/* ** Usage: btree_get_meta ID ** ** Return meta data */ static int btree_get_meta( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ Btree *pBt; int rc; int i; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } pBt = sqlite3TestTextToPtr(argv[1]); for(i=0; i<SQLITE_N_BTREE_META; i++){ char zBuf[30]; u32 v; sqlite3BtreeEnter(pBt); rc = sqlite3BtreeGetMeta(pBt, i, &v); sqlite3BtreeLeave(pBt); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } sqlite3_snprintf(sizeof(zBuf), zBuf,"%d",v); Tcl_AppendElement(interp, zBuf); } return TCL_OK; }
/* ** Check schema cookies in all databases. If any cookie is out ** of date, return 0. If all schema cookies are current, return 1. */ static int schemaIsValid(sqlite3 *db){ int iDb; int rc; BtCursor *curTemp; int cookie; int allOk = 1; curTemp = (BtCursor *)sqlite3Malloc(sqlite3BtreeCursorSize()); if( curTemp ){ assert( sqlite3_mutex_held(db->mutex) ); for(iDb=0; allOk && iDb<db->nDb; iDb++){ Btree *pBt; pBt = db->aDb[iDb].pBt; if( pBt==0 ) continue; memset(curTemp, 0, sqlite3BtreeCursorSize()); rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, curTemp); if( rc==SQLITE_OK ){ rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie); if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){ allOk = 0; } sqlite3BtreeCloseCursor(curTemp); } if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ db->mallocFailed = 1; } } sqlite3_free(curTemp); }else{ allOk = 0; db->mallocFailed = 1; } return allOk; }
/* ** Check schema cookies in all databases. If any cookie is out ** of date, return 0. If all schema cookies are current, return 1. */ static int schemaIsValid(sqlite3 *db){ int iDb; int rc; BtCursor *curTemp; int cookie; int allOk = 1; for(iDb=0; allOk && iDb<db->nDb; iDb++){ Btree *pBt; pBt = db->aDb[iDb].pBt; if( pBt==0 ) continue; rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp); if( rc==SQLITE_OK ){ rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie); if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){ allOk = 0; } sqlite3BtreeCloseCursor(curTemp); } } return allOk; }
/* ** Check schema cookies in all databases. If any cookie is out ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies ** make no changes to pParse->rc. */ static void schemaIsValid(Parse *pParse){ sqlite3 *db = pParse->db; int iDb; int rc; int cookie; assert( pParse->checkSchema ); assert( sqlite3_mutex_held(db->mutex) ); for(iDb=0; iDb<db->nDb; iDb++){ int openedTransaction = 0; /* True if a transaction is opened */ Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ if( pBt==0 ) continue; /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed immediately after reading the meta-value. */ if( !sqlite3BtreeIsInReadTrans(pBt) ){ rc = sqlite3BtreeBeginTrans(pBt, 0); if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ db->mallocFailed = 1; } if( rc!=SQLITE_OK ) return; openedTransaction = 1; } /* Read the schema cookie from the database. If it does not match the ** value stored as part of the in the in-memory schema representation, ** set Parse.rc to SQLITE_SCHEMA. */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ pParse->rc = SQLITE_SCHEMA; } /* Close the transaction, if one was opened. */ if( openedTransaction ){ sqlite3BtreeCommit(pBt); } } }
/* ** This routine implements the OP_Vacuum opcode of the VDBE. */ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ int rc = SQLITE_OK; /* Return code from service routines */ const char *zFilename; /* full pathname of the database file */ int nFilename; /* number of characters in zFilename[] */ char *zTemp = 0; /* a temporary file in same directory as zFilename */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; char *zSql = 0; int saved_flags; /* Saved value of the db->flags */ Db *pDb = 0; /* Database to detach at end of vacuum */ /* Save the current value of the write-schema flag before setting it. */ saved_flags = db->flags; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", (char*)0); rc = SQLITE_ERROR; goto end_of_vacuum; } /* Get the full pathname of the database file and create a ** temporary filename in the same directory as the original file. */ pMain = db->aDb[0].pBt; zFilename = sqlite3BtreeGetFilename(pMain); assert( zFilename ); if( zFilename[0]=='\0' ){ /* The in-memory database. Do nothing. Return directly to avoid causing ** an error trying to DETACH the vacuum_db (which never got attached) ** in the exit-handler. */ return SQLITE_OK; } nFilename = strlen(zFilename); zTemp = sqliteMalloc( nFilename+100 ); if( zTemp==0 ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } strcpy(zTemp, zFilename); /* The randomName() procedure in the following loop uses an excellent ** source of randomness to generate a name from a space of 1.3e+31 ** possibilities. So unless the directory already contains on the order ** of 1.3e+31 files, the probability that the following loop will ** run more than once or twice is vanishingly small. We are certain ** enough that this loop will always terminate (and terminate quickly) ** that we don't even bother to set a maximum loop count. */ do { zTemp[nFilename] = '-'; randomName((unsigned char*)&zTemp[nFilename+1]); } while( sqlite3OsFileExists(zTemp) ); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimisation would be to use a non-journaled pager. */ zSql = sqlite3MPrintf("ATTACH '%q' AS vacuum_db;", zTemp); if( !zSql ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } rc = execSql(db, zSql); sqliteFree(zSql); zSql = 0; if( rc!=SQLITE_OK ) goto end_of_vacuum; pDb = &db->aDb[db->nDb-1]; assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 ); pTemp = db->aDb[db->nDb-1].pBt; sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), sqlite3BtreeGetReserve(pMain)); assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) ); rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF"); if( rc!=SQLITE_OK ){ goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Begin a transaction */ rc = execSql(db, "BEGIN EXCLUSIVE;"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ rc = execExecSql(db, "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) " " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'" " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000)" " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' "); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) " " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy ** the contents to the temporary database. */ rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';'" "FROM sqlite_master " "WHERE type = 'table' AND name!='sqlite_sequence' " " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy over the sequence table */ rc = execExecSql(db, "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the SQLITE_MASTER table. */ rc = execSql(db, "INSERT INTO vacuum_db.sqlite_master " " SELECT type, name, tbl_name, rootpage, sql" " FROM sqlite_master" " WHERE type='view' OR type='trigger'" " OR (type='table' AND rootpage=0)" ); if( rc ) goto end_of_vacuum; /* At this point, unless the main db was completely empty, there is now a ** transaction open on the vacuum database, but not on the main database. ** Open a btree level transaction on the main database. This allows a ** call to sqlite3BtreeCopyFile(). The main database btree level ** transaction is then committed, so the SQL level never knows it was ** opened for writing. This way, the SQL transaction used to create the ** temporary database never needs to be committed. */ if( rc==SQLITE_OK ){ u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { 1, 1, /* Add one to the old schema cookie */ 3, 0, /* Preserve the default page cache size */ 5, 0, /* Preserve the default text encoding */ 6, 0, /* Preserve the user version */ }; assert( 1==sqlite3BtreeIsInTrans(pTemp) ); assert( 1==sqlite3BtreeIsInTrans(pMain) ); /* Copy Btree meta values */ for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){ rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]); if( rc!=SQLITE_OK ) goto end_of_vacuum; } rc = sqlite3BtreeCopyFile(pMain, pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCommit(pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCommit(pMain); } end_of_vacuum: /* Restore the original value of db->flags */ db->flags = saved_flags; /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( pDb ){ sqlite3MallocDisallow(); sqlite3BtreeClose(pDb->pBt); sqlite3MallocAllow(); pDb->pBt = 0; pDb->pSchema = 0; } if( zTemp ){ sqlite3OsDelete(zTemp); sqliteFree(zTemp); } sqliteFree( zSql ); sqlite3ResetInternalSchema(db, 0); return rc; }
