Example #1
0
/*
** Rollback all database files.
*/
void sqlite3RollbackAll(sqlite3 *db){
  int i;
  int inTrans = 0;
  assert( sqlite3_mutex_held(db->mutex) );
  sqlite3MallocEnterBenignBlock(1);                 /* Enter benign region */
  for(i=0; i<db->nDb; i++){
    if( db->aDb[i].pBt ){
      if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
        inTrans = 1;
      }
      sqlite3BtreeRollback(db->aDb[i].pBt);
      db->aDb[i].inTrans = 0;
    }
  }
  sqlite3VtabRollback(db);
  sqlite3MallocLeaveBenignBlock();                 /* Leave benign region */

  if( db->flags&SQLITE_InternChanges ){
    sqlite3ExpirePreparedStatements(db);
    sqlite3ResetInternalSchema(db, 0);
  }

  /* If one has been configured, invoke the rollback-hook callback */
  if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
    db->xRollbackCallback(db->pRollbackArg);
  }
}
Example #2
0
/*
** This function is called to recover from a malloc failure that occured
** within SQLite.
**
** This function is *not* threadsafe. Calling this from within a threaded
** application when threads other than the caller have used SQLite is
** dangerous and will almost certainly result in malfunctions.
*/
int sqlite3_global_recover(){
  int rc = SQLITE_OK;

  if( sqlite3_malloc_failed ){
    sqlite3 *db;
    int i;
    sqlite3_malloc_failed = 0;
    for(db=pDbList; db; db=db->pNext ){
      sqlite3ExpirePreparedStatements(db);
      for(i=0; i<db->nDb; i++){
        Btree *pBt = db->aDb[i].pBt;
        if( pBt && (rc=sqlite3BtreeReset(pBt)) ){
          goto recover_out;
        }
      }
      db->autoCommit = 1;
    }
  }

recover_out:
  if( rc!=SQLITE_OK ){
    sqlite3_malloc_failed = 1;
  }
  return rc;
}
Example #3
0
/*
** Rollback all database files.
*/
void sqlite3RollbackAll(sqlite3 *db){
  int i;
  int inTrans = 0;
  assert( sqlite3_mutex_held(db->mutex) );
  sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 1);
  for(i=0; i<db->nDb; i++){
    if( db->aDb[i].pBt ){
      if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
        inTrans = 1;
      }
      sqlite3BtreeRollback(db->aDb[i].pBt);
      db->aDb[i].inTrans = 0;
    }
  }
  sqlite3VtabRollback(db);
  sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);

  if( db->flags&SQLITE_InternChanges ){
    sqlite3ExpirePreparedStatements(db);
    sqlite3ResetInternalSchema(db, 0);
  }

  /* If one has been configured, invoke the rollback-hook callback */
  if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
    db->xRollbackCallback(db->pRollbackArg);
  }
}
Example #4
0
/*
** Set or clear the access authorization function.
**
** The access authorization function is be called during the compilation
** phase to verify that the user has read and/or write access permission on
** various fields of the database.  The first argument to the auth function
** is a copy of the 3rd argument to this routine.  The second argument
** to the auth function is one of these constants:
**
**       SQLITE_CREATE_INDEX
**       SQLITE_CREATE_TABLE
**       SQLITE_CREATE_TEMP_INDEX
**       SQLITE_CREATE_TEMP_TABLE
**       SQLITE_CREATE_TEMP_TRIGGER
**       SQLITE_CREATE_TEMP_VIEW
**       SQLITE_CREATE_TRIGGER
**       SQLITE_CREATE_VIEW
**       SQLITE_DELETE
**       SQLITE_DROP_INDEX
**       SQLITE_DROP_TABLE
**       SQLITE_DROP_TEMP_INDEX
**       SQLITE_DROP_TEMP_TABLE
**       SQLITE_DROP_TEMP_TRIGGER
**       SQLITE_DROP_TEMP_VIEW
**       SQLITE_DROP_TRIGGER
**       SQLITE_DROP_VIEW
**       SQLITE_INSERT
**       SQLITE_PRAGMA
**       SQLITE_READ
**       SQLITE_SELECT
**       SQLITE_TRANSACTION
**       SQLITE_UPDATE
**
** The third and fourth arguments to the auth function are the name of
** the table and the column that are being accessed.  The auth function
** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE.  If
** SQLITE_OK is returned, it means that access is allowed.  SQLITE_DENY
** means that the SQL statement will never-run - the sqlite3_exec() call
** will return with an error.  SQLITE_IGNORE means that the SQL statement
** should run but attempts to read the specified column will return NULL
** and attempts to write the column will be ignored.
**
** Setting the auth function to NULL disables this hook.  The default
** setting of the auth function is NULL.
*/
int sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){
  db->xAuth = xAuth;
  db->pAuthArg = pArg;
  sqlite3ExpirePreparedStatements(db);
  return SQLITE_OK;
}
Example #5
0
/*
** Register a new collation sequence with the database handle db.
*/
int sqlite3_create_collation(
  sqlite3* db,
  const char *zName,
  int enc,
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  CollSeq *pColl;
  int rc = SQLITE_OK;

