Example #1
0
/*
** This routine generates code that opens the sqlite_stat1 table on cursor
** iStatCur.
**
** If the sqlite_stat1 tables does not previously exist, it is created.
** If it does previously exist, all entires associated with table zWhere
** are removed.  If zWhere==0 then all entries are removed.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere      /* Delete entries associated with this table */
){
  sqlite3 *db = pParse->db;
  Db *pDb;
  int iRootPage;
  Table *pStat;
  Vdbe *v = sqlite3GetVdbe(pParse);

  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];
  if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
    /* The sqlite_stat1 tables does not exist.  Create it.  
    ** Note that a side-effect of the CREATE TABLE statement is to leave
    ** the rootpage of the new table on the top of the stack.  This is
    ** important because the OpenWrite opcode below will be needing it. */
    sqlite3NestedParse(pParse,
      "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
      pDb->zName
    );
    iRootPage = 0;  /* Cause rootpage to be taken from top of stack */
  }else if( zWhere ){
    /* The sqlite_stat1 table exists.  Delete all entries associated with
    ** the table zWhere. */
    sqlite3NestedParse(pParse,
       "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
       pDb->zName, zWhere
    );
    iRootPage = pStat->tnum;
  }else{
    /* The sqlite_stat1 table already exists.  Delete all rows. */
    iRootPage = pStat->tnum;
    sqlite3VdbeAddOp(v, OP_Clear, pStat->tnum, iDb);
  }

  /* Open the sqlite_stat1 table for writing. Unless it was created
  ** by this vdbe program, lock it for writing at the shared-cache level. 
  ** If this vdbe did create the sqlite_stat1 table, then it must have 
  ** already obtained a schema-lock, making the write-lock redundant.
  */
  if( iRootPage>0 ){
    sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
  }
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
  sqlite3VdbeAddOp(v, OP_OpenWrite, iStatCur, iRootPage);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, iStatCur, 3);
}
Example #2
0
/*
** Generate code that will open a table for reading.
*/
void sqlite3OpenTable(
  Parse *p,       /* Generate code into this VDBE */
  int iCur,       /* The cursor number of the table */
  int iDb,        /* The database index in sqlite3.aDb[] */
  Table *pTab,    /* The table to be opened */
  int opcode      /* OP_OpenRead or OP_OpenWrite */
){
  Vdbe *v = sqlite3GetVdbe(p);
  assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
  sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
  VdbeComment((v, "# %s", pTab->zName));
  sqlite3VdbeAddOp(v, opcode, iCur, pTab->tnum);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
}
Example #3
0
/*
** Generate code for a DELETE FROM statement.
**
**     DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
**                 \________/       \________________/
**                  pTabList              pWhere
*/
void sqlite3DeleteFrom(
  Parse *pParse,         /* The parser context */
  SrcList *pTabList,     /* The table from which we should delete things */
  Expr *pWhere           /* The WHERE clause.  May be null */
){
  Vdbe *v;               /* The virtual database engine */
  Table *pTab;           /* The table from which records will be deleted */
  int i;                 /* Loop counter */
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Index *pIdx;           /* For looping over indices of the table */
  int iTabCur;           /* Cursor number for the table */
  int iDataCur = 0;      /* VDBE cursor for the canonical data source */
  int iIdxCur = 0;       /* Cursor number of the first index */
  int nIdx;              /* Number of indices */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */
  NameContext sNC;       /* Name context to resolve expressions in */
  int iDb;               /* Database number */
  int memCnt = -1;       /* Memory cell used for change counting */
  int rcauth;            /* Value returned by authorization callback */
  int eOnePass;          /* ONEPASS_OFF or _SINGLE or _MULTI */
  int aiCurOnePass[2];   /* The write cursors opened by WHERE_ONEPASS */
  u8 *aToOpen = 0;       /* Open cursor iTabCur+j if aToOpen[j] is true */
  Index *pPk;            /* The PRIMARY KEY index on the table */
  int iPk = 0;           /* First of nPk registers holding PRIMARY KEY value */
  i16 nPk = 1;           /* Number of columns in the PRIMARY KEY */
  int iKey;              /* Memory cell holding key of row to be deleted */
  i16 nKey;              /* Number of memory cells in the row key */
  int iEphCur = 0;       /* Ephemeral table holding all primary key values */
  int iRowSet = 0;       /* Register for rowset of rows to delete */
  int addrBypass = 0;    /* Address of jump over the delete logic */
  int addrLoop = 0;      /* Top of the delete loop */
  int addrEphOpen = 0;   /* Instruction to open the Ephemeral table */
  int bComplex;          /* True if there are triggers or FKs or
                         ** subqueries in the WHERE clause */
 