/* ** Attempt to read the database schema and initialize internal ** data structures for a single database file. The index of the ** database file is given by iDb. iDb==0 is used for the main ** database. iDb==1 should never be used. iDb>=2 is used for ** auxiliary databases. Return one of the SQLITE_ error codes to ** indicate success or failure. */ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){ int rc; BtCursor *curMain; int size; Table *pTab; Db *pDb; char const *azArg[4]; int meta[10]; InitData initData; char const *zMasterSchema; char const *zMasterName = SCHEMA_TABLE(iDb); /* ** The master database table has a structure like this */ static const char master_schema[] = "CREATE TABLE sqlite_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; #ifndef SQLITE_OMIT_TEMPDB static const char temp_master_schema[] = "CREATE TEMP TABLE sqlite_temp_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; #else #define temp_master_schema 0 #endif assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pSchema ); /* zMasterSchema and zInitScript are set to point at the master schema ** and initialisation script appropriate for the database being ** initialised. zMasterName is the name of the master table. */ if( !OMIT_TEMPDB && iDb==1 ){ zMasterSchema = temp_master_schema; }else{ zMasterSchema = master_schema; } zMasterName = SCHEMA_TABLE(iDb); /* Construct the schema tables. */ sqlite3SafetyOff(db); azArg[0] = zMasterName; azArg[1] = "1"; azArg[2] = zMasterSchema; azArg[3] = 0; initData.db = db; initData.iDb = iDb; initData.pzErrMsg = pzErrMsg; rc = sqlite3InitCallback(&initData, 3, (char **)azArg, 0); if( rc ){ sqlite3SafetyOn(db); return initData.rc; } pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName); if( pTab ){ pTab->readOnly = 1; } sqlite3SafetyOn(db); /* Create a cursor to hold the database open */ pDb = &db->aDb[iDb]; if( pDb->pBt==0 ){ if( !OMIT_TEMPDB && iDb==1 ){ DbSetProperty(db, 1, DB_SchemaLoaded); } return SQLITE_OK; } rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, 0, &curMain); if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){ sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); return rc; } /* Get the database meta information. ** ** Meta values are as follows: ** meta[0] Schema cookie. Changes with each schema change. ** meta[1] File format of schema layer. ** meta[2] Size of the page cache. ** meta[3] Use freelist if 0. Autovacuum if greater than zero. ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE ** meta[5] The user cookie. Used by the application. ** meta[6] ** meta[7] ** meta[8] ** meta[9] ** ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to ** the possible values of meta[4]. */ if( rc==SQLITE_OK ){ int i; for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){ rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); } if( rc ){ sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); sqlite3BtreeCloseCursor(curMain); return rc; } }else{ memset(meta, 0, sizeof(meta)); } pDb->pSchema->schema_cookie = meta[0]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. */ if( meta[4] ){ /* text encoding */ if( iDb==0 ){ /* If opening the main database, set ENC(db). */ ENC(db) = (u8)meta[4]; db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0); }else{ /* If opening an attached database, the encoding much match ENC(db) */ if( meta[4]!=ENC(db) ){ sqlite3BtreeCloseCursor(curMain); sqlite3SetString(pzErrMsg, "attached databases must use the same" " text encoding as main database", (char*)0); return SQLITE_ERROR; } } }else{ DbSetProperty(db, iDb, DB_Empty); } pDb->pSchema->enc = ENC(db); size = meta[2]; if( size==0 ){ size = MAX_PAGES; } pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants */ pDb->pSchema->file_format = meta[1]; if( pDb->pSchema->file_format==0 ){ pDb->pSchema->file_format = 1; } if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ sqlite3BtreeCloseCursor(curMain); sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0); return SQLITE_ERROR; } /* Read the schema information out of the schema tables */ assert( db->init.busy ); if( rc==SQLITE_EMPTY ){ /* For an empty database, there is nothing to read */ rc = SQLITE_OK; }else{ char *zSql; zSql = sqlite3MPrintf( "SELECT name, rootpage, sql FROM '%q'.%s", db->aDb[iDb].zName, zMasterName); sqlite3SafetyOff(db); rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); if( rc==SQLITE_ABORT ) rc = initData.rc; sqlite3SafetyOn(db); sqliteFree(zSql); #ifndef SQLITE_OMIT_ANALYZE if( rc==SQLITE_OK ){ sqlite3AnalysisLoad(db, iDb); } #endif sqlite3BtreeCloseCursor(curMain); } if( sqlite3MallocFailed() ){ /* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */ rc = SQLITE_NOMEM; sqlite3ResetInternalSchema(db, 0); } if( rc==SQLITE_OK ){ DbSetProperty(db, iDb, DB_SchemaLoaded); }else{ sqlite3ResetInternalSchema(db, iDb); } return rc; }
/* ** This routine implements the OP_Vacuum opcode of the VDBE. */ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Pager *pMainPager; /* Pager for database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ char *zSql = 0; /* SQL statements */ int saved_flags; /* Saved value of the db->flags */ int saved_nChange; /* Saved value of db->nChange */ int saved_nTotalChange; /* Saved value of db->nTotalChange */ Db *pDb = 0; /* Database to detach at end of vacuum */ int isMemDb; /* True is vacuuming a :memory: database */ int nRes; /* Save the current value of the write-schema flag before setting it. */ saved_flags = db->flags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); rc = SQLITE_ERROR; goto end_of_vacuum; } pMain = db->aDb[0].pBt; pMainPager = sqlite3BtreePager(pMain); isMemDb = sqlite3PagerFile(pMainPager)->pMethods==0; /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimisation would be to use a non-journaled pager. ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but ** that actually made the VACUUM run slower. Very little journalling ** actually occurs when doing a vacuum since the vacuum_db is initially ** empty. Only the journal header is written. Apparently it takes more ** time to parse and run the PRAGMA to turn journalling off than it does ** to write the journal header file. */ zSql = "ATTACH '' AS vacuum_db;"; rc = execSql(db, zSql); if( rc!=SQLITE_OK ) goto end_of_vacuum; pDb = &db->aDb[db->nDb-1]; assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 ); pTemp = db->aDb[db->nDb-1].pBt; nRes = sqlite3BtreeGetReserve(pMain); /* A VACUUM cannot change the pagesize of an encrypted database. */ #ifdef SQLITE_HAS_CODEC if( db->nextPagesize ){ extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); int nKey; char *zKey; sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); if( nKey ) db->nextPagesize = 0; } #endif if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes) || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes)) || db->mallocFailed ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF"); if( rc!=SQLITE_OK ){ goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac : sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Begin a transaction */ rc = execSql(db, "BEGIN EXCLUSIVE;"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ rc = execExecSql(db, "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) " " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'" " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)" " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' "); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) " " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy ** the contents to the temporary database. */ rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';'" "FROM sqlite_master " "WHERE type = 'table' AND name!