  if( sqlite3SafetyCheck(db) ){
    return SQLITE_MISUSE;
  }

  /* If SQLITE_UTF16 is specified as the encoding type, transform this
  ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
  ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
  */
  if( enc==SQLITE_UTF16 ){
    enc = SQLITE_UTF16NATIVE;
  }

  if( enc!=SQLITE_UTF8 && enc!=SQLITE_UTF16LE && enc!=SQLITE_UTF16BE ){
    sqlite3Error(db, SQLITE_ERROR,
        "Param 3 to sqlite3_create_collation() must be one of "
        "SQLITE_UTF8, SQLITE_UTF16, SQLITE_UTF16LE or SQLITE_UTF16BE"
    );
    return SQLITE_ERROR;
  }

  /* Check if this call is removing or replacing an existing collation
  ** sequence. If so, and there are active VMs, return busy. If there
  ** are no active VMs, invalidate any pre-compiled statements.
  */
  pColl = sqlite3FindCollSeq(db, (u8)enc, zName, strlen(zName), 0);
  if( pColl && pColl->xCmp ){
    if( db->activeVdbeCnt ){
      sqlite3Error(db, SQLITE_BUSY,
        "Unable to delete/modify collation sequence due to active statements");
      return SQLITE_BUSY;
    }
    sqlite3ExpirePreparedStatements(db);
  }

  pColl = sqlite3FindCollSeq(db, (u8)enc, zName, strlen(zName), 1);
  if( 0==pColl ){
   rc = SQLITE_NOMEM;
  }else{
    pColl->xCmp = xCompare;
    pColl->pUser = pCtx;
    pColl->enc = enc;
  }
  sqlite3Error(db, rc, 0);
  return rc;
}
Example #6
0
/*
** Create a new collating function for database "db".  The name is zName
** and the encoding is enc.
*/
static int createCollation(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  CollSeq *pColl;
  int enc2;
  
  if( sqlite3SafetyCheck(db) ){
    return SQLITE_MISUSE;
  }

  /* If SQLITE_UTF16 is specified as the encoding type, transform this
  ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
  ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
  */
  enc2 = enc & ~SQLITE_UTF16_ALIGNED;
  if( enc2==SQLITE_UTF16 ){
    enc2 = SQLITE_UTF16NATIVE;
  }

  if( (enc2&~3)!=0 ){
    sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
    return SQLITE_ERROR;
  }