#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */
#endif

  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto delete_from_cleanup;
  }
  assert( pTabList->nSrc==1 );

  /* Locate the table which we want to delete.  This table has to be
  ** put in an SrcList structure because some of the subroutines we
  ** will be calling are designed to work with multiple tables and expect
  ** an SrcList* parameter instead of just a Table* parameter.
  */
  pTab = sqlite3SrcListLookup(pParse, pTabList);
  if( pTab==0 )  goto delete_from_cleanup;

  /* Figure out if we have any triggers and if the table being
  ** deleted from is a view
  */
#ifndef SQLITE_OMIT_TRIGGER
  pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
  isView = pTab->pSelect!=0;
  bComplex = pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0);
#else
# define pTrigger 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif

  /* If pTab is really a view, make sure it has been initialized.
  */
  if( sqlite3ViewGetColumnNames(pParse, pTab) ){
    goto delete_from_cleanup;
  }

  if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
    goto delete_from_cleanup;
  }
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb<db->nDb );
  rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, 
                            db->aDb[iDb].zDbSName);
  assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
  if( rcauth==SQLITE_DENY ){
    goto delete_from_cleanup;
  }
  assert(!isView || pTrigger);

  /* Assign cursor numbers to the table and all its indices.
  */
  assert( pTabList->nSrc==1 );
  iTabCur = pTabList->a[0].iCursor = pParse->nTab++;
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
    pParse->nTab++;
  }

  /* Start the view context
  */
  if( isView ){
    sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
  }

  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

  /* If we are trying to delete from a view, realize that view into
  ** an ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iTabCur);
    iDataCur = iIdxCur = iTabCur;
  }
#endif

  /* Resolve the column names in the WHERE clause.
  */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;
  if( sqlite3ResolveExprNames(&sNC, pWhere) ){
    goto delete_from_cleanup;
  }

  /* Initialize the counter of the number of rows deleted, if
  ** we are counting rows.
  */
  if( db->flags & SQLITE_CountRows ){
    memCnt = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table. Prior to version 3.6.5,
  ** this optimization caused the row change count (the value returned by 
  ** API function sqlite3_count_changes) to be set incorrectly.  */
  if( rcauth==SQLITE_OK
   && pWhere==0
   && !bComplex
   && !IsVirtual(pTab)
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
   && db->xPreUpdateCallback==0
#endif
  ){
    assert( !isView );
    sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
    if( HasRowid(pTab) ){
      sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
                        pTab->zName, P4_STATIC);
    }
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
  {
    u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK|WHERE_SEEK_TABLE;
    if( sNC.ncFlags & NC_VarSelect ) bComplex = 1;
    wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW);
    if( HasRowid(pTab) ){
      /* For a rowid table, initialize the RowSet to an empty set */
      pPk = 0;
      nPk = 1;
      iRowSet = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    }else{
      /* For a WITHOUT ROWID table, create an ephemeral table used to
      ** hold all primary keys for rows to be deleted. */
      pPk = sqlite3PrimaryKeyIndex(pTab);
      assert( pPk!=0 );
      nPk = pPk->nKeyCol;
      iPk = pParse->nMem+1;
      pParse->nMem += nPk;
      iEphCur = pParse->nTab++;
      addrEphOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEphCur, nPk);
      sqlite3VdbeSetP4KeyInfo(pParse, pPk);
    }
  
    /* Construct a query to find the rowid or primary key for every row
    ** to be deleted, based on the WHERE clause. Set variable eOnePass
    ** to indicate the strategy used to implement this delete:
    **
    **  ONEPASS_OFF:    Two-pass approach - use a FIFO for rowids/PK values.
    **  ONEPASS_SINGLE: One-pass approach - at most one row deleted.
    **  ONEPASS_MULTI:  One-pass approach - any number of rows may be deleted.
    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, wcf, iTabCur+1);
    if( pWInfo==0 ) goto delete_from_cleanup;
    eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
    assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI );
    assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF );
  
    /* Keep track of the number of rows to be deleted */
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
  