='sqlite_sequence' " " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy over the sequence table */ rc = execExecSql(db, "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the SQLITE_MASTER table. */ rc = execSql(db, "INSERT INTO vacuum_db.sqlite_master " " SELECT type, name, tbl_name, rootpage, sql" " FROM sqlite_master" " WHERE type='view' OR type='trigger'" " OR (type='table' AND rootpage=0)" ); if( rc ) goto end_of_vacuum; /* At this point, unless the main db was completely empty, there is now a ** transaction open on the vacuum database, but not on the main database. ** Open a btree level transaction on the main database. This allows a ** call to sqlite3BtreeCopyFile(). The main database btree level ** transaction is then committed, so the SQL level never knows it was ** opened for writing. This way, the SQL transaction used to create the ** temporary database never needs to be committed. */ if( rc==SQLITE_OK ){ u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { 1, 1, /* Add one to the old schema cookie */ 3, 0, /* Preserve the default page cache size */ 5, 0, /* Preserve the default text encoding */ 6, 0, /* Preserve the user version */ }; assert( 1==sqlite3BtreeIsInTrans(pTemp) ); assert( 1==sqlite3BtreeIsInTrans(pMain) ); /* Copy Btree meta values */ for(i=0; i<ArraySize(aCopy); i+=2){ rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]); if( rc!=SQLITE_OK ) goto end_of_vacuum; } rc = sqlite3BtreeCopyFile(pMain, pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCommit(pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp)); #endif rc = sqlite3BtreeCommit(pMain); } if( rc==SQLITE_OK ){ rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes); } end_of_vacuum: /* Restore the original value of db->flags */ db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } sqlite3ResetInternalSchema(db, 0); return rc; }
/* ** Attempt to read the database schema and initialize internal ** data structures for a single database file. The index of the ** database file is given by iDb. iDb==0 is used for the main ** database. iDb==1 should never be used. iDb>=2 is used for ** auxiliary databases. Return one of the SQLITE_ error codes to ** indicate success or failure. */ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){ int rc; BtCursor *curMain; int size; Table *pTab; Db *pDb; char const *azArg[4]; int meta[10]; InitData initData; char const *zMasterSchema; char const *zMasterName = SCHEMA_TABLE(iDb); /* ** The master database table has a structure like this */ static const char master_schema[] = "CREATE TABLE sqlite_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; #ifndef SQLITE_OMIT_TEMPDB static const char temp_master_schema[] = "CREATE TEMP TABLE sqlite_temp_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; #else #define temp_master_schema 0 #endif assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pSchema ); assert( sqlite3_mutex_held(db->mutex) ); assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); /* zMasterSchema and zInitScript are set to point at the master schema ** and initialisation script appropriate for the database being ** initialised. zMasterName is the name of the master table. */ if( !OMIT_TEMPDB && iDb==1 ){ zMasterSchema = temp_master_schema; }else{ zMasterSchema = master_schema; } zMasterName = SCHEMA_TABLE(iDb); /* Construct the schema tables. */ azArg[0] = zMasterName; azArg[1] = "1"; azArg[2] = zMasterSchema; azArg[3] = 0; initData.db = db; initData.iDb = iDb; initData.rc = SQLITE_OK; initData.pzErrMsg = pzErrMsg; (void)sqlite3SafetyOff(db); sqlite3InitCallback(&initData, 3, (char **)azArg, 0); (void)sqlite3SafetyOn(db); if( initData.rc ){ rc = initData.rc; goto error_out; } pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName); if( pTab ){ pTab->tabFlags |= TF_Readonly; } /* Create a cursor to hold the database open */ pDb = &db->aDb[iDb]; if( pDb->pBt==0 ){ if( !OMIT_TEMPDB && iDb==1 ){ DbSetProperty(db, 1, DB_SchemaLoaded); } return SQLITE_OK; } curMain = sqlite3MallocZero(sqlite3BtreeCursorSize()); if( !curMain ){ rc = SQLITE_NOMEM; goto error_out; } sqlite3BtreeEnter(pDb->pBt); rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain); if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){ sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc)); goto initone_error_out; } /* Get the database meta information. ** ** Meta values are as follows: ** meta[0] Schema cookie. Changes with each schema change. ** meta[1] File format of schema layer. ** meta[2] Size of the page cache. ** meta[3] Use freelist if 0. Autovacuum if greater than zero. ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE ** meta[5] The user cookie. Used by the application. ** meta[6] Incremental-vacuum flag. ** meta[7] ** meta[8] ** meta[9] ** ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to ** the possible values of meta[4]. */ if( rc==SQLITE_OK ){ int i; for(i=0; i<ArraySize(meta); i++){ rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); if( rc ){ sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc)); goto initone_error_out; } } }else{ memset(meta, 0, sizeof(meta)); } pDb->pSchema->schema_cookie = meta[0]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. */ if( meta[4] ){ /* text encoding */ if( iDb==0 ){ /* If opening the main database, set ENC(db). */ ENC(db) = (u8)meta[4]; db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0); }else{ /* If opening an attached database, the encoding much match ENC(db) */ if( meta[4]!=ENC(db) ){ sqlite3SetString(pzErrMsg, db, "attached databases must use the same" " text encoding as main database"); rc = SQLITE_ERROR; goto initone_error_out; } } }else{ DbSetProperty(db, iDb, DB_Empty); } pDb->pSchema->enc = ENC(db); if( pDb->pSchema->cache_size==0 ){ size = meta[2]; if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } if( size<0 ) size = -size; pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants */ pDb->pSchema->file_format = (u8)meta[1]; if( pDb->pSchema->file_format==0 ){ pDb->pSchema->file_format = 1; } if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ sqlite3SetString(pzErrMsg, db, "unsupported file format"); rc = SQLITE_ERROR; goto initone_error_out; } /* Ticket #2804: When we open a database in the newer file format, ** clear the legacy_file_format pragma flag so that a VACUUM will ** not downgrade the database and thus invalidate any descending ** indices that the user might have created. */ if( iDb==0 && meta[1]>=4 ){ db->flags &= ~SQLITE_LegacyFileFmt; } /* Read the schema information out of the schema tables */ assert( db->init.busy ); if( rc==SQLITE_EMPTY ){ /* For an empty database, there is nothing to read */ rc = SQLITE_OK; }else{ char *zSql; zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s", db->aDb[iDb].zName, zMasterName); (void)sqlite3SafetyOff(db); #ifndef SQLITE_OMIT_AUTHORIZATION { int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); xAuth = db->xAuth; db->xAuth = 0; #endif rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; } #endif if( rc==SQLITE_OK ) rc = initData.rc; (void)sqlite3SafetyOn(db); sqlite3DbFree(db, zSql); #ifndef SQLITE_OMIT_ANALYZE if( rc==SQLITE_OK ){ sqlite3AnalysisLoad(db, iDb); } #endif } if( db->mallocFailed ){ rc = SQLITE_NOMEM; sqlite3ResetInternalSchema(db, 0); } if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){ /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider ** the schema loaded, even if errors occurred. In this situation the ** current sqlite3_prepare() operation will fail, but the following one ** will attempt to compile the supplied statement against whatever subset ** of the schema was loaded before the error occurred. The primary ** purpose of this is to allow access to the sqlite_master table ** even when its contents have been corrupted. */ DbSetProperty(db, iDb, DB_SchemaLoaded); rc = SQLITE_OK; } /* Jump here for an error that occurs after successfully allocating ** curMain and calling sqlite3BtreeEnter(). For an error that occurs ** before that point, jump to error_out. */ initone_error_out: sqlite3BtreeCloseCursor(curMain); sqlite3_free(curMain); sqlite3BtreeLeave(pDb->pBt); error_out: if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ db->mallocFailed = 1; } return rc; }
