency) {
		fprintf(f, " delay %s", sprint_ticks(qopt.latency, b1));

		if (qopt.jitter) {
			fprintf(f, "  %s", sprint_ticks(qopt.jitter, b1));
			if (cor && cor->delay_corr)
				fprintf(f, " %s", sprint_percent(cor->delay_corr, b1));
		}
	}

	if (qopt.loss) {
		fprintf(f, " loss %s", sprint_percent(qopt.loss, b1));
		if (cor && cor->loss_corr)
			fprintf(f, " %s", sprint_percent(cor->loss_corr, b1));
	}

	if (gimodel) {
		fprintf(f, " loss state p13 %s", sprint_percent(gimodel->p13, b1));
		fprintf(f, " p31 %s", sprint_percent(gimodel->p31, b1));
		fprintf(f, " p32 %s", sprint_percent(gimodel->p32, b1));
		fprintf(f, " p23 %s", sprint_percent(gimodel->p23, b1));
		fprintf(f, " p14 %s", sprint_percent(gimodel->p14, b1));
	}

	if (gemodel) {
		fprintf(f, " loss gemodel p %s",
			sprint_percent(gemodel->p, b1));
		fprintf(f, " r %s", sprint_percent(gemodel->r, b1));
		fprintf(f, " 1-h %s", sprint_percent(max_percent_value -
						     gemodel->h, b1));
		fprintf(f, " 1-k %s", sprint_percent(gemodel->k1, b1));
	}

	if (qopt.duplicate) {
		fprintf(f, " duplicate %s",
			sprint_percent(qopt.duplicate, b1));
		if (cor && cor->dup_corr)
			fprintf(f, " %s", sprint_percent(cor->dup_corr, b1));
	}

	if (reorder && reorder->probability) {
		fprintf(f, " reorder %s",
			sprint_percent(reorder->probability, b1));
		if (reorder->correlation)
			fprintf(f, " %s",
				sprint_percent(reorder->correlation, b1));
	}

	if (corrupt && corrupt->probability) {
		fprintf(f, " corrupt %s",
			sprint_percent(corrupt->probability, b1));
		if (corrupt->correlation)
			fprintf(f, " %s",
				sprint_percent(corrupt->correlation, b1));
	}

	if (rate && rate->rate) {
		if (rate64)
			fprintf(f, " rate %s", sprint_rate(rate64, b1));
		else
			fprintf(f, " rate %s", sprint_rate(rate->rate, b1));
		if (rate->packet_overhead)
			fprintf(f, " packetoverhead %d", rate->packet_overhead);
		if (rate->cell_size)
			fprintf(f, " cellsize %u", rate->cell_size);
		if (rate->cell_overhead)
			fprintf(f, " celloverhead %d", rate->cell_overhead);
	}

	if (ecn)
		fprintf(f, " ecn ");

	if (qopt.gap)
		fprintf(f, " gap %lu", (unsigned long)qopt.gap);


	return 0;
}

struct qdisc_util netem_qdisc_util = {
	.id	   	= "netem",
	.parse_qopt	= netem_parse_opt,
	.print_qopt	= netem_print_opt,
};
Example #11
0
static int cake_print_xstats(struct qdisc_util *qu, FILE *f,
                             struct rtattr *xstats)
{
    /* fq_codel stats format borrowed */
    struct tc_fq_codel_xstats *st;
    struct tc_cake_old_xstats     *stc;
    SPRINT_BUF(b1);

    if (xstats == NULL)
        return 0;

    if (RTA_PAYLOAD(xstats) < sizeof(st->type))
        return -1;

    st  = RTA_DATA(xstats);
    stc = RTA_DATA(xstats);

    if (st->type == TCA_FQ_CODEL_XSTATS_QDISC && RTA_PAYLOAD(xstats) >= sizeof(*st)) {
        fprintf(f, "  maxpacket %u drop_overlimit %u new_flow_count %u ecn_mark %u",
                st->qdisc_stats.maxpacket,
                st->qdisc_stats.drop_overlimit,
                st->qdisc_stats.new_flow_count,
                st->qdisc_stats.ecn_mark);
        fprintf(f, "\n  new_flows_len %u old_flows_len %u",
                st->qdisc_stats.new_flows_len,
                st->qdisc_stats.old_flows_len);
    } else if (st->type == TCA_FQ_CODEL_XSTATS_CLASS && RTA_PAYLOAD(xstats) >= sizeof(*st)) {
        fprintf(f, "  deficit %d count %u lastcount %u ldelay %s",
                st->class_stats.deficit,
                st->class_stats.count,
                st->class_stats.lastcount,
                sprint_time(st->class_stats.ldelay, b1));
        if (st->class_stats.dropping) {
            fprintf(f, " dropping");
            if (st->class_stats.drop_next < 0)
                fprintf(f, " drop_next -%s",
                        sprint_time(-st->class_stats.drop_next, b1));
            else
                fprintf(f, " drop_next %s",
                        sprint_time(st->class_stats.drop_next, b1));
        }
    } else if (stc->type == 0xCAFE && RTA_PAYLOAD(xstats) >= sizeof(*stc)) {
        int i;