    /* Extract the rowid or primary key for the current row */
    if( pPk ){
      for(i=0; i<nPk; i++){
        assert( pPk->aiColumn[i]>=0 );
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
                                        pPk->aiColumn[i], iPk+i);
      }
      iKey = iPk;
    }else{
      iKey = pParse->nMem + 1;
      iKey = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iTabCur, iKey, 0);
      if( iKey>pParse->nMem ) pParse->nMem = iKey;
    }
  
    if( eOnePass!=ONEPASS_OFF ){
      /* For ONEPASS, no need to store the rowid/primary-key. There is only
      ** one, so just keep it in its register(s) and fall through to the
      ** delete code.  */
      nKey = nPk; /* OP_Found will use an unpacked key */
      aToOpen = sqlite3DbMallocRawNN(db, nIdx+2);
      if( aToOpen==0 ){
        sqlite3WhereEnd(pWInfo);
        goto delete_from_cleanup;
      }
      memset(aToOpen, 1, nIdx+1);
      aToOpen[nIdx+1] = 0;
      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0;
      if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iTabCur] = 0;
      if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen);
    }else{
      if( pPk ){
        /* Add the PK key for this row to the temporary table */
        iKey = ++pParse->nMem;
        nKey = 0;   /* Zero tells OP_Found to use a composite key */
        sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey,
            sqlite3IndexAffinityStr(pParse->db, pPk), nPk);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iEphCur, iKey);
      }else{
        /* Add the rowid of the row to be deleted to the RowSet */
        nKey = 1;  /* OP_Seek always uses a single rowid */
        sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey);
      }
    }
  
    /* If this DELETE cannot use the ONEPASS strategy, this is the 
    ** end of the WHERE loop */
    if( eOnePass!=ONEPASS_OFF ){
      addrBypass = sqlite3VdbeMakeLabel(v);
    }else{
      sqlite3WhereEnd(pWInfo);
    }
  
    /* Unless this is a view, open cursors for the table we are 
    ** deleting from and all its indices. If this is a view, then the
    ** only effect this statement has is to fire the INSTEAD OF 
    ** triggers.
    */
    if( !isView ){
      int iAddrOnce = 0;
      if( eOnePass==ONEPASS_MULTI ){
        iAddrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
      }
      testcase( IsVirtual(pTab) );
      sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, OPFLAG_FORDELETE,
                                 iTabCur, aToOpen, &iDataCur, &iIdxCur);
      assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur );
      assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 );
      if( eOnePass==ONEPASS_MULTI ) sqlite3VdbeJumpHere(v, iAddrOnce);
    }
  
    /* Set up a loop over the rowids/primary-keys that were found in the
    ** where-clause loop above.
    */
    if( eOnePass!=ONEPASS_OFF ){
      assert( nKey==nPk );  /* OP_Found will use an unpacked key */
      if( !IsVirtual(pTab) && aToOpen[iDataCur-iTabCur] ){
        assert( pPk!=0 || pTab->pSelect!=0 );
        sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey);
        VdbeCoverage(v);
      }
    }else if( pPk ){
      addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v);
      sqlite3VdbeAddOp2(v, OP_RowKey, iEphCur, iKey);
      assert( nKey==0 );  /* OP_Found will use a composite key */
    }else{
      addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey);
      VdbeCoverage(v);
      assert( nKey==1 );
    }  
  
    /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB);
      sqlite3VdbeChangeP5(v, OE_Abort);
      assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE );
      sqlite3MayAbort(pParse);
      if( eOnePass==ONEPASS_SINGLE && sqlite3IsToplevel(pParse) ){
        pParse->isMultiWrite = 0;
      }
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      int iIdxNoSeek = -1;
      if( bComplex==0 && aiCurOnePass[1]!=iDataCur ){
        iIdxNoSeek = aiCurOnePass[1];
      }
      sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
          iKey, nKey, count, OE_Default, eOnePass, iIdxNoSeek);
    }
  
    /* End of the loop over all rowids/primary-keys. */
    if( eOnePass!=ONEPASS_OFF ){
      sqlite3VdbeResolveLabel(v, addrBypass);
      sqlite3WhereEnd(pWInfo);
    }else if( pPk ){
      sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v);
      sqlite3VdbeJumpHere(v, addrLoop);
    }else{
      sqlite3VdbeGoto(v, addrLoop);
      sqlite3VdbeJumpHere(v, addrLoop);
    }     
  
    /* Close the cursors open on the table and its indexes. */
    if( !isView && !IsVirtual(pTab) ){
      if( !pPk ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
      for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
        sqlite3VdbeAddOp1(v, OP_Close, iIdxCur + i);
      }
    }
  } /* End non-truncate path */