/* ** Attempt to read the database schema and initialize internal ** data structures for a single database file. The index of the ** database file is given by iDb. iDb==0 is used for the main ** database. iDb==1 should never be used. iDb>=2 is used for ** auxiliary databases. Return one of the SQLITE_ error codes to ** indicate success or failure. */ static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){ int rc; BtCursor *curMain; int size; Table *pTab; char const *azArg[5]; char zDbNum[30]; int meta[10]; InitData initData; char const *zMasterSchema; char const *zMasterName = SCHEMA_TABLE(iDb); /* ** The master database table has a structure like this */ static const char master_schema[] = "CREATE TABLE sqlite_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; #ifndef SQLITE_OMIT_TEMPDB static const char temp_master_schema[] = "CREATE TEMP TABLE sqlite_temp_master(\n" " type text,\n" " name text,\n" " tbl_name text,\n" " rootpage integer,\n" " sql text\n" ")" ; #else #define temp_master_schema 0 #endif assert( iDb>=0 && iDb<db->nDb ); /* zMasterSchema and zInitScript are set to point at the master schema ** and initialisation script appropriate for the database being ** initialised. zMasterName is the name of the master table. */ if( !OMIT_TEMPDB && iDb==1 ){ zMasterSchema = temp_master_schema; }else{ zMasterSchema = master_schema; } zMasterName = SCHEMA_TABLE(iDb); /* Construct the schema tables. */ sqlite3SafetyOff(db); azArg[0] = zMasterName; azArg[1] = "1"; azArg[2] = zMasterSchema; sprintf(zDbNum, "%d", iDb); azArg[3] = zDbNum; azArg[4] = 0; initData.db = db; initData.pzErrMsg = pzErrMsg; rc = sqlite3InitCallback(&initData, 4, (char **)azArg, 0); if( rc!=SQLITE_OK ){ sqlite3SafetyOn(db); return rc; } pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName); if( pTab ){ pTab->readOnly = 1; } sqlite3SafetyOn(db); /* Create a cursor to hold the database open */ if( db->aDb[iDb].pBt==0 ){ if( !OMIT_TEMPDB && iDb==1 ) DbSetProperty(db, 1, DB_SchemaLoaded); return SQLITE_OK; } rc = sqlite3BtreeCursor(db->aDb[iDb].pBt, MASTER_ROOT, 0, 0, 0, &curMain); if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){ sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); return rc; } /* Get the database meta information. ** ** Meta values are as follows: ** meta[0] Schema cookie. Changes with each schema change. ** meta[1] File format of schema layer. ** meta[2] Size of the page cache. ** meta[3] Use freelist if 0. Autovacuum if greater than zero. ** meta[4] Db text encoding. 1:UTF-8 3:UTF-16 LE 4:UTF-16 BE ** meta[5] The user cookie. Used by the application. ** meta[6] ** meta[7] ** meta[8] ** meta[9] ** ** Note: The hash defined SQLITE_UTF* symbols in sqliteInt.h correspond to ** the possible values of meta[4]. */ if( rc==SQLITE_OK ){ int i; for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){ rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, i+1, (u32 *)&meta[i]); } if( rc ){ sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); sqlite3BtreeCloseCursor(curMain); return rc; } }else{ memset(meta, 0, sizeof(meta)); } db->aDb[iDb].schema_cookie = meta[0]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. */ if( meta[4] ){ /* text encoding */ if( iDb==0 ){ /* If opening the main database, set db->enc. */ db->enc = (u8)meta[4]; db->pDfltColl = sqlite3FindCollSeq(db, db->enc, "BINARY", 6, 0); }else{ /* If opening an attached database, the encoding much match db->enc */ if( meta[4]!=db->enc ){ sqlite3BtreeCloseCursor(curMain); sqlite3SetString(pzErrMsg, "attached databases must use the same" " text encoding as main database", (char*)0); return SQLITE_ERROR; } } } size = meta[2]; if( size==0 ){ size = MAX_PAGES; } db->aDb[iDb].cache_size = size; if( iDb==0 ){ db->file_format = meta[1]; if( db->file_format==0 ){ /* This happens if the database was initially empty */ db->file_format = 1; } if( db->file_format==2 || db->file_format==3 ){ /* File format 2 is treated exactly as file format 1. New ** databases are created with file format 1. */ db->file_format = 1; } } /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. ** file_format==3 Version 3.1.4. ** ** Version 3.0 can only use files with file_format==1. Version 3.1.3 ** can read and write files with file_format==1 or file_format==2. ** Version 3.1.4 can read and write file formats 1, 2 and 3. */ if( meta[1]>3 ){ sqlite3BtreeCloseCursor(curMain); sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0); return SQLITE_ERROR; } sqlite3BtreeSetCacheSize(db->aDb[iDb].pBt, db->aDb[iDb].cache_size); /* Read the schema information out of the schema tables */ assert( db->init.busy ); if( rc==SQLITE_EMPTY ){ /* For an empty database, there is nothing to read */ rc = SQLITE_OK; }else{ char *zSql; zSql = sqlite3MPrintf( "SELECT name, rootpage, sql, '%s' FROM '%q'.%s", zDbNum, db->aDb[iDb].zName, zMasterName); sqlite3SafetyOff(db); rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); sqlite3SafetyOn(db); sqliteFree(zSql); sqlite3BtreeCloseCursor(curMain); } if( sqlite3_malloc_failed ){ sqlite3SetString(pzErrMsg, "out of memory", (char*)0); rc = SQLITE_NOMEM; sqlite3ResetInternalSchema(db, 0); } if( rc==SQLITE_OK ){ DbSetProperty(db, iDb, DB_SchemaLoaded); }else{ sqlite3ResetInternalSchema(db, iDb); } return rc; }
/* CHANGE 1 of 3: Add function parameter nRes */ SQLITE_PRIVATE int sqlite3RunVacuumForRekey(char **pzErrMsg, sqlite3 *db, int iDb, int nRes){ int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ u16 saved_mDbFlags; /* Saved value of db->mDbFlags */ u32 saved_flags; /* Saved value of db->flags */ int saved_nChange; /* Saved value of db->nChange */ int saved_nTotalChange; /* Saved value of db->nTotalChange */ u8 saved_mTrace; /* Saved trace settings */ Db *pDb = 0; /* Database to detach at end of vacuum */ int isMemDb; /* True if vacuuming a :memory: database */ /* CHANGE 2 of 3: Do not define local variable nRes */ /*int nRes;*/ /* Bytes of reserved space at the end of each page */ int nDb; /* Number of attached databases */ const char *zDbMain; /* Schema name of database to vacuum */ if (!db->autoCommit) { sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); return SQLITE_ERROR; } if (db->nVdbeActive>1) { sqlite3SetString(pzErrMsg, db, "cannot VACUUM - SQL statements in progress"); return SQLITE_ERROR; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ saved_flags = db->flags; saved_mDbFlags = db->mDbFlags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_mTrace = db->mTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum; db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_CountRows); db->mTrace = 0; zDbMain = db->aDb[iDb].zDbSName; pMain = db->aDb[iDb].pBt; isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimisation would be to use a non-journaled pager. ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but ** that actually made the VACUUM run slower. Very little journalling ** actually occurs when doing a vacuum since the vacuum_db is initially ** empty. Only the journal header is written. Apparently it takes more ** time to parse and run the PRAGMA to turn journalling off than it does ** to write the journal header file. */ nDb = db->nDb; rc = execSql(db, pzErrMsg, "ATTACH''AS vacuum_db"); if (rc != SQLITE_OK) goto end_of_vacuum; assert((db->nDb - 1) == nDb); pDb = &db->aDb[nDb]; assert(strcmp(pDb->zDbSName, "vacuum_db") == 0); pTemp = pDb->pBt; /* The call to execSql() to attach the temp database has left the file ** locked (as there was more than one active statement when the transaction ** to read the schema was concluded. Unlock it here so that this doesn't ** cause problems for the call to BtreeSetPageSize() below. */ sqlite3BtreeCommit(pTemp); /* CHANGE 3 of 3: Do not call sqlite3BtreeGetOptimalReserve */ /* nRes = sqlite3BtreeGetOptimalReserve(pMain); */ /* A VACUUM cannot change the pagesize of an encrypted database. */ #ifdef SQLITE_HAS_CODEC if (db->nextPagesize) { extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); int nKey; char *zKey; sqlite3CodecGetKey(db, iDb, (void**)&zKey, &nKey); if (nKey) db->nextPagesize = 0; } #endif sqlite3BtreeSetCacheSize(pTemp, db->aDb[iDb].pSchema->cache_size); sqlite3BtreeSetSpillSize(pTemp, sqlite3BtreeSetSpillSize(pMain, 0)); sqlite3BtreeSetPagerFlags(pTemp, PAGER_SYNCHRONOUS_OFF | PAGER_CACHESPILL); /* Begin a transaction and take an exclusive lock on the main database ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below, ** to ensure that we do not try to change the page-size on a WAL database. */ rc = execSql(db, pzErrMsg, "BEGIN"); if (rc != SQLITE_OK) goto end_of_vacuum; rc = sqlite3BtreeBeginTrans(pMain, 2); if (rc != SQLITE_OK) goto end_of_vacuum; /* Do not attempt to change the page size for a WAL database */ if (sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain)) == PAGER_JOURNALMODE_WAL) { db->nextPagesize = 0; } if (sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0) || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0)) || NEVER(db->mallocFailed) ) { rc = SQLITE_NOMEM_BKPT; goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac >= 0 ? db->nextAutovac : sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ db->init.iDb = nDb; /* force new CREATE statements into vacuum_db */ rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_master" " WHERE type='table'AND name<>'sqlite_sequence'" " AND coalesce(rootpage,1)>0", zDbMain ); if (rc != SQLITE_OK) goto end_of_vacuum; rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_master" " WHERE type='index'", zDbMain ); if (rc != SQLITE_OK) goto end_of_vacuum; db->init.iDb = 0; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy ** the contents to the temporary database. */ rc = execSqlF(db, pzErrMsg, "SELECT'INSERT INTO vacuum_db.'||quote(name)" "||' SELECT*FROM\"%w\".'||quote(name)" "FROM vacuum_db.sqlite_master " "WHERE type='table'AND coalesce(rootpage,1)>0", zDbMain ); assert((db->mDbFlags & DBFLAG_Vacuum) != 0); db->mDbFlags &= ~DBFLAG_Vacuum; if (rc != SQLITE_OK) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the SQLITE_MASTER table. */ rc = execSqlF(db, pzErrMsg, "INSERT INTO vacuum_db.sqlite_master" " SELECT*FROM \"%w\".sqlite_master" " WHERE type IN('view','trigger')" " OR(type='table'AND rootpage=0)", zDbMain ); if (rc) goto end_of_vacuum; /* At this point, there is a write transaction open on both the ** vacuum database and the main database. Assuming no error occurs, ** both transactions are closed by this block - the main database ** transaction by sqlite3BtreeCopyFile() and the other by an explicit ** call to sqlite3BtreeCommit(). */ { u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */ BTREE_USER_VERSION, 0, /* Preserve the user version */ BTREE_APPLICATION_ID, 0, /* Preserve the application id */ }; assert(1 == sqlite3BtreeIsInTrans(pTemp)); assert(1 == sqlite3BtreeIsInTrans(pMain)); /* Copy Btree meta values */ for (i = 0; i<ArraySize(aCopy); i += 2) { /* GetMeta() and UpdateMeta() cannot fail in this context because ** we already have page 1 loaded into cache and marked dirty. */ sqlite3BtreeGetMeta(pMain, aCopy[i], &meta); rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta + aCopy[i + 1]); if (NEVER(rc != SQLITE_OK)) goto end_of_vacuum; } rc = sqlite3BtreeCopyFile(pMain, pTemp); if (rc != SQLITE_OK) goto end_of_vacuum; rc = sqlite3BtreeCommit(pTemp); if (rc != SQLITE_OK) goto end_of_vacuum; #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp)); #endif } assert(rc == SQLITE_OK); rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes, 1); end_of_vacuum: /* Restore the original value of db->flags */ db->init.iDb = 0; db->mDbFlags = saved_mDbFlags; db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; db->mTrace = saved_mTrace; sqlite3BtreeSetPageSize(pMain, -1, -1, 1); /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if (pDb) { sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } /* This both clears the schemas and reduces the size of the db->aDb[] ** array. */ sqlite3ResetAllSchemasOfConnection(db); return rc; }
/* * Use Bulk Get/Put to copy the given number of pages worth of * records from the source database to the destination database, * this function should be called until all tables are copied, at * which point it will return SQLITE_DONE. Both Btrees need to * have transactions before calling this function. * p->pSrc - Source Btree * p->tables - Contains a list of iTables to copy, gotten using * btreeGetTables(). * p->currentTable - Index in tables of the current table being copied. * p->srcCur - Cursor on the current source table being copied. * p->pDest - Destiniation Btree. * p->destCur - BtCursor on the destination table being copied into. * pages - Number of pages worth of data to copy. */ static int btreeCopyPages(sqlite3_backup *p, int *pages) { DB *dbp; DBT dataOut, dataIn; char bufOut[MULTI_BUFSIZE], bufIn[MULTI_BUFSIZE]; int ret, rc, copied, srcIsDupIndex; void *in, *out, *app; ret = 0; rc = SQLITE_OK; dbp = NULL; copied = 0; memset(&dataOut, 0, sizeof(dataOut)); memset(&dataIn, 0, sizeof(dataIn)); dataOut.flags = DB_DBT_USERMEM; dataIn.flags = DB_DBT_USERMEM; dataOut.data = bufOut; dataOut.ulen = sizeof(bufOut); dataIn.data = bufIn; dataIn.ulen = sizeof(bufIn); while (*pages < 0 || *pages > copied) { /* No tables left to copy */ if (p->tables[p->currentTable] == -1) { u32 val; /* * Update the schema file format and largest rootpage * in the meta data. Other meta data values should * not be changed. */ sqlite3BtreeGetMeta(p->pSrc, 1, &val); if (p->pSrc->db->errCode == SQLITE_BUSY) { rc = SQLITE_BUSY; goto err; } rc = sqlite3BtreeUpdateMeta(p->pDest, 1, val); if (rc != SQLITE_OK) goto err; sqlite3BtreeGetMeta(p->pSrc, 3, &val); if (p->pSrc->db->errCode == SQLITE_BUSY) { rc = SQLITE_BUSY; goto err; } rc = sqlite3BtreeUpdateMeta(p->pDest, 3, val); if (rc != SQLITE_OK) goto err; ret = SQLITE_DONE; goto err; } /* If not currently copying a table, get the next table. */ if (!p->srcCur) { rc = btreeGetUserTable(p->pSrc, p->srcTxn, &dbp, p->tables[p->currentTable]); if (rc != SQLITE_OK) goto err; assert(dbp); memset(&p->destCur, 0, sizeof(p->destCur)); /* * Open a cursor on the destination table, this will * create the table and allow the Btree to manage the * DB object. */ sqlite3BtreeCursor(p->pDest, p->tables[p->currentTable], 1, dbp->app_private, &p->destCur); if ((rc = p->destCur.error) != SQLITE_OK) { app = dbp->app_private; dbp->close(dbp, DB_NOSYNC); if (app) sqlite3DbFree(p->pSrcDb, app); goto err; } /* Open a cursor on the source table. */ if ((ret = dbp->cursor(dbp, p->srcTxn, &p->srcCur, 0)) != 0) goto err; dbp = 0; } srcIsDupIndex = isDupIndex((p->tables[p->currentTable] & 1) ? BTREE_INTKEY : 0, p->pSrc->pBt->dbStorage, p->srcCur->dbp->app_private, p->srcCur->dbp); /* * Copy the current table until the given number of * pages is copied, or the entire table has been copied. */ while (*pages < 0 || *pages > copied) { DBT key, data; memset(&key, 0, sizeof(key)); memset(&data, 0, sizeof(data)); /* Do a Bulk Get from the source table. */ ret = p->srcCur->get(p->srcCur, &key, &dataOut, DB_NEXT | DB_MULTIPLE_KEY); if (ret == DB_NOTFOUND) break; if (ret != 0) goto err; /* Copy the records into the Bulk buffer. */ DB_MULTIPLE_INIT(out, &dataOut); DB_MULTIPLE_WRITE_INIT(in, &dataIn); DB_MULTIPLE_KEY_NEXT(out, &dataOut, key.data, key.size, data.data, data.size); while (out) { /* * Have to translate the index formats if they * are not the same. */ if (p->destCur.isDupIndex != srcIsDupIndex) { if (srcIsDupIndex) { p->destCur.key = key; p->destCur.data = data; if (!btreeCreateIndexKey( &p->destCur)) { rc = SQLITE_NOMEM; goto