/* ** This routine generates VDBE code that causes a single row of a ** single table to be deleted. ** ** The VDBE must be in a particular state when this routine is called. ** These are the requirements: ** ** 1. A read/write cursor pointing to pTab, the table containing the row ** to be deleted, must be opened as cursor number "base". ** ** 2. Read/write cursors for all indices of pTab must be open as ** cursor number base+i for the i-th index. ** ** 3. The record number of the row to be deleted must be on the top ** of the stack. ** ** This routine pops the top of the stack to remove the record number ** and then generates code to remove both the table record and all index ** entries that point to that record. */ void sqliteGenerateRowDelete( sqlite *db, /* The database containing the index */ Vdbe *v, /* Generate code into this VDBE */ Table *pTab, /* Table containing the row to be deleted */ int iCur, /* Cursor number for the table */ int count /* Increment the row change counter */ ){ int addr; addr = sqliteVdbeAddOp(v, OP_NotExists, iCur, 0); sqliteGenerateRowIndexDelete(db, v, pTab, iCur, 0); sqliteVdbeAddOp(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0) | OPFLAG_CSCHANGE); sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v)); }
/* ** Process an UPDATE statement. ** ** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL; ** \_______/ \________/ \______/ \________________/ * onError pTabList pChanges pWhere */ void sqliteUpdate( Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table in which we should change things */ ExprList *pChanges, /* Things to be changed */ Expr *pWhere, /* The WHERE clause. May be null */ int onError /* How to handle constraint errors */ ){ int i, j; /* Loop counters */ Table *pTab; /* The table to be updated */ int addr; /* VDBE instruction address of the start of the loop */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Vdbe *v; /* The virtual database engine */ Index *pIdx; /* For looping over indices */ int nIdx; /* Number of indices that need updating */ int nIdxTotal; /* Total number of indices */ int iCur; /* VDBE Cursor number of pTab */ sqlite *db; /* The database structure */ Index **apIdx = 0; /* An array of indices that need updating too */ char *aIdxUsed = 0; /* aIdxUsed[i]==1 if the i-th index is used */ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the ** an expression for the i-th column of the table. ** aXRef[i]==-1 if the i-th column is not changed. */ int chngRecno; /* True if the record number is being changed */ Expr *pRecnoExpr; /* Expression defining the new record number */ int openAll; /* True if all indices need to be opened */ int isView; /* Trying to update a view */ AuthContext sContext; /* The authorization context */ int before_triggers; /* True if there are any BEFORE triggers */ int after_triggers; /* True if there are any AFTER triggers */ int row_triggers_exist = 0; /* True if any row triggers exist */ int newIdx = -1; /* index of trigger "new" temp table */ int oldIdx = -1; /* index of trigger "old" temp table */ sContext.pParse = 0; if( pParse->nErr || sqlite_malloc_failed ) goto update_cleanup; db = pParse->db; assert( pTabList->nSrc==1 ); /* Locate the table which we want to update. */ pTab = sqliteSrcListLookup(pParse, pTabList); if( pTab==0 ) goto update_cleanup; before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_UPDATE, TK_BEFORE, TK_ROW, pChanges); after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_UPDATE, TK_AFTER, TK_ROW, pChanges); row_triggers_exist = before_triggers || after_triggers; isView = pTab->pSelect!=0; if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){ goto update_cleanup; } if( isView ){ if( sqliteViewGetColumnNames(pParse, pTab) ){ goto update_cleanup; } } aXRef = sqliteMalloc( sizeof(int) * pTab->nCol ); if( aXRef==0 ) goto update_cleanup; for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; /* If there are FOR EACH ROW triggers, allocate cursors for the ** special OLD and NEW tables */ if( row_triggers_exist ){ newIdx = pParse->nTab++; oldIdx = pParse->nTab++; } /* Allocate a cursors for the main database table and for all indices. ** The index cursors might not be used, but if they are used they ** need to occur right after the database cursor. So go ahead and ** allocate enough space, just in case. */ pTabList->a[0].iCursor = iCur = pParse->nTab++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ pParse->nTab++; } /* Resolve the column names in all the expressions of the ** of the UPDATE statement. Also find the column index ** for each column to be updated in the pChanges array. For each ** column to be updated, make sure we have authorization to change ** that column. */ chngRecno = 0; for(i=0; i<pChanges->nExpr; i++){ if( sqliteExprResolveIds(pParse, pTabList, 0, pChanges->a[i].pExpr) ){ goto update_cleanup; } if( sqliteExprCheck(pParse, pChanges->a[i].pExpr, 0, 0) ){ goto update_cleanup; } for(j=0; j<pTab->nCol; j++){ if( sqliteStrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){ if( j==pTab->iPKey ){ chngRecno = 1; pRecnoExpr = pChanges->a[i].pExpr; } aXRef[j] = i; break; } } if( j>=pTab->nCol ){ if( sqliteIsRowid(pChanges->a[i].zName) ){ chngRecno = 1; pRecnoExpr = pChanges->a[i].pExpr; }else{ sqliteErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName); goto update_cleanup; } } #ifndef SQLITE_OMIT_AUTHORIZATION { int rc; rc = sqliteAuthCheck(pParse, SQLITE_UPDATE, pTab->zName, pTab->aCol[j].zName, db->aDb[pTab->iDb].zName); if( rc==SQLITE_DENY ){ goto update_cleanup; }else if( rc==SQLITE_IGNORE ){ aXRef[j] = -1; } } #endif } /* Allocate memory for the array apIdx[] and fill it with pointers to every ** index that needs to be updated. Indices only need updating if their ** key includes one of the columns named in pChanges or if the record ** number of the original table entry is changing. */ for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){ if( chngRecno ){ i = 0; }else { for(i=0; i<pIdx->nColumn; i++){ if( aXRef[pIdx->aiColumn[i]]>=0 ) break; } } if( i<pIdx->nColumn ) nIdx++; } if( nIdxTotal>0 ){ apIdx = sqliteMalloc( sizeof(Index*) * nIdx + nIdxTotal ); if( apIdx==0 ) goto update_cleanup; aIdxUsed = (char*)&apIdx[nIdx]; } for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ if( chngRecno ){ i = 0; }else{ for(i=0; i<pIdx->nColumn; i++){ if( aXRef[pIdx->aiColumn[i]]>=0 ) break; } } if( i<pIdx->nColumn ){ apIdx[nIdx++] = pIdx; aIdxUsed[j] = 1; }else{ aIdxUsed[j] = 0; } } /* Resolve the column names in all the expressions in the ** WHERE clause. */ if( pWhere ){ if( sqliteExprResolveIds(pParse, pTabList, 0, pWhere) ){ goto update_cleanup; } if( sqliteExprCheck(pParse, pWhere, 0, 0) ){ goto update_cleanup; } } /* Start the view context */ if( isView ){ sqliteAuthContextPush(pParse, &sContext, pTab->zName); } /* Begin generating code. */ v = sqliteGetVdbe(pParse); if( v==0 ) goto update_cleanup; sqliteBeginWriteOperation(pParse, 1, pTab->iDb); /* If we are trying to update a view, construct that view into ** a temporary table. */ if( isView ){ Select *pView; pView = sqliteSelectDup(pTab->pSelect); sqliteSelect(pParse, pView, SRT_TempTable, iCur, 0, 0, 0); sqliteSelectDelete(pView); } /* Begin the database scan */ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1, 0); if( pWInfo==0 ) goto update_cleanup; /* Remember the index of every item to be updated. */ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0); /* End the database scan loop. */ sqliteWhereEnd(pWInfo); /* Initialize the count of updated rows */ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){ sqliteVdbeAddOp(v, OP_Integer, 0, 0); } if( row_triggers_exist ){ /* Create pseudo-tables for NEW and OLD */ sqliteVdbeAddOp(v, OP_OpenPseudo, oldIdx, 0); sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0); /* The top of the update loop for when there are triggers. */ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0); addr = sqliteVdbeAddOp(v, OP_ListRead, 0, 0); sqliteVdbeAddOp(v, OP_Dup, 0, 0); /* Open a cursor and make it point to the record that is ** being updated. */ sqliteVdbeAddOp(v, OP_Dup, 0, 0); if( !isView ){ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum); } sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); /* Generate