  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->pTriggerTab==0 ){
    sqlite3AutoincrementEnd(pParse);
  }

  /* Return the number of rows that were deleted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
  }

delete_from_cleanup:
  sqlite3AuthContextPop(&sContext);
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprDelete(db, pWhere);
  sqlite3DbFree(db, aToOpen);
  return;
}
Example #4
0
/*
** Generate code for a DELETE FROM statement.
**
**     DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
**                 \________/       \________________/
**                  pTabList              pWhere
*/
void sqlite3DeleteFrom(
  Parse *pParse,         /* The parser context */
  SrcList *pTabList,     /* The table from which we should delete things */
  Expr *pWhere           /* The WHERE clause.  May be null */
){
  Vdbe *v;               /* The virtual database engine */
  Table *pTab;           /* The table from which records will be deleted */
  const char *zDb;       /* Name of database holding pTab */
  int end, addr = 0;     /* A couple addresses of generated code */
  int i;                 /* Loop counter */
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Index *pIdx;           /* For looping over indices of the table */
  int iCur;              /* VDBE Cursor number for pTab */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */
  NameContext sNC;       /* Name context to resolve expressions in */
  int iDb;               /* Database number */
  int memCnt = -1;       /* Memory cell used for change counting */
  int rcauth;            /* Value returned by authorization callback */

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */
#endif

  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto delete_from_cleanup;
  }
  assert( pTabList->nSrc==1 );

  /* Locate the table which we want to delete.  This table has to be
  ** put in an SrcList structure because some of the subroutines we
  ** will be calling are designed to work with multiple tables and expect
  ** an SrcList* parameter instead of just a Table* parameter.
  */
  pTab = sqlite3SrcListLookup(pParse, pTabList);
  if( pTab==0 )  goto delete_from_cleanup;

  /* Figure out if we have any triggers and if the table being
  ** deleted from is a view
  */
#ifndef SQLITE_OMIT_TRIGGER
  pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
  isView = pTab->pSelect!=0;
#else
# define pTrigger 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif

  /* If pTab is really a view, make sure it has been initialized.
  */
  if( sqlite3ViewGetColumnNames(pParse, pTab) ){
    goto delete_from_cleanup;
  }

  if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
    goto delete_from_cleanup;
  }
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb<db->nDb );
  zDb = db->aDb[iDb].zName;
  rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb);
  assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
  if( rcauth==SQLITE_DENY ){
    goto delete_from_cleanup;
  }
  assert(!isView || pTrigger);

  /* Assign  cursor number to the table and all its indices.
  */
  assert( pTabList->nSrc==1 );
  iCur = pTabList->a[0].iCursor = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    pParse->nTab++;
  }

  /* Start the view context
  */
  if( isView ){
    sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
  }

  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

  /* If we are trying to delete from a view, realize that view into
  ** a ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
  }
#endif

  /* Resolve the column names in the WHERE clause.
  */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;
  if( sqlite3ResolveExprNames(&sNC, pWhere) ){
    goto delete_from_cleanup;
  }

  /* Initialize the counter of the number of rows deleted, if
  ** we are counting rows.
  */
  if( db->flags & SQLITE_CountRows ){
    memCnt = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table. Prior to version 3.6.5,
  ** this optimization caused the row change count (the value returned by 
  ** API function sqlite3_count_changes) to be set incorrectly.  */
  if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab) 
   && 0==sqlite3FkRequired(pParse, pTab, 0, 0)
  ){
    assert( !isView );
    sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
    sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
                      pTab->zName, P4_STATIC);
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
  /* The usual case: There is a WHERE clause so we have to scan through
  ** the table and pick which records to delete.
  */
  {
    int iRowSet = ++pParse->nMem;   /* Register for rowset of rows to delete */
    int iRowid = ++pParse->nMem;    /* Used for storing rowid values. */
    int regRowid;                   /* Actual register containing rowids */

    /* Collect rowids of every row to be deleted.
    */
    sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    pWInfo = sqlite3WhereBegin(
        pParse, pTabList, pWhere, 0, 0, WHERE_DUPLICATES_OK, 0
    );
    if( pWInfo==0 ) goto delete_from_cleanup;
    regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid, 0);
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid);
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
    sqlite3WhereEnd(pWInfo);

    /* Delete every item whose key was written to the list during the
    ** database scan.  We have to delete items after the scan is complete
    ** because deleting an item can change the scan order.  */
    end = sqlite3VdbeMakeLabel(v);