err; } DB_MULTIPLE_KEY_WRITE_NEXT(in, &dataIn, p->destCur.index.data, p->destCur.index.size, p->destCur.data.data, 0); } else { /* Copy the key into the cursor * index since spliting the key * requires changing the * internal memory. */ if (!allocateCursorIndex( &p->destCur, key.size)) { rc = SQLITE_NOMEM; goto err; } memcpy(p->destCur.index.data, key.data, key.size); p->destCur.index.size = key.size; p->destCur.key.data = p->destCur.index.data; p->destCur.key.size = p->destCur.index.size; splitIndexKey(&p->destCur); DB_MULTIPLE_KEY_WRITE_NEXT( in, &dataIn, p->destCur.key.data, p->destCur.key.size, p->destCur.data.data, p->destCur.data.size); } } else DB_MULTIPLE_KEY_WRITE_NEXT(in, &dataIn, key.data, key.size, data.data, data.size); DB_MULTIPLE_KEY_NEXT(out, &dataOut, key.data, key.size, data.data, data.size); } /* Insert into the destination table. */ dbp = p->destCur.cached_db->dbp; if ((ret = dbp->put(dbp, p->pDest->savepoint_txn, &dataIn, 0, DB_MULTIPLE_KEY)) != 0) goto err; dbp = NULL; copied += MULTI_BUFSIZE/SQLITE_DEFAULT_PAGE_SIZE; } /* * Done copying the current table, time to look for a new * table to copy. */ if (ret == DB_NOTFOUND) { ret = 0; rc = sqlite3BtreeCloseCursor(&p->destCur); if (p->srcCur) { app = p->srcCur->dbp->app_private; dbp = p->srcCur->dbp; p->srcCur->close(p->srcCur); ret = dbp->close(dbp, DB_NOSYNC); if (app) sqlite3DbFree(p->pSrcDb, app); } p->srcCur = NULL; if (ret != 0 || rc != SQLITE_OK) goto err; p->currentTable += 1; } } goto done; err: if (ret == SQLITE_DONE) return ret; done: return MAP_ERR(rc, ret); }
int sqlcipher_codec_ctx_migrate(codec_ctx *ctx) { u32 meta; int rc = 0; int command_idx = 0; int password_sz; int saved_flags; int saved_nChange; int saved_nTotalChange; void (*saved_xTrace)(void*,const char*); Db *pDb = 0; sqlite3 *db = ctx->pBt->db; const char *db_filename = sqlite3_db_filename(db, "main"); char *migrated_db_filename = sqlite3_mprintf("%s-migrated", db_filename); char *pragma_hmac_off = "PRAGMA cipher_use_hmac = OFF;"; char *pragma_4k_kdf_iter = "PRAGMA kdf_iter = 4000;"; char *pragma_1x_and_4k; char *set_user_version; char *key; int key_sz; int user_version = 0; int upgrade_1x_format = 0; int upgrade_4k_format = 0; static const unsigned char aCopy[] = { BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */ BTREE_USER_VERSION, 0, /* Preserve the user version */ BTREE_APPLICATION_ID, 0, /* Preserve the application id */ }; key_sz = ctx->read_ctx->pass_sz + 1; key = sqlcipher_malloc(key_sz); memset(key, 0, key_sz); memcpy(key, ctx->read_ctx->pass, ctx->read_ctx->pass_sz); if(db_filename){ const char* commands[5]; char *attach_command = sqlite3_mprintf("ATTACH DATABASE '%s-migrated' as migrate KEY '%q';", db_filename, key); int rc = sqlcipher_check_connection(db_filename, key, ctx->read_ctx->pass_sz, "", &user_version); if(rc == SQLITE_OK){ CODEC_TRACE(("No upgrade required - exiting\n")); goto exit; } // Version 2 - check for 4k with hmac format rc = sqlcipher_check_connection(db_filename, key, ctx->read_ctx->pass_sz, pragma_4k_kdf_iter, &user_version); if(rc == SQLITE_OK) { CODEC_TRACE(("Version 2 format found\n")); upgrade_4k_format = 1; } // Version 1 - check both no hmac and 4k together pragma_1x_and_4k = sqlite3_mprintf("%s%s", pragma_hmac_off, pragma_4k_kdf_iter); rc = sqlcipher_check_connection(db_filename, key, ctx->read_ctx->pass_sz, pragma_1x_and_4k, &user_version); sqlite3_free(pragma_1x_and_4k); if(rc == SQLITE_OK) { CODEC_TRACE(("Version 1 format found\n")); upgrade_1x_format = 1; upgrade_4k_format = 1; } if(upgrade_1x_format == 0 && upgrade_4k_format == 0) { CODEC_TRACE(("Upgrade format not determined\n")); goto handle_error; } set_user_version = sqlite3_mprintf("PRAGMA migrate.user_version = %d;", user_version); commands[0] = upgrade_4k_format == 1 ? pragma_4k_kdf_iter : ""; commands[1] = upgrade_1x_format == 1 ? pragma_hmac_off : ""; commands[2] = attach_command; commands[3] = "SELECT sqlcipher_export('migrate');"; commands[4] = set_user_version; for(command_idx = 0; command_idx < ArraySize(commands); command_idx++){ const char *command = commands[command_idx]; if(strcmp(command, "") == 0){ continue; } rc = sqlite3_exec(db, command, NULL, NULL, NULL); if(rc != SQLITE_OK){ break; } } sqlite3_free(attach_command); sqlite3_free(set_user_version); sqlcipher_free(key, key_sz); if(rc == SQLITE_OK){ Btree *pDest; Btree *pSrc; int i = 0; if( !db->autoCommit ){ CODEC_TRACE(("cannot migrate from within a transaction")); goto handle_error; } if( db->nVdbeActive>1 ){ CODEC_TRACE(("cannot migrate - SQL statements in progress")); goto handle_error; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ saved_flags = db->flags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_xTrace = db->xTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks | SQLITE_PreferBuiltin; db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder); db->xTrace = 0; pDest = db->aDb[0].pBt; pDb = &(db->aDb[db->nDb-1]); pSrc = pDb->pBt; rc = sqlite3_exec(db, "BEGIN;", NULL, NULL, NULL); rc = sqlite3BtreeBeginTrans(pSrc, 2); rc = sqlite3BtreeBeginTrans(pDest, 2); assert( 1==sqlite3BtreeIsInTrans(pDest) ); assert( 1==sqlite3BtreeIsInTrans(pSrc) ); sqlite3CodecGetKey(db, db->nDb - 1, (void**)&key, &password_sz); sqlite3CodecAttach(db, 0, key, password_sz); sqlite3pager_get_codec(pDest->pBt->pPager, (void**)&ctx); ctx->skip_read_hmac = 1; for(i=0; i<ArraySize(aCopy); i+=2){ sqlite3BtreeGetMeta(pSrc, aCopy[i], &meta); rc = sqlite3BtreeUpdateMeta(pDest, aCopy[i], meta+aCopy[i+1]); if( NEVER(rc!=SQLITE_OK) ) goto handle_error; } rc = sqlite3BtreeCopyFile(pDest, pSrc); ctx->skip_read_hmac = 0; if( rc!=SQLITE_OK ) goto handle_error; rc = sqlite3BtreeCommit(pDest); db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; db->xTrace = saved_xTrace; db->autoCommit = 1; if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } sqlite3ResetAllSchemasOfConnection(db); remove(migrated_db_filename); sqlite3_free(migrated_db_filename); } else { CODEC_TRACE(("*** migration failure** \n\n")); } } goto exit; handle_error: CODEC_TRACE(("An error occurred attempting to migrate the database\n")); rc = SQLITE_ERROR; exit: return rc; }
/* ** Copy nPage pages from the source b-tree to the destination. */ int sqlite3_backup_step(sqlite3_backup *p, int nPage){ int rc; int destMode; /* Destination journal mode */ int pgszSrc = 0; /* Source page size */ int pgszDest = 0; /* Destination page size */ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(p->pSrcDb->mutex); sqlite3BtreeEnter(p->pSrc); if( p->pDestDb ){ sqlite3_mutex_enter(p->pDestDb->mutex); } rc = p->rc; if( !isFatalError(rc) ){ Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */ Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */ int ii; /* Iterator variable */ int nSrcPage = -1; /* Size of source db in pages */ int bCloseTrans = 0; /* True if src db requires unlocking */ /* If the source pager is currently in a write-transaction, return ** SQLITE_BUSY immediately. */ if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){ rc = SQLITE_BUSY; }else{ rc = SQLITE_OK; } /* If there is no open read-transaction on the source database, open ** one now. If a transaction is opened here, then it will be closed ** before this function exits. */ if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){ rc = sqlite3BtreeBeginTrans(p->pSrc, 0); bCloseTrans = 1; } /* If the destination database has not yet been locked (i.e. if this ** is the first call to backup_step() for the current backup operation), ** try to set its page size to the same as the source database. This ** is especially important on ZipVFS systems, as in that case it is ** not possible to create a database file that uses one page size by ** writing to it with another. */ if( p->bDestLocked==0 && rc==SQLITE_OK && setDestPgsz(p)==SQLITE_NOMEM ){ rc = SQLITE_NOMEM; } /* Lock the destination database, if it is not locked already. */ if( SQLITE_OK==rc && p->bDestLocked==0 && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2)) ){ p->bDestLocked = 1; sqlite3BtreeGetMeta(p->pDest, BTREE_SCHEMA_VERSION, &p->iDestSchema); } /* Do not allow backup if the destination database is in WAL mode ** and the page sizes are different between source and destination */ pgszSrc = sqlite3BtreeGetPageSize(p->pSrc); pgszDest = sqlite3BtreeGetPageSize(p->pDest); destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest)); if( SQLITE_OK==rc && destMode==PAGER_JOURNALMODE_WAL && pgszSrc!