the OLD table */ sqliteVdbeAddOp(v, OP_Recno, iCur, 0); sqliteVdbeAddOp(v, OP_RowData, iCur, 0); sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0); /* Generate the NEW table */ if( chngRecno ){ sqliteExprCode(pParse, pRecnoExpr); }else{ sqliteVdbeAddOp(v, OP_Recno, iCur, 0); } for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ sqliteVdbeAddOp(v, OP_String, 0, 0); continue; } j = aXRef[i]; if( j<0 ){ sqliteVdbeAddOp(v, OP_Column, iCur, i); }else{ sqliteExprCode(pParse, pChanges->a[j].pExpr); } } sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0); if( !isView ){ sqliteVdbeAddOp(v, OP_Close, iCur, 0); } /* Fire the BEFORE and INSTEAD OF triggers */ if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_BEFORE, pTab, newIdx, oldIdx, onError, addr) ){ goto update_cleanup; } } if( !isView ){ /* ** Open every index that needs updating. Note that if any ** index could potentially invoke a REPLACE conflict resolution ** action, then we need to open all indices because we might need ** to be deleting some records. */ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); sqliteVdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum); if( onError==OE_Replace ){ openAll = 1; }else{ openAll = 0; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->onError==OE_Replace ){ openAll = 1; break; } } } for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( openAll || aIdxUsed[i] ){ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0); sqliteVdbeAddOp(v, OP_OpenWrite, iCur+i+1, pIdx->tnum); assert( pParse->nTab>iCur+i+1 ); } } /* Loop over every record that needs updating. We have to load ** the old data for each record to be updated because some columns ** might not change and we will need to copy the old value. ** Also, the old data is needed to delete the old index entires. ** So make the cursor point at the old record. */ if( !row_triggers_exist ){ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0); addr = sqliteVdbeAddOp(v, OP_ListRead, 0, 0); sqliteVdbeAddOp(v, OP_Dup, 0, 0); } sqliteVdbeAddOp(v, OP_NotExists, iCur, addr); /* If the record number will change, push the record number as it ** will be after the update. (The old record number is currently ** on top of the stack.) */ if( chngRecno ){ sqliteExprCode(pParse, pRecnoExpr); sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0); } /* Compute new data for this record. */ for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ sqliteVdbeAddOp(v, OP_String, 0, 0); continue; } j = aXRef[i]; if( j<0 ){ sqliteVdbeAddOp(v, OP_Column, iCur, i); }else{ sqliteExprCode(pParse, pChanges->a[j].pExpr); } } /* Do constraint checks */ sqliteGenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, onError, addr); /* Delete the old indices for the current record. */ sqliteGenerateRowIndexDelete(db, v, pTab, iCur, aIdxUsed); /* If changing the record number, delete the old record. */ if( chngRecno ){ sqliteVdbeAddOp(v, OP_Delete, iCur, 0); } /* Create the new index entries and the new record. */ sqliteCompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, -1); } /* Increment the row counter */ if( db->flags & SQLITE_CountRows && !pParse->trigStack){ sqliteVdbeAddOp(v, OP_AddImm, 1, 0); } /* If there are triggers, close all the cursors after each iteration ** through the loop. The fire the after triggers. */ if( row_triggers_exist ){ if( !isView ){ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( openAll || aIdxUsed[i] ) sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0); } sqliteVdbeAddOp(v, OP_Close, iCur, 0); pParse->nTab = iCur; } if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_AFTER, pTab, newIdx, oldIdx, onError, addr) ){ goto update_cleanup; } } /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ sqliteVdbeAddOp(v, OP_Goto, 0, addr); sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v)); sqliteVdbeAddOp(v, OP_ListReset, 0, 0); /* Close all tables if there were no FOR EACH ROW triggers */ if( !row_triggers_exist ){ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( openAll || aIdxUsed[i] ){ sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0); } } sqliteVdbeAddOp(v, OP_Close, iCur, 0); pParse->nTab = iCur; }else{ sqliteVdbeAddOp(v, OP_Close, newIdx, 0); sqliteVdbeAddOp(v, OP_Close, oldIdx, 0); } sqliteVdbeAddOp(v, OP_SetCounts, 0, 0); sqliteEndWriteOperation(pParse); /* ** Return the number of rows that were changed. */ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows updated", P3_STATIC); sqliteVdbeAddOp(v, OP_Callback, 1, 0); } update_cleanup: sqliteAuthContextPop(&sContext); sqliteFree(apIdx); sqliteFree(aXRef); sqliteSrcListDelete(pTabList); sqliteExprListDelete(pChanges); sqliteExprDelete(pWhere); return; }
/* ** Process a pragma statement. ** ** Pragmas are of this form: ** ** PRAGMA id = value ** ** The identifier might also be a string. The value is a string, and ** identifier, or a number. If minusFlag is true, then the value is ** a number that was preceded by a minus sign. */ void sqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag){ char *zLeft = 0; char *zRight = 0; sqlite *db = pParse->db; Vdbe *v = sqliteGetVdbe(pParse); if( v==0 ) return; zLeft = sqliteStrNDup(pLeft->z, pLeft->n); sqliteDequote(zLeft); if( minusFlag ){ zRight = 0; sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0); }else{ zRight = sqliteStrNDup(pRight->z, pRight->n); sqliteDequote(zRight); } if( sqliteAuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, 0) ){ sqliteFree(zLeft); sqliteFree(zRight); return; } /* ** PRAGMA default_cache_size ** PRAGMA default_cache_size=N ** ** The first form reports the current persistent setting for the ** page cache size. The value returned is the maximum number of ** pages in the page cache. The second form sets both the current ** page cache size value and the persistent page cache size value ** stored in the database file. ** ** The default cache size is stored in meta-value 2 of page 1 of the ** database file. The cache size is actually the absolute value of ** this memory location. The sign of meta-value 2 determines the ** synchronous setting. A negative value means synchronous is off ** and a positive value means synchronous is on. */ if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){ static VdbeOpList getCacheSize[] = { { OP_ReadCookie, 0, 2, 0}, { OP_AbsValue, 0, 0, 0}, { OP_Dup, 0, 0, 0}, { OP_Integer, 0, 0, 0}, { OP_Ne, 0, 6, 0}, { OP_Integer, 0, 0, 0}, /* 5 */ { OP_ColumnName, 0, 1, "cache_size"}, { OP_Callback, 1, 0, 0}, }; int addr; if( pRight->z==pLeft->z ){ addr = sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); sqliteVdbeChangeP1(v, addr+5, MAX_PAGES); }else{ int size = atoi(zRight); if( size<0 ) size = -size; sqliteBeginWriteOperation(pParse, 0, 0); sqliteVdbeAddOp(v, OP_Integer, size, 0); sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2); addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeAddOp(v, OP_Ge, 0, addr+3); sqliteVdbeAddOp(v, OP_Negative, 0, 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 2); sqliteEndWriteOperation(pParse); db->cache_size = db->cache_size<0 ? -size : size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); } }else /* ** PRAGMA cache_size ** PRAGMA cache_size=N ** ** The first form reports the current local setting for the ** page cache size. The local setting can be different from ** the persistent cache size value that is stored in the database ** file itself. The value returned is the maximum number of ** pages in the page cache. The second form sets the local ** page cache size value. It does not change the persistent ** cache size stored on the disk so the cache size will revert ** to its default value when the database is closed and reopened. ** N should be a positive integer. */ if( sqliteStrICmp(zLeft,"cache_size")==0 ){ static VdbeOpList getCacheSize[] = { { OP_ColumnName, 0, 1, "cache_size"}, { OP_Callback, 1, 0, 0}, }; if( pRight->z==pLeft->z ){ int size = db->cache_size;; if( size<0 ) size = -size; sqliteVdbeAddOp(v, OP_Integer, size, 0); sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); }else{ int size = atoi(zRight); if( size<0 ) size = -size; if( db->cache_size<0 ) size = -size; db->cache_size = size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); } }else /* ** PRAGMA default_synchronous ** PRAGMA default_synchronous=ON|OFF|NORMAL|FULL ** ** The first form returns the persistent value of the "synchronous" setting ** that is stored in the database. This is the synchronous setting that ** is used whenever the database is opened unless overridden by a separate ** "synchronous" pragma. The second form changes the persistent and the ** local synchronous setting to the value given. ** ** If synchronous is OFF, SQLite does not attempt any fsync() systems calls ** to make sure data is committed to disk. Write operations are very fast, ** but a power failure can leave the database in an inconsistent state. ** If synchronous is ON or NORMAL, SQLite will do an fsync() system call to ** make sure data is being written to disk. The risk of corruption due to ** a power loss in this mode is negligible but non-zero. If synchronous ** is FULL, extra fsync()s occur to reduce the risk of corruption to near ** zero, but with a write performance penalty. The default mode is NORMAL. */ if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){ static VdbeOpList getSync[] = { { OP_ColumnName, 0, 1, "synchronous"}, { OP_ReadCookie, 0, 3, 0}, { OP_Dup, 0, 0, 0}, { OP_If, 0, 0, 0}, /* 3 */ { OP_ReadCookie, 0, 2, 0}, { OP_Integer, 0, 0, 0}, { OP_Lt, 0, 5, 0}, { OP_AddImm, 1, 0, 0}, { OP_Callback, 1, 0, 0}, { OP_Halt, 0, 0, 0}, { OP_AddImm, -1, 0, 0}, /* 10 */ { OP_Callback, 1, 0, 0} }; if( pRight->z==pLeft->z ){ int addr = sqliteVdbeAddOpList(v, ArraySize(getSync), getSync); sqliteVdbeChangeP2(v, addr+3, addr+10); }else{ int addr; int size = db->cache_size; if( size<0 ) size = -size; sqliteBeginWriteOperation(pParse, 0, 0); sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2); sqliteVdbeAddOp(v, OP_Dup, 0, 0); addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeAddOp(v, OP_Ne, 0, addr+3); sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0); sqliteVdbeAddOp(v, OP_AbsValue, 0, 0); db->safety_level = getSafetyLevel(zRight)+1; if( db->safety_level==1 ){ sqliteVdbeAddOp(v, OP_Negative, 0, 0); size = -size; } sqliteVdbeAddOp(v, OP_SetCookie, 0, 2); sqliteVdbeAddOp(v, OP_Integer, db->safety_level, 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 3); sqliteEndWriteOperation(pParse); db->cache_size = size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level); } }else /* ** PRAGMA synchronous ** PRAGMA synchronous=OFF|ON|NORMAL|FULL ** ** Return or set the local value of the synchronous flag. Changing ** the local value does not make changes to the disk file and the ** default value will be restored the next time the database is ** opened. */ if( sqliteStrICmp(zLeft,"synchronous")==0 ){ static VdbeOpList getSync[] = { { OP_ColumnName, 0, 1, "synchronous"}, { OP_Callback, 1, 0, 0}, }; if( pRight->z==pLeft->z ){ sqliteVdbeAddOp(v, OP_Integer, db->safety_level-1, 0); sqliteVdbeAddOpList(v, ArraySize(getSync), getSync); }else{ int size = db->cache_size; if( size<0 ) size = -size; db->safety_level = getSafetyLevel(zRight)+1; if( db->safety_level==1 ) size = -size; db->cache_size = size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level); } }else #ifndef NDEBUG if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){ if( getBoolean(zRight) ){ always_code_trigger_setup = 1; }else{ always_code_trigger_setup = 0; } }else #endif if( flagPragma(pParse, zLeft, zRight) ){ /* The flagPragma() call also generates any necessary code */ }else if( sqliteStrICmp(zLeft, "table_info")==0 ){ Table *pTab; pTab = sqliteFindTable(db, zRight, 0); if( pTab ){ static VdbeOpList tableInfoPreface[] = { { OP_ColumnName, 0, 0, "cid"}, { OP_ColumnName, 1, 0, "name"}, { OP_ColumnName, 2, 0, "type"}, { OP_ColumnName, 3, 0, "notnull"}, { OP_ColumnName, 4, 0, "dflt_value"}, { OP_ColumnName, 5, 1, "pk"}, }; int i; sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface); sqliteViewGetColumnNames(pParse, pTab); for(i=0; i<pTab->nCol; i++){ sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zName, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0); sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC); sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0); sqliteVdbeAddOp(v, OP_Callback, 6, 0); } } }else if( sqliteStrICmp(zLeft, "index_info")==0 ){ Index *pIdx; Table *pTab; pIdx = sqliteFindIndex(db, zRight, 0); if( pIdx ){ static VdbeOpList tableInfoPreface[] = { { OP_ColumnName, 0, 0, "seqno"}, { OP_ColumnName, 1, 0, "cid"}, { OP_ColumnName, 2, 1, "name"}, }; int i; pTab = pIdx->pTable; sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface); for(i=0; i<pIdx->nColumn; i++){ int cnum = pIdx->aiColumn[i]; sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeAddOp(v, OP_Integer, cnum, 0); assert( pTab->nCol>cnum ); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[cnum].zName, 0); sqliteVdbeAddOp(v, OP_Callback, 3, 0); } } }else if( sqliteStrICmp(zLeft, "index_list")==0 ){ Index *pIdx; Table *pTab; pTab = sqliteFindTable(db, zRight, 0); if( pTab ){ v = sqliteGetVdbe(pParse); pIdx = pTab->pIndex; } if( pTab && pIdx ){ int i = 0; static VdbeOpList indexListPreface[] = { { OP_ColumnName, 0, 0, "seq"}, { OP_ColumnName, 1, 0, "name"}, { OP_ColumnName, 2, 1, "unique"}, }; sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface); while(pIdx){ sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pIdx->zName, 0); sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0); sqliteVdbeAddOp(v, OP_Callback, 3, 0); ++i; pIdx = pIdx->pNext; } } }else if( sqliteStrICmp(zLeft, "foreign_key_list")==0 ){ FKey *pFK; Table *pTab; pTab = sqliteFindTable(db, zRight, 0); if( pTab ){ v = sqliteGetVdbe(pParse); pFK = pTab->pFKey; } if( pTab && pFK ){ int i = 0; static VdbeOpList indexListPreface[] = { { OP_ColumnName, 0, 0, "id"}, { OP_ColumnName, 1, 0, "seq"}, { OP_ColumnName, 2, 0, "table"}, { OP_ColumnName, 3, 0, "from"}, { OP_ColumnName, 4, 1, "to"}, }; sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface); while(pFK){ int j; for(j=0; j<pFK->nCol; j++){ sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeAddOp(v, OP_Integer, j, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pFK->zTo, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[pFK->aCol[j].iFrom].zName, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pFK->aCol[j].zCol, 0); sqliteVdbeAddOp(v, OP_Callback, 5, 0); } ++i; pFK = pFK->pNextFrom; } } }else if( sqliteStrICmp(zLeft, "database_list")==0 ){ int i; static VdbeOpList indexListPreface[] = { { OP_ColumnName, 0, 0, "seq"}, { OP_ColumnName, 1, 0, "name"}, { OP_ColumnName, 2, 1, "file"}, }; sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface); for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt==0 ) continue; assert( db->aDb[i].zName!=0 ); sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, 0); sqliteVdbeOp3(v, OP_String, 0, 0, sqliteBtreeGetFilename(db->aDb[i].pBt), 0); sqliteVdbeAddOp(v, OP_Callback, 3, 0); } }else /* ** PRAGMA temp_store ** PRAGMA temp_store = "default"|"memory"|"file" ** ** Return or set the local value of the temp_store flag. Changing ** the local value does not make changes to the disk file and the default ** value will be restored the next time the database is opened. ** ** Note that it is possible for the library compile-time options to ** override this setting */ if( sqliteStrICmp(zLeft, "temp_store")==0 ){ static VdbeOpList getTmpDbLoc[] = { { OP_ColumnName, 0, 1, "temp_store"}, { OP_Callback, 1, 0, 0}, }; if( pRight->z==pLeft->z ){ sqliteVdbeAddOp(v, OP_Integer, db->temp_store, 0); sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc); }else{ changeTempStorage(pParse, zRight); } }else /* ** PRAGMA default_temp_store ** PRAGMA default_temp_store = "default"|"memory"|"file" ** ** Return or set the value of the persistent temp_store flag. Any ** change does not take effect until the next time the database is ** opened. ** ** Note that it is possible for the library compile-time options to ** override this setting */ if( sqliteStrICmp(zLeft, "default_temp_store")==0 ){ static VdbeOpList getTmpDbLoc[] = { { OP_ColumnName, 0, 1, "temp_store"}, { OP_ReadCookie, 0, 5, 0}, { OP_Callback, 1, 0, 0}}; if( pRight->z==pLeft->z ){ sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc); }else{ sqliteBeginWriteOperation(pParse, 0, 0); sqliteVdbeAddOp(v, OP_Integer, getTempStore(zRight), 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 5); sqliteEndWriteOperation(pParse); } }else #ifndef NDEBUG if( sqliteStrICmp(zLeft, "parser_trace")==0 ){ extern void sqliteParserTrace(FILE*, char *); if( getBoolean(zRight) ){ sqliteParserTrace(stdout, "parser: "); }else{ sqliteParserTrace(0, 0); } }else #endif if( sqliteStrICmp(zLeft, "integrity_check")==0 ){ int i, j, addr; /* Code that initializes the integrity check program. Set the ** error count 0 */ static VdbeOpList initCode[] = { { OP_Integer, 0, 0, 0}, { OP_MemStore, 0, 1, 0}, { OP_ColumnName, 0, 1, "integrity_check"}, }; /* Code to do an BTree integrity check on a single database file. */ static VdbeOpList checkDb[] = { { OP_SetInsert, 0, 0, "2"}, { OP_Integer, 0, 0, 0}, /* 1 */ { OP_OpenRead, 0, 2, 0}, { OP_Rewind, 0, 7, 0}, /* 3 */ { OP_Column, 0, 3, 0}, /* 4 */ { OP_SetInsert, 0, 0, 0}, { OP_Next, 0, 4, 0}, /* 6 */ { OP_IntegrityCk, 0, 0, 0}, /* 7 */ { OP_Dup, 0, 1, 0}, { OP_String, 0, 0, "ok"}, { OP_StrEq, 0, 12, 0}, /* 10 */ { OP_MemIncr, 0, 0, 0}, { OP_String, 0, 0, "*** in database "}, { OP_String, 0, 0, 0}, /* 13 */ { OP_String, 0, 0, " ***\n"}, { OP_Pull, 3, 0, 0}, { OP_Concat, 4, 1, 0}, { OP_Callback, 1, 0, 0}, }; /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static VdbeOpList endCode[] = { { OP_MemLoad, 0, 0, 0}, { OP_Integer, 0, 0, 0}, { OP_Ne, 0, 0, 0}, /* 2 */ { OP_String, 0, 0, "ok"}, { OP_Callback, 1, 0, 0}, }; /* Initialize the VDBE program */ sqliteVdbeAddOpList(v, ArraySize(initCode), initCode); /* Do an integrity check on each database file */ for(i=0; i<db->nDb; i++){ HashElem *x; /* Do an integrity check of the B-Tree */ addr = sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb); sqliteVdbeChangeP1(v, addr+1, i); sqliteVdbeChangeP2(v, addr+3, addr+7); sqliteVdbeChangeP2(v, addr+6, addr+4); sqliteVdbeChangeP2(v, addr+7, i); sqliteVdbeChangeP2(v, addr+10, addr+ArraySize(checkDb)); sqliteVdbeChangeP3(v, addr+13, db->aDb[i].zName, P3_STATIC); /* Make sure all the indices are constructed correctly. */ sqliteCodeVerifySchema(pParse, i); for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; int loopTop; if( pTab->pIndex==0 ) continue; sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeOp3(v, OP_OpenRead, 1, pTab->tnum, pTab->zName, 0); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ if( pIdx->tnum==0 ) continue; sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0); sqliteVdbeOp3(v, OP_OpenRead, j+2, pIdx->tnum, pIdx->zName, 0); } sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeAddOp(v, OP_MemStore, 1, 1); loopTop = sqliteVdbeAddOp(v, OP_Rewind, 1, 0); sqliteVdbeAddOp(v, OP_MemIncr, 1, 0); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int k, jmp2; static VdbeOpList idxErr[] = { { OP_MemIncr, 0, 0, 0}, { OP_String, 0, 0, "rowid "}, { OP_Recno, 1, 0, 0}, { OP_String, 0, 0, " missing from index "}, { OP_String, 0, 0, 0}, /* 4 */ { OP_Concat, 4, 0, 0}, { OP_Callback, 1, 0, 0}, }; sqliteVdbeAddOp(v, OP_Recno, 1, 0); for(k=0; k<pIdx->nColumn; k++){ int idx = pIdx->aiColumn[k]; if( idx==pTab->iPKey ){ sqliteVdbeAddOp(v, OP_Recno, 1, 0); }else{ sqliteVdbeAddOp(v, OP_Column, 1, idx); } } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx); jmp2 = sqliteVdbeAddOp(v, OP_Found, j+2, 0); addr = sqliteVdbeAddOpList(v, ArraySize(idxErr), idxErr); sqliteVdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC); sqliteVdbeChangeP2(v, jmp2, sqliteVdbeCurrentAddr(v)); } sqliteVdbeAddOp(v, OP_Next, 1, loopTop+1); sqliteVdbeChangeP2(v, loopTop, sqliteVdbeCurrentAddr(v)); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ static VdbeOpList cntIdx[] = { { OP_Integer, 0, 0, 0}, { OP_MemStore, 2, 1, 0}, { OP_Rewind, 0, 0, 0}, /* 2 */ { OP_MemIncr, 2, 0, 0}, { OP_Next, 0, 0, 0}, /* 4 */ { OP_MemLoad, 1, 0, 0}, { OP_MemLoad, 2, 0, 0}, { OP_Eq, 0, 0, 0}, /* 7 */ { OP_MemIncr, 0, 0, 0}, { OP_String, 0, 0, "wrong # of entries in index "}, { OP_String, 0, 0, 0}, /* 10 */ { OP_Concat, 2, 0, 0}, { OP_Callback, 1, 0, 0}, }; if( pIdx->tnum==0 ) continue; addr = sqliteVdbeAddOpList(v, ArraySize(cntIdx), cntIdx); sqliteVdbeChangeP1(v, addr+2, j+2); sqliteVdbeChangeP2(v, addr+2, addr+5); sqliteVdbeChangeP1(v, addr+4, j+2); sqliteVdbeChangeP2(v, addr+4, addr+3); sqliteVdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx)); sqliteVdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC); } } } addr = sqliteVdbeAddOpList(v, ArraySize(endCode), endCode); sqliteVdbeChangeP2(v, addr+2, addr+ArraySize(endCode)); }else {} sqliteFree(zLeft); sqliteFree(zRight); }
static int sqliteCompileStmt( Parse *pParse, /* parse context */ Block *b, /* current block */ Stmt* pStmt, /* statement to compile */ int *tailgoto, /* set *tailgoto to 1 if last statement is a goto */ int in_excep /* set to 1 when compiling an exception handler */ ){ Vdbe *v = sqliteGetVdbe(pParse); SrcList dummy; int i, j, skipgoto = 0; dummy.nSrc = 0; if( tailgoto ) *tailgoto = 0; if( pStmt->op!=TK_RAISE && pStmt->op!=TK_PROCEDURE && pStmt->pExpr1 ){ Expr *pExpr = pStmt->pExpr1; if( pStmt->op==TK_FOR ) { /* allocate the FOR counter variable (see case TK_FOR below) */ sqliteAddProcVar(pParse, &(pExpr->pLeft->token)); } if( sqliteExprProcResolve(pParse, b, pExpr) ){ return 1; } if( sqliteExprCheck(pParse, pExpr, 0, 0) ){ return 1; } } switch( pStmt->op ) { case TK_ASSIGN:{ Expr *pLeft = pStmt->pExpr1->pLeft; Expr *pRight = pStmt->pExpr1->pRight; assert( pStmt->pExpr1->op==TK_ASSIGN ); assert( pLeft->op==TK_VAR ); sqliteExprCode(pParse, pRight); if( pLeft->flags==EP_NotNull ){ i = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_NotNull, -1, i); sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, "attempt to store null in non-null var", P3_STATIC); sqliteVdbeResolveLabel(v, i); } sqliteVdbeAddOp(v, OP_MemStore, pLeft->iColumn, 1); break; } case TK_BLOCK:{ if( sqliteCompileBlock(pParse, pStmt->pBlock) ){ return 1; } break; } case TK_CASE:{ int jumpInst, addr; int nStmt; int searched; nStmt = pStmt->pStmt1->nStmt; searched = pStmt->pExpr1==0; assert( nStmt>0 ); j = sqliteVdbeMakeLabel(v); if( !searched ){ sqliteExprCode(pParse, pStmt->pExpr1); } for(i=0; i<nStmt; i++){ Stmt *pWhen = pStmt->pStmt1->a[i].pStmt; assert( pWhen->op==TK_WHEN ); if( sqliteExprProcResolve(pParse, b, pWhen->pExpr1) ){ return 1; } if( sqliteExprCheck(pParse, pWhen->pExpr1, 0, 0) ){ return 1; } sqliteExprCode(pParse, pWhen->pExpr1); if( !searched ){ sqliteVdbeAddOp(v, OP_Dup, 1, 1); jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0); }else{ jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0); } if( sqliteCompileList(pParse, b, pWhen->pStmt1, &skipgoto, 0) ){ return 1; } if( !skipgoto ) { sqliteVdbeAddOp(v, OP_Goto, 0, j); } addr = sqliteVdbeCurrentAddr(v); sqliteVdbeChangeP2(v, jumpInst, addr); } if( !searched ){ sqliteVdbeAddOp(v, OP_Pop, 1, 0); } if( pStmt->pStmt2 ){ assert( pStmt->pStmt2->op==TK_ELSE ); if( sqliteCompileList(pParse, b, pStmt->pStmt2->pStmt1, tailgoto, 0) ){ return 1; } }else{ sqliteVdbeOp3(v, OP_Raise, 0, 0, "CASE_NOT_FOUND", P3_STATIC); if( tailgoto ) *tailgoto = 1; } sqliteVdbeResolveLabel(v, j); break; } case TK_EXIT:{ if( pParse->iLoopExit==0 ) { sqliteErrorMsg(pParse, "EXIT used outside loop statement", 0); return 1; } if( pStmt->pExpr1 ) { sqliteExprCode(pParse, pStmt->pExpr1); sqliteVdbeAddOp(v, OP_If, 1, pParse->iLoopExit); } else { sqliteVdbeAddOp(v, OP_Goto, 0, pParse->iLoopExit); if( tailgoto ) *tailgoto = 1; } break; } case TK_FOR:{ Expr *pLow = pStmt->pExpr1->pRight->pLeft; Expr *pHigh = pStmt->pExpr1->pRight->pRight; int iCounter, iHigh, iPrevExit; assert( pStmt->pExpr1->op==TK_ASSIGN ); assert( pStmt->pExpr1->pLeft->op==TK_VAR ); assert( pStmt->pExpr1->pRight->op==TK_FOR ); iCounter = pParse->nMem-1; iHigh = pParse->nMem++; sqliteExprCode(pParse, pLow); sqliteVdbeAddOp(v, OP_MemStore, iCounter, 1); sqliteExprCode(pParse, pHigh); sqliteVdbeAddOp(v, OP_MemStore, iHigh, 1); sqliteVdbeAddOp(v, OP_MemLoad, iCounter, 0); i = sqliteVdbeCurrentAddr(v); sqliteVdbeAddOp(v, OP_MemLoad, iHigh, 0); iPrevExit = pParse->iLoopExit; pParse->iLoopExit = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Gt, 1, pParse->iLoopExit); if( sqliteCompileList(pParse, b, pStmt->pStmt1, 0, 0) ){ return 1; } sqliteVdbeAddOp(v, OP_MemLoad, iCounter, 0); sqliteVdbeAddOp(v, OP_Integer, 1, 0); sqliteVdbeAddOp(v, OP_Add, 0, 0); sqliteVdbeAddOp(v, OP_MemStore, iCounter, 0); sqliteVdbeAddOp(v, OP_Goto, 0, i); sqliteVdbeResolveLabel(v, pParse->iLoopExit); pParse->iLoopExit = iPrevExit; hideVar(b, iCounter); break; } case TK_IF: { i = sqliteVdbeMakeLabel(v); j = sqliteVdbeMakeLabel(v); sqliteExprCode(pParse, pStmt->pExpr1); sqliteVdbeAddOp(v, OP_IfNot, 1, j); if( sqliteCompileList(pParse, b, pStmt->pStmt1, &skipgoto, 0) ){ return 1; } while( pStmt->pStmt2 ) { if( !skipgoto ) { sqliteVdbeAddOp(v, OP_Goto, 0, i); } sqliteVdbeResolveLabel(v, j); j = sqliteVdbeMakeLabel(v); pStmt = pStmt->pStmt2; assert( pStmt->op==TK_ELSE || pStmt->op==TK_ELSIF ); if( pStmt->op==TK_ELSIF ) { if( sqliteExprProcResolve(pParse, b, pStmt->pExpr1) ){ return 1; } if( sqliteExprCheck(pParse, pStmt->pExpr1, 0, 0) ){ return 1; } sqliteExprCode(pParse, pStmt->pExpr1); sqliteVdbeAddOp(v, OP_IfNot, 1, j); } if( sqliteCompileList(pParse, b, pStmt->pStmt1, &skipgoto, 0) ){ return 1; } } sqliteVdbeResolveLabel(v, i); sqliteVdbeResolveLabel(v, j); break; } case TK_LOOP:{ int iPrevExit = pParse->iLoopExit; pParse->iLoopExit = sqliteVdbeMakeLabel(v); i = sqliteVdbeCurrentAddr(v); if( sqliteCompileList(pParse, b, pStmt->pStmt1, 0, 0) ){ return 1; } sqliteVdbeAddOp(v, OP_Goto, 0, i); sqliteVdbeResolveLabel(v, pParse->iLoopExit); pParse->iLoopExit = iPrevExit; break; } case TK_NULL:{ break; } case TK_PRINT:{ sqliteExprCode(pParse, pStmt->pExpr1); sqliteVdbeAddOp(v, OP_Print, 0, 0); break; } case TK_PROCEDURE: { Expr *pExpr = pStmt->pExpr1; if( sqliteCompileCall(pParse, &(pExpr->token), pExpr->pList) ) { return 1; } sqliteVdbeAddOp(v, OP_Pop, 1, 0); break; } case TK_RAISE:{ if( pStmt->pExpr1==0 ) { if( !in_excep ) { sqliteErrorMsg(pParse, "RAISE without argument illegal outside exception handler", 0); return 1; } sqliteVdbeOp3(v, OP_Raise, 0, 0, 0, P3_STATIC); } else { char *zName = 0; sqliteSetNString(&zName, pStmt->pExpr1->token.z, pStmt->pExpr1->token.n, 0); sqliteVdbeOp3(v, OP_Raise, 0, 0, zName, P3_DYNAMIC); } if( tailgoto ) *tailgoto = 1; break; } case TK_RETURN:{ sqliteExprCode(pParse, pStmt->pExpr1); sqliteVdbeAddOp(v, OP_MemStore, b->mReturn, 1); sqliteVdbeAddOp(v, OP_Goto, 0, b->nExit); if( tailgoto ) *tailgoto = 1; break; } case TK_SQL:{ sqliteCompileSQLStmt(pParse, b, pStmt->pSql); break; } case TK_WHILE:{ int iPrevExit = pParse->iLoopExit; pParse->iLoopExit = sqliteVdbeMakeLabel(v); i = sqliteVdbeCurrentAddr(v); sqliteExprCode(pParse, pStmt->pExpr1); sqliteVdbeAddOp(v, OP_IfNot, 1, pParse->iLoopExit); if( sqliteCompileList(pParse, b, pStmt->pStmt1, 0, 0) ){ return 1; } sqliteVdbeAddOp(v, OP_Goto, 0, i); sqliteVdbeResolveLabel(v, pParse->iLoopExit); pParse->iLoopExit = iPrevExit; break; } } return 0; }
/* ** This routine is call to handle SQL of the following forms: ** ** insert into TABLE (IDLIST) values(EXPRLIST) ** insert into TABLE (IDLIST) select ** ** The IDLIST following the table name is always optional. If omitted, ** then a list of all columns for the table is substituted. The IDLIST ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. ** ** The pList parameter holds EXPRLIST in the first form of the INSERT ** statement above, and pSelect is NULL. For the second form, pList is ** NULL and pSelect is a pointer to the select statement used to generate ** data for the insert. ** ** The code generated follows one of three templates. For a simple ** select with data coming from a VALUES clause, the code executes ** once straight down through. The template looks like this: ** ** open write cursor to <table> and its indices ** puts VALUES clause expressions onto the stack ** write the resulting record into <table> ** cleanup ** ** If the statement is of the form ** ** INSERT INTO <table> SELECT ... ** ** And the SELECT clause does not read from <table> at any time, then ** the generated code follows this template: ** ** goto B ** A: setup for the SELECT ** loop over the tables in the SELECT ** gosub C ** end loop ** cleanup after the SELECT ** goto D ** B: open write cursor to <table> and its indices ** goto A ** C: insert the select result into <table> ** return ** D: cleanup ** ** The third template is used if the insert statement takes its ** values from a SELECT but the data is being inserted into a table ** that is also read as part of the SELECT. In the third form, ** we have to use a intermediate table to store the results of ** the select. The template is like this: ** ** goto B ** A: setup for the SELECT ** loop over the tables in the SELECT ** gosub C ** end loop ** cleanup after the SELECT ** goto D ** C: insert the select result into the intermediate table ** return ** B: open a cursor to an intermediate table ** goto A ** D: open write cursor to <table> and its indices ** loop over the intermediate table ** transfer values form intermediate table into <table> ** end the loop ** cleanup */ void sqliteInsert( Parse *pParse, /* Parser context */ SrcList *pTabList, /* Name of table into which we are inserting */ ExprList *pList, /* List of values to be inserted */ Select *pSelect, /* A SELECT statement to use as the data source */ IdList *pColumn, /* Column names corresponding to IDLIST. */ int onError /* How to handle constraint errors */ ){ Table *pTab; /* The table to insert into */ char *zTab; /* Name of the table into which we are inserting */ const char *zDb; /* Name of the database holding this table */ int i, j, idx; /* Loop counters */ Vdbe *v; /* Generate code into this virtual machine */ Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ int base; /* VDBE Cursor number for pTab */ int iCont, iBreak; /* Beginning and end of the loop over srcTab */ sqlite *db; /* The main database structure */ int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ int endOfLoop; /* Label for the end of the insertion loop */ int useTempTable; /* Store SELECT results in intermediate table */ int srcTab; /* Data comes from this temporary cursor if >=0 */ int iSelectLoop; /* Address of code that implements the SELECT */ int iCleanup; /* Address of the cleanup code */ int iInsertBlock; /* Address of the subroutine used to insert data */ int iCntMem; /* Memory cell used for the row counter */ int isView; /* True if attempting to insert into a view */ int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ int before_triggers; /* True if there are BEFORE triggers */ int after_triggers; /* True if there are AFTER triggers */ int newIdx = -1; /* Cursor for the NEW table */ if( pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup; db = pParse->db; /* Locate the table into which we will be inserting new information. */ assert( pTabList->nSrc==1 ); zTab = pTabList->a[0].zName; if( zTab==0 ) goto insert_cleanup; pTab = sqliteSrcListLookup(pParse, pTabList); if( pTab==0 ){ goto insert_cleanup; } assert( pTab->iDb<db->nDb ); zDb = db->aDb[pTab->iDb].zName; if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ goto insert_cleanup; } /* Ensure that: * (a) the table is not read-only, * (b) that if it is a view then ON INSERT triggers exist */ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT, TK_BEFORE, TK_ROW, 0); after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT, TK_AFTER, TK_ROW, 0); row_triggers_exist = before_triggers || after_triggers; isView = pTab->pSelect!=0; if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){ goto insert_cleanup; } if( pTab==0 ) goto insert_cleanup; /* If pTab is really a view, make sure it has been initialized. */ if( isView && sqliteViewGetColumnNames(pParse, pTab) ){ goto insert_cleanup; } /* Allocate a VDBE */ v = sqliteGetVdbe(pParse); if( v==0 ) goto insert_cleanup; sqliteBeginWriteOperation(pParse, pSelect || row_triggers_exist, pTab->iDb); /* if there are row triggers, allocate a temp table for new.