    /* Unless this is a view, open cursors for the table we are 
    ** deleting from and all its indices. If this is a view, then the
    ** only effect this statement has is to fire the INSTEAD OF 
    ** triggers.  */
    if( !isView ){
      sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
    }

    addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid);

    /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB);
      sqlite3VdbeChangeP5(v, OE_Abort);
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default);
    }

    /* End of the delete loop */
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
    sqlite3VdbeResolveLabel(v, end);

    /* Close the cursors open on the table and its indexes. */
    if( !isView && !IsVirtual(pTab) ){
      for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
        sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
      }
      sqlite3VdbeAddOp1(v, OP_Close, iCur);
    }
  }

  /* Update the sqlite_sequence table by storing the content of the
  ** maximum rowid counter values recorded while inserting into
  ** autoincrement tables.
  */
  if( pParse->nested==0 && pParse->pTriggerTab==0 ){
    sqlite3AutoincrementEnd(pParse);
  }

  /* Return the number of rows that were deleted. If this routine is 
  ** generating code because of a call to sqlite3NestedParse(), do not
  ** invoke the callback function.
  */
  if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
    sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
  }

delete_from_cleanup:
  sqlite3AuthContextPop(&sContext);
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprDelete(db, pWhere);
  return;
}
Example #5
0
/*
** This function is called when inserting, deleting or updating a row of
** table pTab to generate VDBE code to perform foreign key constraint 
** processing for the operation.
**
** For a DELETE operation, parameter regOld is passed the index of the
** first register in an array of (pTab->nCol+1) registers containing the
** rowid of the row being deleted, followed by each of the column values
** of the row being deleted, from left to right. Parameter regNew is passed
** zero in this case.
**
** For an INSERT operation, regOld is passed zero and regNew is passed the
** first register of an array of (pTab->nCol+1) registers containing the new
** row data.
**
** For an UPDATE operation, this function is called twice. Once before
** the original record is deleted from the table using the calling convention
** described for DELETE. Then again after the original record is deleted
** but before the new record is inserted using the INSERT convention. 
*/
void sqlite3FkCheck(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Row is being deleted from this table */ 
  int regOld,                     /* Previous row data is stored here */
  int regNew                      /* New row data is stored here */
){
  sqlite3 *db = pParse->db;       /* Database handle */
  FKey *pFKey;                    /* Used to iterate through FKs */
  int iDb;                        /* Index of database containing pTab */
  const char *zDb;                /* Name of database containing pTab */
  int isIgnoreErrors = pParse->disableTriggers;

  /* Exactly one of regOld and regNew should be non-zero. */
  assert( (regOld==0)!=(regNew==0) );

  /* If foreign-keys are disabled, this function is a no-op. */
  if( (db->flags&SQLITE_ForeignKeys)==0 ) return;

  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  zDb = db->aDb[iDb].zName;

  /* Loop through all the foreign key constraints for which pTab is the
  ** child table (the table that the foreign key definition is part of).  */
  for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
    Table *pTo;                   /* Parent table of foreign key pFKey */
    Index *pIdx = 0;              /* Index on key columns in pTo */
    int *aiFree = 0;
    int *aiCol;
    int iCol;
    int i;
    int isIgnore = 0;

    /* Find the parent table of this foreign key. Also find a unique index 
    ** on the parent key columns in the parent table. If either of these 
    ** schema items cannot be located, set an error in pParse and return 
    ** early.  */
    if( pParse->disableTriggers ){
      pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
    }else{
      pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
    }
    if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
      assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
      if( !isIgnoreErrors || db->mallocFailed ) return;
      if( pTo==0 ){
        /* If isIgnoreErrors is true, then a table is being dropped. In this
        ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
        ** before actually dropping it in order to check FK constraints.
        ** If the parent table of an FK constraint on the current table is
        ** missing, behave as if it is empty. i.e. decrement the relevant
        ** FK counter for each row of the current table with non-NULL keys.
        */
        Vdbe *v = sqlite3GetVdbe(pParse);
        int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
        for(i=0; i<pFKey->nCol; i++){
          int iReg = pFKey->aCol[i].iFrom + regOld + 1;
          sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump);
        }
        sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
      }
      continue;
    }
    assert( pFKey->nCol==1 || (aiFree && pIdx) );

    if( aiFree ){
      aiCol = aiFree;
    }else{
      iCol = pFKey->aCol[0].iFrom;
      aiCol = &iCol;
    }
    for(i=0; i<pFKey->nCol; i++){
      if( aiCol[i]==pTab->iPKey ){
        aiCol[i] = -1;
      }
#ifndef SQLITE_OMIT_AUTHORIZATION
      /* Request permission to read the parent key columns. If the 
      ** authorization callback returns SQLITE_IGNORE, behave as if any
      ** values read from the parent table are NULL. */
      if( db->xAuth ){
        int rcauth;
        char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
        rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
        isIgnore = (rcauth==SQLITE_IGNORE);
      }
#endif
    }