=pgszDest ){ rc = SQLITE_READONLY; } /* Now that there is a read-lock on the source database, query the ** source pager for the number of pages in the database. */ nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc); assert( nSrcPage>=0 ); for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){ const Pgno iSrcPg = p->iNext; /* Source page number */ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){ DbPage *pSrcPg; /* Source page object */ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg,PAGER_GET_READONLY); if( rc==SQLITE_OK ){ rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0); sqlite3PagerUnref(pSrcPg); } } p->iNext++; } if( rc==SQLITE_OK ){ p->nPagecount = nSrcPage; p->nRemaining = nSrcPage+1-p->iNext; if( p->iNext>(Pgno)nSrcPage ){ rc = SQLITE_DONE; }else if( !p->isAttached ){ attachBackupObject(p); } } /* Update the schema version field in the destination database. This ** is to make sure that the schema-version really does change in ** the case where the source and destination databases have the ** same schema version. */ if( rc==SQLITE_DONE ){ if( nSrcPage==0 ){ rc = sqlite3BtreeNewDb(p->pDest); nSrcPage = 1; } if( rc==SQLITE_OK || rc==SQLITE_DONE ){ rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1); } if( rc==SQLITE_OK ){ if( p->pDestDb ){ sqlite3ResetAllSchemasOfConnection(p->pDestDb); } if( destMode==PAGER_JOURNALMODE_WAL ){ rc = sqlite3BtreeSetVersion(p->pDest, 2); } } if( rc==SQLITE_OK ){ int nDestTruncate; /* Set nDestTruncate to the final number of pages in the destination ** database. The complication here is that the destination page ** size may be different to the source page size. ** ** If the source page size is smaller than the destination page size, ** round up. In this case the call to sqlite3OsTruncate() below will ** fix the size of the file. However it is important to call ** sqlite3PagerTruncateImage() here so that any pages in the ** destination file that lie beyond the nDestTruncate page mark are ** journalled by PagerCommitPhaseOne() before they are destroyed ** by the file truncation. */ assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) ); assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) ); if( pgszSrc<pgszDest ){ int ratio = pgszDest/pgszSrc; nDestTruncate = (nSrcPage+ratio-1)/ratio; if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){ nDestTruncate--; } }else{ nDestTruncate = nSrcPage * (pgszSrc/pgszDest); } assert( nDestTruncate>0 ); if( pgszSrc<pgszDest ){ /* If the source page-size is smaller than the destination page-size, ** two extra things may need to happen: ** ** * The destination may need to be truncated, and ** ** * Data stored on the pages immediately following the ** pending-byte page in the source database may need to be ** copied into the destination database. */ const i64 iSize = (i64)pgszSrc * (i64)nSrcPage; sqlite3_file * const pFile = sqlite3PagerFile(pDestPager); Pgno iPg; int nDstPage; i64 iOff; i64 iEnd; assert( pFile ); assert( nDestTruncate==0 || (i64)nDestTruncate*(i64)pgszDest >= iSize || ( nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1) && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest )); /* This block ensures that all data required to recreate the original ** database has been stored in the journal for pDestPager and the ** journal synced to disk. So at this point we may safely modify ** the database file in any way, knowing that if a power failure ** occurs, the original database will be reconstructed from the ** journal file. */ sqlite3PagerPagecount(pDestPager, &nDstPage); for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){ if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){ DbPage *pPg; rc = sqlite3PagerGet(pDestPager, iPg, &pPg, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pPg); sqlite3PagerUnref(pPg); } } } if( rc==SQLITE_OK ){ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1); } /* Write the extra pages and truncate the database file as required */ iEnd = MIN(PENDING_BYTE + pgszDest, iSize); for( iOff=PENDING_BYTE+pgszSrc; rc==SQLITE_OK && iOff<iEnd; iOff+=pgszSrc ){ PgHdr *pSrcPg = 0; const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1); rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg, 0); if( rc==SQLITE_OK ){ u8 *zData = sqlite3PagerGetData(pSrcPg); rc = sqlite3OsWrite(pFile, zData, pgszSrc, iOff); } sqlite3PagerUnref(pSrcPg); } if( rc==SQLITE_OK ){ rc = backupTruncateFile(pFile, iSize); } /* Sync the database file to disk. */ if( rc==SQLITE_OK ){ rc = sqlite3PagerSync(pDestPager, 0); } }else{ sqlite3PagerTruncateImage(pDestPager, nDestTruncate); rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0); } /* Finish committing the transaction to the destination database. */ if( SQLITE_OK==rc && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0)) ){ rc = SQLITE_DONE; } } } /* If bCloseTrans is true, then this function opened a read transaction ** on the source database. Close the read transaction here. There is ** no need to check the return values of the btree methods here, as ** "committing" a read-only transaction cannot fail. */ if( bCloseTrans ){ TESTONLY( int rc2 ); TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0); TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0); assert( rc2==SQLITE_OK ); } if( rc==SQLITE_IOERR_NOMEM ){ rc = SQLITE_NOMEM_BKPT; } p->rc = rc; }
/* ** This routine implements the OP_Vacuum opcode of the VDBE. */ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ int rc = SQLITE_OK; /* Return code from service routines */ #if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM const char *zFilename; /* full pathname of the database file */ int nFilename; /* number of characters in zFilename[] */ char *zTemp = 0; /* a temporary file in same directory as zFilename */ int i; /* Loop counter */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; char *zSql = 0; if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", (char*)0); rc = SQLITE_ERROR; goto end_of_vacuum; } /* Get the full pathname of the database file and create a ** temporary filename in the same directory as the original file. */ pMain = db->aDb[0].pBt; zFilename = sqlite3BtreeGetFilename(pMain); assert( zFilename ); if( zFilename[0]=='\0' ){ /* The in-memory database. Do nothing. Return directly to avoid causing ** an error trying to DETACH the vacuum_db (which never got attached) ** in the exit-handler. */ return SQLITE_OK; } nFilename = strlen(zFilename); zTemp = sqliteMalloc( nFilename+100 ); if( zTemp==0 ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } strcpy(zTemp, zFilename); i = 0; do { zTemp[nFilename] = '-'; randomName((unsigned char*)&zTemp[nFilename+1]); } while( i<10 && sqlite3OsFileExists(zTemp) ); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimisation would be to use a non-journaled pager. */ zSql = sqlite3MPrintf("ATTACH '%q' AS vacuum_db;", zTemp); if( !zSql ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } rc = execSql(db, zSql); sqliteFree(zSql); zSql = 0; if( rc!