        fprintf(f, "        ");
        for(i=0; i < stc->class_cnt; i++)
            fprintf(f, "  Class %u ", i);
        fprintf(f, "\n");

        fprintf(f, "  rate  ");
        for(i=0; i < stc->class_cnt; i++)
            fprintf(f, "%10s", sprint_rate(stc->cls[i].rate, b1));
        fprintf(f, "\n");

        fprintf(f, "  target");
        for(i=0; i < stc->class_cnt; i++)
            fprintf(f, "%10s", sprint_time(stc->cls[i].target_us, b1));
        fprintf(f, "\n");

        fprintf(f, "interval");
        for(i=0; i < stc->class_cnt; i++)
            fprintf(f, "%10s", sprint_time(stc->cls[i].interval_us, b1));
        fprintf(f, "\n");

        fprintf(f, "  pkts  ");
        for(i=0; i < stc->class_cnt; i++)
            fprintf(f, "%10u", stc->cls[i].packets);
        fprintf(f, "\n");

        fprintf(f, "  bytes ");
        for(i=0; i < stc->class_cnt; i++)
            fprintf(f, "%10llu", stc->cls[i].bytes);
        fprintf(f, "\n");

        fprintf(f, "  drops ");
        for(i=0; i < stc->class_cnt; i++)
            fprintf(f, "%10u", stc->cls[i].dropped);
        fprintf(f, "\n");

        fprintf(f, "  marks ");
        for(i=0; i < stc->class_cnt; i++)
            fprintf(f, "%10u", stc->cls[i].ecn_marked);
    } else {
        return -1;
    }
    return 0;
}
Example #12
0
static int cake_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
    struct rtattr *tb[TCA_CAKE_MAX + 1];
    unsigned bandwidth = 0;
    unsigned diffserv = 0;
    unsigned flowmode = 0;
    int atm = -1;
    SPRINT_BUF(b1);

    if (opt == NULL)
        return 0;

    parse_rtattr_nested(tb, TCA_CAKE_MAX, opt);

    if (tb[TCA_CAKE_BASE_RATE] &&
            RTA_PAYLOAD(tb[TCA_CAKE_BASE_RATE]) >= sizeof(__u32)) {
        bandwidth = rta_getattr_u32(tb[TCA_CAKE_BASE_RATE]);
        if(bandwidth)
            fprintf(f, "bandwidth %s ", sprint_rate(bandwidth, b1));
        else
            fprintf(f, "unlimited");
    }
    if (tb[TCA_CAKE_DIFFSERV_MODE] &&
            RTA_PAYLOAD(tb[TCA_CAKE_DIFFSERV_MODE]) >= sizeof(__u32)) {
        diffserv = rta_getattr_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
        switch(diffserv) {
        case 1:
            fprintf(f, "besteffort ");
            break;
        case 2:
            fprintf(f, "precedence ");
            break;
        case 3:
            fprintf(f, "diffserv ");
            break;
        default:
            fprintf(f, "(?diffserv?) ");
            break;
        };
    }
    if (tb[TCA_CAKE_FLOW_MODE] &&
            RTA_PAYLOAD(tb[TCA_CAKE_FLOW_MODE]) >= sizeof(__u32)) {
        flowmode = rta_getattr_u32(tb[TCA_CAKE_FLOW_MODE]);
        switch(flowmode) {
        case 0:
            fprintf(f, "flowblind ");
            break;
        case 1:
            fprintf(f, "srchost ");
            break;
        case 2:
            fprintf(f, "dsthost ");
            break;
        case 3:
            fprintf(f, "hosts ");
            break;
        case 4:
            fprintf(f, "flows ");
            break;
        default:
            fprintf(f, "(?flowmode?) ");
            break;
        };
    }
    if (tb[TCA_CAKE_ATM] &&
            RTA_PAYLOAD(tb[TCA_CAKE_ATM]) >= sizeof(__u32)) {
        atm = rta_getattr_u32(tb[TCA_CAKE_ATM]);
        if (atm)
            fprintf(f, "atm ");
    }

    return 0;
}
Example #13
0
static int fq_pie_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt)
{
	struct rtattr *tb[TCA_FQ_PIE_MAX + 1];
	unsigned int target;
	unsigned int tupdate;
	unsigned int alpha;
	unsigned int beta;
	unsigned ecn;
	unsigned bytemode;
	unsigned int plimit, flow_plimit;
	unsigned int buckets_log;
	int pacing;
	unsigned int rate, quantum;
	SPRINT_BUF(b1);