* references. */ if( row_triggers_exist ){ newIdx = pParse->nTab++; } /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then this step also generates ** all the code to implement the SELECT statement and invoke a subroutine ** to process each row of the result. (Template 2.) If the SELECT ** statement uses the the table that is being inserted into, then the ** subroutine is also coded here. That subroutine stores the SELECT ** results in a temporary table. (Template 3.) */ if( pSelect ){ /* Data is coming from a SELECT. Generate code to implement that SELECT */ int rc, iInitCode; iInitCode = sqliteVdbeAddOp(v, OP_Goto, 0, 0); iSelectLoop = sqliteVdbeCurrentAddr(v); iInsertBlock = sqliteVdbeMakeLabel(v); rc = sqliteSelect(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0); if( rc || pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup; iCleanup = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Goto, 0, iCleanup); assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; /* Set useTempTable to TRUE if the result of the SELECT statement ** should be written into a temporary table. Set to FALSE if each ** row of the SELECT can be written directly into the result table. ** ** A temp table must be used if the table being updated is also one ** of the tables being read by the SELECT statement. Also use a ** temp table in the case of row triggers. */ if( row_triggers_exist ){ useTempTable = 1; }else{ int addr = sqliteVdbeFindOp(v, OP_OpenRead, pTab->tnum); useTempTable = 0; if( addr>0 ){ VdbeOp *pOp = sqliteVdbeGetOp(v, addr-2); if( pOp->opcode==OP_Integer && pOp->p1==pTab->iDb ){ useTempTable = 1; } } } if( useTempTable ){ /* Generate the subroutine that SELECT calls to process each row of ** the result. Store the result in a temporary table */ srcTab = pParse->nTab++; sqliteVdbeResolveLabel(v, iInsertBlock); sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0); sqliteVdbeAddOp(v, OP_NewRecno, srcTab, 0); sqliteVdbeAddOp(v, OP_Pull, 1, 0); sqliteVdbeAddOp(v, OP_PutIntKey, srcTab, 0); sqliteVdbeAddOp(v, OP_Return, 0, 0); /* The following code runs first because the GOTO at the very top ** of the program jumps to it. Create the temporary table, then jump ** back up and execute the SELECT code above. */ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v)); sqliteVdbeAddOp(v, OP_OpenTemp, srcTab, 0); sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop); sqliteVdbeResolveLabel(v, iCleanup); }else{ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v)); } }else{ /* This is the case if the data for the INSERT is coming from a VALUES ** clause */ SrcList dummy; assert( pList!=0 ); srcTab = -1; useTempTable = 0; assert( pList ); nColumn = pList->nExpr; dummy.nSrc = 0; for(i=0; i<nColumn; i++){ if( sqliteExprResolveIds(pParse, &dummy, 0, pList->a[i].pExpr) ){ goto insert_cleanup; } if( sqliteExprCheck(pParse, pList->a[i].pExpr, 0, 0) ){ goto insert_cleanup; } } } /* Make sure the number of columns in the source data matches the number ** of columns to be inserted into the table. */ if( pColumn==0 && nColumn!=pTab->nCol ){ sqliteErrorMsg(pParse, "table %S has %d columns but %d values were supplied", pTabList, 0, pTab->nCol, nColumn); goto insert_cleanup; } if( pColumn!=0 && nColumn!=pColumn->nId ){ sqliteErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); goto insert_cleanup; } /* If the INSERT statement included an IDLIST term, then make sure ** all elements of the IDLIST really are columns of the table and ** remember the column indices. ** ** If the table has an INTEGER PRIMARY KEY column and that column ** is named in the IDLIST, then record in the keyColumn variable ** the index into IDLIST of the primary key column. keyColumn is ** the index of the primary key as it appears in IDLIST, not as ** is appears in the original table. (The index of the primary ** key in the original table is pTab->iPKey.) */ if( pColumn ){ for(i=0; i<pColumn->nId; i++){ pColumn->a[i].idx = -1; } for(i=0; i<pColumn->nId; i++){ for(j=0; j<pTab->nCol; j++){ if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ pColumn->a[i].idx = j; if( j==pTab->iPKey ){ keyColumn = i; } break; } } if( j>=pTab->nCol ){ if( sqliteIsRowid(pColumn->a[i].zName) ){ keyColumn = i; }else{ sqliteErrorMsg(pParse, "table %S has no column named %s", pTabList, 0, pColumn->a[i].zName); pParse->nErr++; goto insert_cleanup; } } } } /* If there is no IDLIST term but the table has an integer primary ** key, the set the keyColumn variable to the primary key column index ** in the original table definition. */ if( pColumn==0 ){ keyColumn = pTab->iPKey; } /* Open the temp table for FOR EACH ROW triggers */ if( row_triggers_exist ){ sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0); } /* Initialize the count of rows to be inserted */ if( db->flags & SQLITE_CountRows ){ iCntMem = pParse->nMem++; sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeAddOp(v, OP_MemStore, iCntMem, 1); } /* Open tables and indices if there are no row triggers */ if( !row_triggers_exist ){ base = pParse->nTab; idx = sqliteOpenTableAndIndices(pParse, pTab, base); pParse->nTab += idx; } /* If the data source is a temporary table, then we have to create ** a loop because there might be multiple rows of data. If the data ** source is a subroutine call from the SELECT statement, then we need ** to launch the SELECT statement processing. */ if( useTempTable ){ iBreak = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Rewind, srcTab, iBreak); iCont = sqliteVdbeCurrentAddr(v); }else if( pSelect ){ sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop); sqliteVdbeResolveLabel(v, iInsertBlock); } /* Run the BEFORE and INSTEAD OF triggers, if there are any */ endOfLoop = sqliteVdbeMakeLabel(v); if( before_triggers ){ /* build the NEW.* reference row. Note that if there is an INTEGER ** PRIMARY KEY into which a NULL is being inserted, that NULL will be ** translated into a unique ID for the row. But on a BEFORE trigger, ** we do not know what the unique ID will be (because the insert has ** not happened yet) so we substitute a rowid of -1 */ if( keyColumn<0 ){ sqliteVdbeAddOp(v, OP_Integer, -1, 0); }else if( useTempTable ){ sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn); }else if( pSelect ){ sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); }else{ sqliteExprCode(pParse, pList->a[keyColumn].pExpr); sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3); sqliteVdbeAddOp(v, OP_Pop, 1, 0); sqliteVdbeAddOp(v, OP_Integer, -1, 0); sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0); } /* Create the new column data */ for(i=0; i<pTab->nCol; i++){ if( pColumn==0 ){ j = i; }else{ for(j=0; j<pColumn->nId; j++){ if( pColumn->a[j].idx==i ) break; } } if( pColumn && j>=pColumn->nId ){ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC); }else if( useTempTable ){ sqliteVdbeAddOp(v, OP_Column, srcTab, j); }else if( pSelect ){ sqliteVdbeAddOp(v, OP_Dup, nColumn-j-1, 1); }else{ sqliteExprCode(pParse, pList->a[j].pExpr); } } sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0); /* Fire BEFORE or INSTEAD OF triggers */ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab, newIdx, -1, onError, endOfLoop) ){ goto insert_cleanup; } } /* If any triggers exists, the opening of tables and indices is deferred ** until now. */ if( row_triggers_exist && !isView ){ base = pParse->nTab; idx = sqliteOpenTableAndIndices(pParse, pTab, base); pParse->nTab += idx; } /* Push the record number for the new entry onto the stack. The ** record number is a randomly generate integer created by NewRecno ** except when the table has an INTEGER PRIMARY KEY column, in which ** case the record number is the same as that column. */ if( !isView ){ if( keyColumn>=0 ){ if( useTempTable ){ sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn); }else if( pSelect ){ sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1); }else{ sqliteExprCode(pParse, pList->a[keyColumn].pExpr); } /* If the PRIMARY KEY expression is NULL, then use OP_NewRecno ** to generate a unique primary key value. */ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3); sqliteVdbeAddOp(v, OP_Pop, 1, 0); sqliteVdbeAddOp(v, OP_NewRecno, base, 0); sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0); }else{ sqliteVdbeAddOp(v, OP_NewRecno, base, 0); } /* Push onto the stack, data for all columns of the new entry, beginning ** with the first column. */ for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ /* The value of the INTEGER PRIMARY KEY column is always a NULL. ** Whenever this column is read, the record number will be substituted ** in its place. So will fill this column with a NULL to avoid ** taking up data space with information that will never be used. */ sqliteVdbeAddOp(v, OP_String, 0, 0); continue; } if( pColumn==0 ){ j = i; }else{ for(j=0; j<pColumn->nId; j++){ if( pColumn->a[j].idx==i ) break; } } if( pColumn && j>=pColumn->nId ){ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC); }else if( useTempTable ){ sqliteVdbeAddOp(v, OP_Column, srcTab, j); }else if( pSelect ){ sqliteVdbeAddOp(v, OP_Dup, i+nColumn-j, 1); }else{ sqliteExprCode(pParse, pList->a[j].pExpr); } } /* Generate code to check constraints and generate index keys and ** do the insertion. */ sqliteGenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0, 0, onError, endOfLoop); sqliteCompleteInsertion(pParse, pTab, base, 0,0,0, after_triggers ? newIdx : -1); } /* Update the count of rows that are inserted */ if( (db->flags & SQLITE_CountRows)!