    /* Take a shared-cache advisory read-lock on the parent table. Allocate 
    ** a cursor to use to search the unique index on the parent key columns 
    ** in the parent table.  */
    sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
    pParse->nTab++;

    if( regOld!=0 ){
      /* A row is being removed from the child table. Search for the parent.
      ** If the parent does not exist, removing the child row resolves an 
      ** outstanding foreign key constraint violation. */
      fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
    }
    if( regNew!=0 ){
      /* A row is being added to the child table. If a parent row cannot
      ** be found, adding the child row has violated the FK constraint. */ 
      fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
    }

    sqlite3DbFree(db, aiFree);
  }

  /* Loop through all the foreign key constraints that refer to this table */
  for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
    Index *pIdx = 0;              /* Foreign key index for pFKey */
    SrcList *pSrc;
    int *aiCol = 0;

    if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
      assert( regOld==0 && regNew!=0 );
      /* Inserting a single row into a parent table cannot cause an immediate
      ** foreign key violation. So do nothing in this case.  */
      continue;
    }

    if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
      if( !isIgnoreErrors || db->mallocFailed ) return;
      continue;
    }
    assert( aiCol || pFKey->nCol==1 );

    /* Create a SrcList structure containing a single table (the table 
    ** the foreign key that refers to this table is attached to). This
    ** is required for the sqlite3WhereXXX() interface.  */
    pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
    if( pSrc ){
      struct SrcList_item *pItem = pSrc->a;
      pItem->pTab = pFKey->pFrom;
      pItem->zName = pFKey->pFrom->zName;
      pItem->pTab->nRef++;
      pItem->iCursor = pParse->nTab++;
  
      if( regNew!=0 ){
        fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
      }
      if( regOld!=0 ){
        /* If there is a RESTRICT action configured for the current operation
        ** on the parent table of this FK, then throw an exception 
        ** immediately if the FK constraint is violated, even if this is a
        ** deferred trigger. That's what RESTRICT means. To defer checking
        ** the constraint, the FK should specify NO ACTION (represented
        ** using OE_None). NO ACTION is the default.  */
        fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
      }
      pItem->zName = 0;
      sqlite3SrcListDelete(db, pSrc);
    }
    sqlite3DbFree(db, aiCol);
  }
}
Example #6
0
/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  int iStatCur,    /* Cursor that writes to the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */
){
  Index *pIdx;     /* An index to being analyzed */
  int iIdxCur;     /* Cursor number for index being analyzed */
  int nCol;        /* Number of columns in the index */
  Vdbe *v;         /* The virtual machine being built up */
  int i;           /* Loop counter */
  int topOfLoop;   /* The top of the loop */
  int endOfLoop;   /* The end of the loop */
  int addr;        /* The address of an instruction */
  int iDb;         /* Index of database containing pTab */

  v = sqlite3GetVdbe(pParse);
  if( v==0 || pTab==0 || pTab->pIndex==0 ){
    /* Do no analysis for tables that have no indices */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  assert( iDb>=0 );
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      pParse->db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);

    /* Open a cursor to the index to be analyzed
    */
    assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    VdbeComment((v, "# %s", pIdx->zName));
    sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
        (char *)pKey, P3_KEYINFO_HANDOFF);
    nCol = pIdx->nColumn;
    if( iMem+nCol*2>=pParse->nMem ){
      pParse->nMem = iMem+nCol*2+1;
    }
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, nCol+1);

    /* Memory cells are used as follows:
    **
    **    mem[iMem]:             The total number of rows in the table.
    **    mem[iMem+1]:           Number of distinct values in column 1
    **    ...
    **    mem[iMem+nCol]:        Number of distinct values in column N
    **    mem[iMem+nCol+1]       Last observed value of column 1
    **    ...
    **    mem[iMem+nCol+nCol]:   Last observed value of column N
    **
    ** Cells iMem through iMem+nCol are initialized to 0.  The others
    ** are initialized to NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp(v, OP_MemNull, iMem+nCol+i+1, 0);
    }