	if (opt == NULL)
		return 0;

	parse_rtattr_nested(tb, TCA_FQ_PIE_MAX, opt);
	if (tb[TCA_FQ_PIE_TARGET] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_TARGET]) >= sizeof(__u32)) {
		target = rta_getattr_u32(tb[TCA_FQ_PIE_TARGET]);
		fprintf(f, "target %s ", sprint_time(target, b1));
	}
	if (tb[TCA_FQ_PIE_TUPDATE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_TUPDATE]) >= sizeof(__u32)) {
		tupdate = rta_getattr_u32(tb[TCA_FQ_PIE_TUPDATE]);
		fprintf(f, "tupdate %s ", sprint_time(tupdate, b1));
	}
	if (tb[TCA_FQ_PIE_ALPHA] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_ALPHA]) >= sizeof(__u32)) {
		alpha = rta_getattr_u32(tb[TCA_FQ_PIE_ALPHA]);
		fprintf(f, "alpha %u ", alpha);
	}
	if (tb[TCA_FQ_PIE_BETA] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_BETA]) >= sizeof(__u32)) {
		beta = rta_getattr_u32(tb[TCA_FQ_PIE_BETA]);
		fprintf(f, "beta %u ", beta);
	}

	if (tb[TCA_FQ_PIE_ECN] && RTA_PAYLOAD(tb[TCA_FQ_PIE_ECN]) >= sizeof(__u32)) {
		ecn = rta_getattr_u32(tb[TCA_FQ_PIE_ECN]);
		if (ecn)
			fprintf(f, "ecn ");
	}

	if (tb[TCA_FQ_PIE_BYTEMODE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_BYTEMODE]) >= sizeof(__u32)) {
		bytemode = rta_getattr_u32(tb[TCA_FQ_PIE_BYTEMODE]);
		if (bytemode)
			fprintf(f, "bytemode ");
	}
	if (tb[TCA_FQ_PIE_PLIMIT] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_PLIMIT]) >= sizeof(__u32)) {
		plimit = rta_getattr_u32(tb[TCA_FQ_PIE_PLIMIT]);
		fprintf(f, "limit %up ", plimit);
	}
	if (tb[TCA_FQ_PIE_FLOW_PLIMIT] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_FLOW_PLIMIT]) >= sizeof(__u32)) {
		flow_plimit = rta_getattr_u32(tb[TCA_FQ_PIE_FLOW_PLIMIT]);
		fprintf(f, "flow_limit %up ", flow_plimit);
	}
	if (tb[TCA_FQ_PIE_BUCKETS_LOG] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_BUCKETS_LOG]) >= sizeof(__u32)) {
		buckets_log = rta_getattr_u32(tb[TCA_FQ_PIE_BUCKETS_LOG]);
		fprintf(f, "buckets %u ", 1U << buckets_log);
	}
	if (tb[TCA_FQ_PIE_RATE_ENABLE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_RATE_ENABLE]) >= sizeof(int)) {
		pacing = rta_getattr_u32(tb[TCA_FQ_PIE_RATE_ENABLE]);
		if (pacing == 0)
			fprintf(f, "nopacing ");
	}
	if (tb[TCA_FQ_PIE_QUANTUM] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_QUANTUM]) >= sizeof(__u32)) {
		quantum = rta_getattr_u32(tb[TCA_FQ_PIE_QUANTUM]);
		fprintf(f, "quantum %u ", quantum);
	}
	if (tb[TCA_FQ_PIE_INITIAL_QUANTUM] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_INITIAL_QUANTUM]) >= sizeof(__u32)) {
		quantum = rta_getattr_u32(tb[TCA_FQ_PIE_INITIAL_QUANTUM]);
		fprintf(f, "initial_quantum %u ", quantum);
	}
	if (tb[TCA_FQ_PIE_FLOW_MAX_RATE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_FLOW_MAX_RATE]) >= sizeof(__u32)) {
		rate = rta_getattr_u32(tb[TCA_FQ_PIE_FLOW_MAX_RATE]);

		if (rate != ~0U)
			fprintf(f, "maxrate %s ", sprint_rate(rate, b1));
	}
	if (tb[TCA_FQ_PIE_FLOW_DEFAULT_RATE] &&
	    RTA_PAYLOAD(tb[TCA_FQ_PIE_FLOW_DEFAULT_RATE]) >= sizeof(__u32)) {
		rate = rta_getattr_u32(tb[TCA_FQ_PIE_FLOW_DEFAULT_RATE]);

		if (rate != 0)
			fprintf(f, "defrate %s ", sprint_rate(rate, b1));
	}

	return 0;
}