=0 ){ sqliteVdbeAddOp(v, OP_MemIncr, iCntMem, 0); } if( row_triggers_exist ){ /* Close all tables opened */ if( !isView ){ sqliteVdbeAddOp(v, OP_Close, base, 0); for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ sqliteVdbeAddOp(v, OP_Close, idx+base, 0); } } /* Code AFTER triggers */ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1, onError, endOfLoop) ){ goto insert_cleanup; } } /* The bottom of the loop, if the data source is a SELECT statement */ sqliteVdbeResolveLabel(v, endOfLoop); if( useTempTable ){ sqliteVdbeAddOp(v, OP_Next, srcTab, iCont); sqliteVdbeResolveLabel(v, iBreak); sqliteVdbeAddOp(v, OP_Close, srcTab, 0); }else if( pSelect ){ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0); sqliteVdbeAddOp(v, OP_Return, 0, 0); sqliteVdbeResolveLabel(v, iCleanup); } if( !row_triggers_exist ){ /* Close all tables opened */ sqliteVdbeAddOp(v, OP_Close, base, 0); for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ sqliteVdbeAddOp(v, OP_Close, idx+base, 0); } } sqliteVdbeAddOp(v, OP_SetCounts, 0, 0); sqliteEndWriteOperation(pParse); /* ** Return the number of rows inserted. */ if( db->flags & SQLITE_CountRows ){ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows inserted", P3_STATIC); sqliteVdbeAddOp(v, OP_MemLoad, iCntMem, 0); sqliteVdbeAddOp(v, OP_Callback, 1, 0); } insert_cleanup: sqliteSrcListDelete(pTabList); if( pList ) sqliteExprListDelete(pList); if( pSelect ) sqliteSelectDelete(pSelect); sqliteIdListDelete(pColumn); }
/* ** Generate code to do a constraint check prior to an INSERT or an UPDATE. ** ** When this routine is called, the stack contains (from bottom to top) ** the following values: ** ** 1. The recno of the row to be updated before the update. This ** value is omitted unless we are doing an UPDATE that involves a ** change to the record number. ** ** 2. The recno of the row after the update. ** ** 3. The data in the first column of the entry after the update. ** ** i. Data from middle columns... ** ** N. The data in the last column of the entry after the update. ** ** The old recno shown as entry (1) above is omitted unless both isUpdate ** and recnoChng are 1. isUpdate is true for UPDATEs and false for ** INSERTs and recnoChng is true if the record number is being changed. ** ** The code generated by this routine pushes additional entries onto ** the stack which are the keys for new index entries for the new record. ** The order of index keys is the same as the order of the indices on ** the pTable->pIndex list. A key is only created for index i if ** aIdxUsed!=0 and aIdxUsed[i]!=0. ** ** This routine also generates code to check constraints. NOT NULL, ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, ** then the appropriate action is performed. There are five possible ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. ** ** Constraint type Action What Happens ** --------------- ---------- ---------------------------------------- ** any ROLLBACK The current transaction is rolled back and ** sqlite_exec() returns immediately with a ** return code of SQLITE_CONSTRAINT. ** ** any ABORT Back out changes from the current command ** only (do not do a complete rollback) then ** cause sqlite_exec() to return immediately ** with SQLITE_CONSTRAINT. ** ** any FAIL Sqlite_exec() returns immediately with a ** return code of SQLITE_CONSTRAINT. The ** transaction is not rolled back and any ** prior changes are retained. ** ** any IGNORE The record number and data is popped from ** the stack and there is an immediate jump ** to label ignoreDest. ** ** NOT NULL REPLACE The NULL value is replace by the default ** value for that column. If the default value ** is NULL, the action is the same as ABORT. ** ** UNIQUE REPLACE The other row that conflicts with the row ** being inserted is removed. ** ** CHECK REPLACE Illegal. The results in an exception. ** ** Which action to take is determined by the overrideError parameter. ** Or if overrideError==OE_Default, then the pParse->onError parameter ** is used. Or if pParse->onError==OE_Default then the onError value ** for the constraint is used. ** ** The calling routine must open a read/write cursor for pTab with ** cursor number "base". All indices of pTab must also have open ** read/write cursors with cursor number base+i for the i-th cursor. ** Except, if there is no possibility of a REPLACE action then ** cursors do not need to be open for indices where aIdxUsed[i]==0. ** ** If the isUpdate flag is true, it means that the "base" cursor is ** initially pointing to an entry that is being updated. The isUpdate ** flag causes extra code to be generated so that the "base" cursor ** is still pointing at the same entry after the routine returns. ** Without the isUpdate flag, the "base" cursor might be moved. */ void sqliteGenerateConstraintChecks( Parse *pParse, /* The parser context */ Table *pTab, /* the table into which we are inserting */ int base, /* Index of a read/write cursor pointing at pTab */ char *aIdxUsed, /* Which indices are used. NULL means all are used */ int recnoChng, /* True if the record number will change */ int isUpdate, /* True for UPDATE, False for INSERT */ int overrideError, /* Override onError to this if not OE_Default */ int ignoreDest /* Jump to this label on an OE_Ignore resolution */ ){ int i; Vdbe *v; int nCol; int onError; int addr; int extra; int iCur; Index *pIdx; int seenReplace = 0; int jumpInst1, jumpInst2; int contAddr; int hasTwoRecnos = (isUpdate && recnoChng); v = sqliteGetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ nCol = pTab->nCol; /* Test all NOT NULL constraints. */ for(i=0; i<nCol; i++){ if( i==pTab->iPKey ){ continue; } onError = pTab->aCol[i].notNull; if( onError==OE_None ) continue; if( overrideError!=OE_Default ){ onError = overrideError; }else if( pParse->db->onError!=OE_Default ){ onError = pParse->db->onError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){ onError = OE_Abort; } sqliteVdbeAddOp(v, OP_Dup, nCol-1-i, 1); addr = sqliteVdbeAddOp(v, OP_NotNull, 1, 0); switch( onError ){ case OE_Rollback: case OE_Abort: case OE_Fail: { char *zMsg = 0; sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError); sqliteSetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, " may not be NULL", (char*)0); sqliteVdbeChangeP3(v, -1, zMsg, P3_DYNAMIC); break; } case OE_Ignore: { sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0); sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest); break; } case OE_Replace: { sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC); sqliteVdbeAddOp(v, OP_Push, nCol-i, 0); break; } default: assert(0); } sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v)); } /* Test all CHECK constraints */ /**** TBD ****/ /* If we have an INTEGER PRIMARY KEY, make sure the primary key ** of the new record does not previously exist. Except, if this ** is an UPDATE and the primary key is not changing, that is OK. */ if( recnoChng ){ onError = pTab->keyConf; if( overrideError!=OE_Default ){ onError = overrideError; }else if( pParse->db->onError!