    /* Do the analysis.
    */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
      sqlite3VdbeAddOp(v, OP_MemLoad, iMem+nCol+i+1, 0);
      sqlite3VdbeAddOp(v, OP_Ne, 0x100, 0);
    }
    sqlite3VdbeAddOp(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      addr = sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem+i+1);
      sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
      sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
      sqlite3VdbeAddOp(v, OP_MemStore, iMem+nCol+i+1, 1);
    }
    sqlite3VdbeResolveLabel(v, endOfLoop);
    sqlite3VdbeAddOp(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp(v, OP_Close, iIdxCur, 0);

    /* Store the results.  
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entires
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
    ** rows of the table the index will select.  If D is the count of distinct
    ** values and K is the total number of rows, then the integer is computed
    ** as:
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
    addr = sqlite3VdbeAddOp(v, OP_IfNot, 0, 0);
    sqlite3VdbeAddOp(v, OP_NewRowid, iStatCur, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
    sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, " ", 0);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
      sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
      sqlite3VdbeAddOp(v, OP_Add, 0, 0);
      sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
      sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
      sqlite3VdbeAddOp(v, OP_Divide, 0, 0);
      sqlite3VdbeAddOp(v, OP_ToInt, 0, 0);
      if( i==nCol-1 ){
        sqlite3VdbeAddOp(v, OP_Concat, nCol*2-1, 0);
      }else{
        sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
      }
    }
    sqlite3VdbeOp3(v, OP_MakeRecord, 3, 0, "aaa", 0);
    sqlite3VdbeAddOp(v, OP_Insert, iStatCur, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, addr);
  }
}
Example #7
0
/*
** This routine generates code that opens the sqlite_stat1 table for
** writing with cursor iStatCur. If the library was built with the
** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is
** opened for writing using cursor (iStatCur+1)
**
** If the sqlite_stat1 tables does not previously exist, it is created.
** Similarly, if the sqlite_stat2 table does not exist and the library
** is compiled with SQLITE_ENABLE_STAT2 defined, it is created. 
**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in
** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated
** with the named table are deleted. If zWhere==0, then code is generated
** to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere,     /* Delete entries for this table or index */
  const char *zWhereType  /* Either "tbl" or "idx" */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#ifdef SQLITE_ENABLE_STAT2
    { "sqlite_stat2", "tbl,idx,sampleno,sample" },
#endif
  };

  int aRoot[] = {0, 0};
  u8 aCreateTbl[] = {0, 0};

  int i;
  sqlite3 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];

  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
      /* The sqlite_stat[12] table does not exist. Create it. Note that a 
      ** side-effect of the CREATE TABLE statement is to leave the rootpage 
      ** of the new table in register pParse->regRoot. This is important 
      ** because the OpenWrite opcode below will be needing it. */
      sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
      );
      aRoot[i] = pParse->regRoot;
      aCreateTbl[i] = 1;
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
        );
      }else{
        /* The sqlite_stat[12] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[12] tables for writing. */
  for(i=0; i<ArraySize(aTable); i++){
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
    sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
  }
}
Example #8
0
/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  Index *pOnlyIdx, /* If not NULL, only analyze this one index */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */
){
  sqlite3 *db = pParse->db;    /* Database handle */
  Index *pIdx;                 /* An index to being analyzed */
  int iIdxCur;                 /* Cursor open on index being analyzed */
  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */
  int topOfLoop;               /* The top of the loop */
  int endOfLoop;               /* The end of the loop */
  int jZeroRows = -1;          /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regSampleno = iMem++;    /* Register containing next sample number */
  int regCol = iMem++;         /* Content of a column analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regRowid = iMem++;       /* Rowid for the inserted record */

#ifdef SQLITE_ENABLE_STAT2
  int addr = 0;                /* Instruction address */
  int regTemp2 = iMem++;       /* Temporary use register */
  int regSamplerecno = iMem++; /* Index of next sample to record */
  int regRecno = iMem++;       /* Current sample index */
  int regLast = iMem++;        /* Index of last sample to record */
  int regFirst = iMem++;       /* Index of first sample to record */
#endif

  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;
  }
  if( memcmp(pTab->zName, "sqlite_", 7)==0 ){
    /* Do not gather statistics on system tables */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 );
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;
    KeyInfo *pKey;