=SQLITE_OK ) goto end_of_vacuum; assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 ); pTemp = db->aDb[db->nDb-1].pBt; sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), sqlite3BtreeGetReserve(pMain)); assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) ); execSql(db, "PRAGMA vacuum_db.synchronous=OFF"); /* Begin a transaction */ rc = execSql(db, "BEGIN;"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ rc = execExecSql(db, "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) " " FROM sqlite_master WHERE type='table' " "UNION ALL " "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000) " " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' " "UNION ALL " "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) " " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'" "UNION ALL " "SELECT 'CREATE VIEW vacuum_db.' || substr(sql,13,100000000) " " FROM sqlite_master WHERE type='view'" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy ** the contents to the temporary database. */ rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';'" "FROM sqlite_master " "WHERE type = 'table';" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers from the main database to the temporary database. ** This was deferred before in case the triggers interfered with copying ** the data. It's possible the indices should be deferred until this ** point also. */ rc = execExecSql(db, "SELECT 'CREATE TRIGGER vacuum_db.' || substr(sql, 16, 1000000) " "FROM sqlite_master WHERE type='trigger'" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* At this point, unless the main db was completely empty, there is now a ** transaction open on the vacuum database, but not on the main database. ** Open a btree level transaction on the main database. This allows a ** call to sqlite3BtreeCopyFile(). The main database btree level ** transaction is then committed, so the SQL level never knows it was ** opened for writing. This way, the SQL transaction used to create the ** temporary database never needs to be committed. */ if( sqlite3BtreeIsInTrans(pTemp) ){ u32 meta; assert( 0==sqlite3BtreeIsInTrans(pMain) ); rc = sqlite3BtreeBeginTrans(pMain, 1); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy Btree meta values 3 and 4. These correspond to SQL layer meta ** values 2 and 3, the default values of a couple of pragmas. */ rc = sqlite3BtreeGetMeta(pMain, 3, &meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeUpdateMeta(pTemp, 3, meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeGetMeta(pMain, 4, &meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeUpdateMeta(pTemp, 4, meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCopyFile(pMain, pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCommit(pMain); } end_of_vacuum: /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( rc==SQLITE_OK ){ rc = execSql(db, "DETACH vacuum_db;"); }else{ execSql(db, "DETACH vacuum_db;"); } if( zTemp ){ sqlite3OsDelete(zTemp); sqliteFree(zTemp); } if( zSql ) sqliteFree( zSql ); sqlite3ResetInternalSchema(db, 0); #endif return rc; }
/* ** Copy nPage pages from the source b-tree to the destination. */ int sqlite3_backup_step(sqlite3_backup *p, int nPage){ int rc; sqlite3_mutex_enter(p->pSrcDb->mutex); sqlite3BtreeEnter(p->pSrc); if( p->pDestDb ){ sqlite3_mutex_enter(p->pDestDb->mutex); } rc = p->rc; if( !isFatalError(rc) ){ Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */ Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */ int ii; /* Iterator variable */ int nSrcPage = -1; /* Size of source db in pages */ int bCloseTrans = 0; /* True if src db requires unlocking */ /* If the source pager is currently in a write-transaction, return ** SQLITE_BUSY immediately. */ if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){ rc = SQLITE_BUSY; }else{ rc = SQLITE_OK; } /* Lock the destination database, if it is not locked already. */ if( SQLITE_OK==rc && p->bDestLocked==0 && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2)) ){ p->bDestLocked = 1; sqlite3BtreeGetMeta(p->pDest, BTREE_SCHEMA_VERSION, &p->iDestSchema); } /* If there is no open read-transaction on the source database, open ** one now. If a transaction is opened here, then it will be closed ** before this function exits. */ if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){ rc = sqlite3BtreeBeginTrans(p->pSrc, 0); bCloseTrans = 1; } /* Now that there is a read-lock on the source database, query the ** source pager for the number of pages in the database. */ if( rc==SQLITE_OK ){ rc = sqlite3PagerPagecount(pSrcPager, &nSrcPage); } for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){ const Pgno iSrcPg = p->iNext; /* Source page number */ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){ DbPage *pSrcPg; /* Source page object */ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg); if( rc==SQLITE_OK ){ rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg)); sqlite3PagerUnref(pSrcPg); } } p->iNext++; } if( rc==SQLITE_OK ){ p->nPagecount = nSrcPage; p->nRemaining = nSrcPage+1-p->iNext; if( p->iNext>(Pgno)nSrcPage ){ rc = SQLITE_DONE; }else if( !p->isAttached ){ attachBackupObject(p); } } /* Update the schema version field in the destination database. This ** is to make sure that the schema-version really does change in ** the case where the source and destination databases have the ** same schema version. */ if( rc==SQLITE_DONE && (rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1))==SQLITE_OK ){ const int nSrcPagesize = sqlite3BtreeGetPageSize(p->pSrc); const int nDestPagesize = sqlite3BtreeGetPageSize(p->pDest); int nDestTruncate; if( p->pDestDb ){ sqlite3ResetInternalSchema(p->pDestDb, 0); } /* Set nDestTruncate to the final number of pages in the destination ** database. The complication here is that the destination page ** size may be different to the source page size. ** ** If the source page size is smaller than the destination page size, ** round up. In this case the call to sqlite3OsTruncate() below will ** fix the size of the file. However it is important to call ** sqlite3PagerTruncateImage() here so that any pages in the ** destination file that lie beyond the nDestTruncate page mark are ** journalled by PagerCommitPhaseOne() before they are destroyed ** by the file truncation. */ if( nSrcPagesize<nDestPagesize ){ int ratio = nDestPagesize/nSrcPagesize; nDestTruncate = (nSrcPage+ratio-1)/ratio; if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){ nDestTruncate--; } }else{ nDestTruncate = nSrcPage * (nSrcPagesize/nDestPagesize); } sqlite3PagerTruncateImage(pDestPager, nDestTruncate); if( nSrcPagesize<nDestPagesize ){ /* If the source page-size is smaller than the destination page-size, ** two extra things may need to happen: ** ** * The destination may need to be truncated, and ** ** * Data stored on the pages immediately following the ** pending-byte page in the source database may need to be ** copied into the destination database. */ const i64 iSize = (i64)nSrcPagesize * (i64)nSrcPage; sqlite3_file * const pFile = sqlite3PagerFile(pDestPager); assert( pFile ); assert( (i64)nDestTruncate*(i64)nDestPagesize >= iSize || ( nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1) && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+nDestPagesize )); if( SQLITE_OK==(rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1)) && SQLITE_OK==(rc = backupTruncateFile(pFile, iSize)) && SQLITE_OK==(rc = sqlite3PagerSync(pDestPager)) ){ i64 iOff; i64 iEnd = MIN(PENDING_BYTE + nDestPagesize, iSize); for( iOff=PENDING_BYTE+nSrcPagesize; rc==SQLITE_OK && iOff<iEnd; iOff+=nSrcPagesize ){ PgHdr *pSrcPg = 0; const Pgno iSrcPg = (Pgno)((iOff/nSrcPagesize)+1); rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg); if( rc==SQLITE_OK ){ u8 *zData = sqlite3PagerGetData(pSrcPg); rc = sqlite3OsWrite(pFile, zData, nSrcPagesize, iOff); } sqlite3PagerUnref(pSrcPg); } } }else{ rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0); } /* Finish committing the transaction to the destination database. */ if( SQLITE_OK==rc && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest)) ){ rc = SQLITE_DONE; } } /* If bCloseTrans is true, then this function opened a read transaction ** on the source database. Close the read transaction here. There is ** no need to check the return values of the btree methods here, as ** "committing" a read-only transaction cannot fail. */ if( bCloseTrans ){ TESTONLY( int rc2 ); TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0); TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc); assert( rc2==SQLITE_OK ); } p->rc = rc; }