  /* Check if this call is removing or replacing an existing collation 
  ** sequence. If so, and there are active VMs, return busy. If there
  ** are no active VMs, invalidate any pre-compiled statements.
  */
  pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0);
  if( pColl && pColl->xCmp ){
    if( db->activeVdbeCnt ){
      sqlite3Error(db, SQLITE_BUSY, 
        "Unable to delete/modify collation sequence due to active statements");
      return SQLITE_BUSY;
    }
    sqlite3ExpirePreparedStatements(db);
  }

  pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1);
  if( pColl ){
    pColl->xCmp = xCompare;
    pColl->pUser = pCtx;
    pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED);
  }
  sqlite3Error(db, SQLITE_OK, 0);
  return SQLITE_OK;
}
Example #7
0
/*
** Set or clear the access authorization function.
**
** The access authorization function is be called during the compilation
** phase to verify that the user has read and/or write access permission on
** various fields of the database.  The first argument to the auth function
** is a copy of the 3rd argument to this routine.  The second argument
** to the auth function is one of these constants:
**
**       SQLITE_CREATE_INDEX
**       SQLITE_CREATE_TABLE
**       SQLITE_CREATE_TEMP_INDEX
**       SQLITE_CREATE_TEMP_TABLE
**       SQLITE_CREATE_TEMP_TRIGGER
**       SQLITE_CREATE_TEMP_VIEW
**       SQLITE_CREATE_TRIGGER
**       SQLITE_CREATE_VIEW
**       SQLITE_DELETE
**       SQLITE_DROP_INDEX
**       SQLITE_DROP_TABLE
**       SQLITE_DROP_TEMP_INDEX
**       SQLITE_DROP_TEMP_TABLE
**       SQLITE_DROP_TEMP_TRIGGER
**       SQLITE_DROP_TEMP_VIEW
**       SQLITE_DROP_TRIGGER
**       SQLITE_DROP_VIEW
**       SQLITE_INSERT
**       SQLITE_PRAGMA
**       SQLITE_READ
**       SQLITE_SELECT
**       SQLITE_TRANSACTION
**       SQLITE_UPDATE
**
** The third and fourth arguments to the auth function are the name of
** the table and the column that are being accessed.  The auth function
** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE.  If
** SQLITE_OK is returned, it means that access is allowed.  SQLITE_DENY
** means that the SQL statement will never-run - the sqlite3_exec() call
** will return with an error.  SQLITE_IGNORE means that the SQL statement
** should run but attempts to read the specified column will return NULL
** and attempts to write the column will be ignored.
**
** Setting the auth function to NULL disables this hook.  The default
** setting of the auth function is NULL.
*/
int sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->xAuth = (sqlite3_xauth)xAuth;
  db->pAuthArg = pArg;
  sqlite3ExpirePreparedStatements(db);
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}
Example #8
0
/*
** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
**
** This function may only be called when the mutexes associated with all
** shared b-tree databases opened using connection db are held by the 
** caller. This is done to protect the sqlite3.pDisconnect list. The
** sqlite3.pDisconnect list is accessed only as follows:
**
**   1) By this function. In this case, all BtShared mutexes and the mutex
**      associated with the database handle itself must be held.
**
**   2) By function vtabDisconnectAll(), when it adds a VTable entry to
**      the sqlite3.pDisconnect list. In this case either the BtShared mutex
**      associated with the database the virtual table is stored in is held
**      or, if the virtual table is stored in a non-sharable database, then
**      the database handle mutex is held.
**
** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously 
** by multiple threads. It is thread-safe.
*/
void sqlite3VtabUnlockList(sqlite3 *db){
  VTable *p = db->pDisconnect;
  db->pDisconnect = 0;

  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3_mutex_held(db->mutex) );

  if( p ){
    sqlite3ExpirePreparedStatements(db);
    do {
      VTable *pNext = p->pNext;
      sqlite3VtabUnlock(p);
      p = pNext;
    }while( p );
  }
}
Example #9
0
/*
** Create new user functions.
*/
int sqlite3_create_function(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int enc,
  void *pUserData,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*)
){
  FuncDef *p;
  int nName;

  if( sqlite3SafetyCheck(db) ){
    return SQLITE_MISUSE;
  }
  if( zFunctionName==0 ||
      (xFunc && (xFinal || xStep)) ||
      (!xFunc && (xFinal && !xStep)) ||
      (!xFunc && (!xFinal && xStep)) ||
      (nArg<-1 || nArg>127) ||
      (255<(nName = strlen(zFunctionName))) ){
    return SQLITE_ERROR;
  }