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    nCol = pIdx->nColumn;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    if( iMem+1+(nCol*2)>pParse->nMem ){
      pParse->nMem = iMem+1+(nCol*2);
    }

    /* Open a cursor to the index to be analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));

    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

#ifdef SQLITE_ENABLE_STAT2

    /* If this iteration of the loop is generating code to analyze the
    ** first index in the pTab->pIndex list, then register regLast has
    ** not been populated. In this case populate it now.  */
    if( pTab->pIndex==pIdx ){
      sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno);
      sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2-1, regTemp);
      sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regTemp2);

      sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regLast);
      sqlite3VdbeAddOp2(v, OP_Null, 0, regFirst);
      addr = sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, 0, regLast);
      sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regFirst);
      sqlite3VdbeAddOp3(v, OP_Multiply, regLast, regTemp, regLast);
      sqlite3VdbeAddOp2(v, OP_AddImm, regLast, SQLITE_INDEX_SAMPLES*2-2);
      sqlite3VdbeAddOp3(v, OP_Divide,  regTemp2, regLast, regLast);
      sqlite3VdbeJumpHere(v, addr);
    }

    /* Zero the regSampleno and regRecno registers. */
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno);
    sqlite3VdbeAddOp2(v, OP_Copy, regFirst, regSamplerecno);
#endif

    /* The block of memory cells initialized here is used as follows.
    **
    **    iMem:                
    **        The total number of rows in the table.
    **
    **    iMem+1 .. iMem+nCol: 
    **        Number of distinct entries in index considering the 
    **        left-most N columns only, where N is between 1 and nCol, 
    **        inclusive.
    **
    **    iMem+nCol+1 .. Mem+2*nCol:  
    **        Previous value of indexed columns, from left to right.
    **
    ** Cells iMem through iMem+nCol are initialized to 0. The others are 
    ** initialized to contain an SQL NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
    }

    /* Start the analysis loop. This loop runs through all the entries in
    ** the index b-tree.  */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);

    for(i=0; i<nCol; i++){
      CollSeq *pColl;
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
      if( i==0 ){
#ifdef SQLITE_ENABLE_STAT2
        /* Check if the record that cursor iIdxCur points to contains a
        ** value that should be stored in the sqlite_stat2 table. If so,
        ** store it.  */
        int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno);
        assert( regTabname+1==regIdxname 
             && regTabname+2==regSampleno
             && regTabname+3==regCol
        );
        sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
        sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
        sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);

        /* Calculate new values for regSamplerecno and regSampleno.
        **
        **   sampleno = sampleno + 1
        **   samplerecno = samplerecno+(remaining records)/(remaining samples)
        */
        sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1);
        sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regLast, regTemp);
        sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
        sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2);
        sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2);
        sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp);
        sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno);

        sqlite3VdbeJumpHere(v, ne);
        sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1);
#endif

        /* Always record the very first row */
        sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
      }
      assert( pIdx->azColl!=0 );
      assert( pIdx->azColl[i]!=0 );
      pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
                       (char*)pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
    }
    if( db->mallocFailed ){
      /* If a malloc failure has occurred, then the result of the expression 
      ** passed as the second argument to the call to sqlite3VdbeJumpHere() 
      ** below may be negative. Which causes an assert() to fail (or an
      ** out-of-bounds write if SQLITE_DEBUG is not defined).  */
      return;
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      int addr2 = sqlite3VdbeCurrentAddr(v) - (nCol*2);
      if( i==0 ){
        sqlite3VdbeJumpHere(v, addr2-1);  /* Set jump dest for the OP_IfNot */
      }
      sqlite3VdbeJumpHere(v, addr2);      /* Set jump dest for the OP_Ne */
      sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }

    /* End of the analysis loop. */
    sqlite3VdbeResolveLabel(v, endOfLoop);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);

    /* Store the results in sqlite_stat1.
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
    ** rows of the table the index will select.  If D is the count of distinct
    ** values and K is the total number of rows, then the integer is computed
    ** as:
    **
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
    if( jZeroRows<0 ){
      jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
    }
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  }

  /* If the table has no indices, create a single sqlite_stat1 entry
  ** containing NULL as the index name and the row count as the content.
  */
  if( pTab->pIndex==0 ){
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regSampleno);
  }else{
    sqlite3VdbeJumpHere(v, jZeroRows);
    jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);
  }
  sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
  sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
  sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
  sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
  sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  if( pParse->nMem<regRec ) pParse->nMem = regRec;
  sqlite3VdbeJumpHere(v, jZeroRows);
}