#ifndef SQLITE_OMIT_UTF16
  /* If SQLITE_UTF16 is specified as the encoding type, transform this
  ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
  ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
  **
  ** If SQLITE_ANY is specified, add three versions of the function
  ** to the hash table.
  */
  if( enc==SQLITE_UTF16 ){
    enc = SQLITE_UTF16NATIVE;
  }else if( enc==SQLITE_ANY ){
    int rc;
    rc = sqlite3_create_function(db, zFunctionName, nArg, SQLITE_UTF8,
         pUserData, xFunc, xStep, xFinal);
    if( rc!=SQLITE_OK ) return rc;
    rc = sqlite3_create_function(db, zFunctionName, nArg, SQLITE_UTF16LE,
        pUserData, xFunc, xStep, xFinal);
    if( rc!=SQLITE_OK ) return rc;
    enc = SQLITE_UTF16BE;
  }
#else
  enc = SQLITE_UTF8;
#endif

  /* Check if an existing function is being overridden or deleted. If so,
  ** and there are active VMs, then return SQLITE_BUSY. If a function
  ** is being overridden/deleted but there are no active VMs, allow the
  ** operation to continue but invalidate all precompiled statements.
  */
  p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0);
  if( p && p->iPrefEnc==enc && p->nArg==nArg ){
    if( db->activeVdbeCnt ){
      sqlite3Error(db, SQLITE_BUSY,
        "Unable to delete/modify user-function due to active statements");
      return SQLITE_BUSY;
    }else{
      sqlite3ExpirePreparedStatements(db);
    }
  }

  p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1);
  if( p==0 ) return SQLITE_NOMEM;
  p->xFunc = xFunc;
  p->xStep = xStep;
  p->xFinalize = xFinal;
  p->pUserData = pUserData;
  return SQLITE_OK;
}
Example #10
0
/*
** Create a new collating function for database "db".  The name is zName
** and the encoding is enc.
*/
static int createCollation(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){
  CollSeq *pColl;
  int enc2;
  
  if( sqlite3SafetyCheck(db) ){
    return SQLITE_MISUSE;
  }
  assert( sqlite3_mutex_held(db->mutex) );

  /* If SQLITE_UTF16 is specified as the encoding type, transform this
  ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
  ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
  */
  enc2 = enc & ~SQLITE_UTF16_ALIGNED;
  if( enc2==SQLITE_UTF16 ){
    enc2 = SQLITE_UTF16NATIVE;
  }

  if( (enc2&~3)!=0 ){
    sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
    return SQLITE_ERROR;
  }

  /* Check if this call is removing or replacing an existing collation 
  ** sequence. If so, and there are active VMs, return busy. If there
  ** are no active VMs, invalidate any pre-compiled statements.
  */
  pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0);
  if( pColl && pColl->xCmp ){
    if( db->activeVdbeCnt ){
      sqlite3Error(db, SQLITE_BUSY, 
        "Unable to delete/modify collation sequence due to active statements");
      return SQLITE_BUSY;
    }
    sqlite3ExpirePreparedStatements(db);

    /* If collation sequence pColl was created directly by a call to
    ** sqlite3_create_collation, and not generated by synthCollSeq(),
    ** then any copies made by synthCollSeq() need to be invalidated.
    ** Also, collation destructor - CollSeq.xDel() - function may need
    ** to be called.
    */ 
    if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
      CollSeq *aColl = (CollSeq*)sqlite3HashFind(&db->aCollSeq, zName, strlen(zName));
      int j;
      for(j=0; j<3; j++){
        CollSeq *p = &aColl[j];
        if( p->enc==pColl->enc ){
          if( p->xDel ){
            p->xDel(p->pUser);
          }
          p->xCmp = 0;
        }
      }
    }
  }

  pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1);
  if( pColl ){
    pColl->xCmp = xCompare;
    pColl->pUser = pCtx;
    pColl->xDel = xDel;
    pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED);
  }
  sqlite3Error(db, SQLITE_OK, 0);
  return SQLITE_OK;
}