=OE_Default ){ onError = pParse->db->onError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( isUpdate ){ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1); sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1); jumpInst1 = sqliteVdbeAddOp(v, OP_Eq, 0, 0); } sqliteVdbeAddOp(v, OP_Dup, nCol, 1); jumpInst2 = sqliteVdbeAddOp(v, OP_NotExists, base, 0); switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ } case OE_Rollback: case OE_Abort: case OE_Fail: { sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, "PRIMARY KEY must be unique", P3_STATIC); break; } case OE_Replace: { sqliteGenerateRowIndexDelete(pParse->db, v, pTab, base, 0); if( isUpdate ){ sqliteVdbeAddOp(v, OP_Dup, nCol+hasTwoRecnos, 1); sqliteVdbeAddOp(v, OP_MoveTo, base, 0); } seenReplace = 1; break; } case OE_Ignore: { assert( seenReplace==0 ); sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0); sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest); break; } } contAddr = sqliteVdbeCurrentAddr(v); sqliteVdbeChangeP2(v, jumpInst2, contAddr); if( isUpdate ){ sqliteVdbeChangeP2(v, jumpInst1, contAddr); sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1); sqliteVdbeAddOp(v, OP_MoveTo, base, 0); } } /* Test all UNIQUE constraints by creating entries for each UNIQUE ** index and making sure that duplicate entries do not already exist. ** Add the new records to the indices as we go. */ extra = -1; for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */ extra++; /* Create a key for accessing the index entry */ sqliteVdbeAddOp(v, OP_Dup, nCol+extra, 1); for(i=0; i<pIdx->nColumn; i++){ int idx = pIdx->aiColumn[i]; if( idx==pTab->iPKey ){ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); }else{ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); } } jumpInst1 = sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); if( pParse->db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx); /* Find out what action to take in case there is an indexing conflict */ onError = pIdx->onError; if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ if( overrideError!=OE_Default ){ onError = overrideError; }else if( pParse->db->onError!=OE_Default ){ onError = pParse->db->onError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( seenReplace ){ if( onError==OE_Ignore ) onError = OE_Replace; else if( onError==OE_Fail ) onError = OE_Abort; } /* Check to see if the new index entry will be unique */ sqliteVdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1); jumpInst2 = sqliteVdbeAddOp(v, OP_IsUnique, base+iCur+1, 0); /* Generate code that executes if the new index entry is not unique */ switch( onError ){ case OE_Rollback: case OE_Abort: case OE_Fail: { int j, n1, n2; char zErrMsg[200]; strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column "); n1 = strlen(zErrMsg); for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; n2 = strlen(zCol); if( j>0 ){ strcpy(&zErrMsg[n1], ", "); n1 += 2; } if( n1+n2>sizeof(zErrMsg)-30 ){ strcpy(&zErrMsg[n1], "..."); n1 += 3; break; }else{ strcpy(&zErrMsg[n1], zCol); n1 += n2; } } strcpy(&zErrMsg[n1], pIdx->nColumn>1 ? " are not unique" : " is not unique"); sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0); break; } case OE_Ignore: { assert( seenReplace==0 ); sqliteVdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0); sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest); break; } case OE_Replace: { sqliteGenerateRowDelete(pParse->db, v, pTab, base, 0); if( isUpdate ){ sqliteVdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1); sqliteVdbeAddOp(v, OP_MoveTo, base, 0); } seenReplace = 1; break; } default: assert(0); } contAddr = sqliteVdbeCurrentAddr(v); #if NULL_DISTINCT_FOR_UNIQUE sqliteVdbeChangeP2(v, jumpInst1, contAddr); #endif sqliteVdbeChangeP2(v, jumpInst2, contAddr); } }
/* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is true but execution ** continues straight thru if the expression is false. ** ** If the expression evaluates to NULL (neither true nor false), then ** take the jump if the jumpIfNull flag is true. */ void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; if( v==0 || pExpr==0 ) return; switch( pExpr->op ){ case TK_LT: op = OP_Lt; break; case TK_LE: op = OP_Le; break; case TK_GT: op = OP_Gt; break; case TK_GE: op = OP_Ge; break; case TK_NE: op = OP_Ne; break; case TK_EQ: op = OP_Eq; break; case TK_ISNULL: op = OP_IsNull; break; case TK_NOTNULL: op = OP_NotNull; break; default: break; } switch( pExpr->op ){ case TK_AND: { int d2 = sqliteVdbeMakeLabel(v); sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sqliteVdbeResolveLabel(v, d2); break; } case TK_OR: { sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); break; } case TK_NOT: { sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { sqliteExprCode(pParse, pExpr->pLeft); sqliteExprCode(pParse, pExpr->pRight); if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){ op += 6; /* Convert numeric opcodes to text opcodes */ } sqliteVdbeAddOp(v, op, jumpIfNull, dest); break; } case TK_ISNULL: case TK_NOTNULL: { sqliteExprCode(pParse, pExpr->pLeft); sqliteVdbeAddOp(v, op, 1, dest); break; } case TK_IN: { int addr; sqliteExprCode(pParse, pExpr->pLeft); addr = sqliteVdbeCurrentAddr(v); sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3); sqliteVdbeAddOp(v, OP_Pop, 1, 0); sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4); if( pExpr->pSelect ){ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest); }else{ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest); } break; } case TK_BETWEEN: { int addr; sqliteExprCode(pParse, pExpr->pLeft); sqliteVdbeAddOp(v, OP_Dup, 0, 0); sqliteExprCode(pParse, pExpr->pList->a[0].pExpr); addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0); sqliteExprCode(pParse, pExpr->pList->a[1].pExpr); sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest); sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v)); sqliteVdbeAddOp(v, OP_Pop, 1, 0); break; } default: { sqliteExprCode(pParse, pExpr); sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest); break; } } }
/* ** Generate code into the current Vdbe to evaluate the given ** expression and leave the result on the top of stack. */ void sqliteExprCode(Parse *pParse, Expr *pExpr){ Vdbe *v = pParse->pVdbe; int op; if( v==0 || pExpr==0 ) return; switch( pExpr->op ){ case TK_PLUS: op = OP_Add; break; case TK_MINUS: op = OP_Subtract; break; case TK_STAR: op = OP_Multiply; break; case TK_SLASH: op = OP_Divide; break; case TK_AND: op = OP_And; break; case TK_OR: op = OP_Or; break; case TK_LT: op = OP_Lt; break; case TK_LE: op = OP_Le; break; case TK_GT: op = OP_Gt; break; case TK_GE: op = OP_Ge; break; case TK_NE: op = OP_Ne; break; case TK_EQ: op = OP_Eq; break; case TK_ISNULL: op = OP_IsNull; break; case TK_NOTNULL: op = OP_NotNull; break; case TK_NOT: op = OP_Not; break; case TK_UMINUS: op = OP_Negative; break; case TK_BITAND: op = OP_BitAnd; break; case TK_BITOR: op = OP_BitOr; break; case TK_BITNOT: op = OP_BitNot; break; case TK_LSHIFT: op = OP_ShiftLeft; break; case TK_RSHIFT: op = OP_ShiftRight; break; case TK_REM: op = OP_Remainder; break; default: break; } switch( pExpr->op ){ case TK_COLUMN: { if( pParse->useAgg ){ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); }else if( pExpr->iColumn>=0 ){ sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn); }else{ sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0); } break; } case TK_STRING: case TK_FLOAT: case TK_INTEGER: { if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){ sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0); }else{ sqliteVdbeAddOp(v, OP_String, 0, 0); } assert( pExpr->token.z ); sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); sqliteVdbeDequoteP3(v, -1); break; } case TK_NULL: { sqliteVdbeAddOp(v, OP_String, 0, 0); break; } case TK_VARIABLE: { sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0); break; } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){ op += 6; /* Convert numeric opcodes to text opcodes */ } /* Fall through into the next case */ } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: case TK_BITAND: case TK_BITOR: case TK_SLASH: { sqliteExprCode(pParse, pExpr->pLeft); sqliteExprCode(pParse, pExpr->pRight); sqliteVdbeAddOp(v, op, 0, 0); break; } case TK_LSHIFT: case TK_RSHIFT: { sqliteExprCode(pParse, pExpr->pRight); sqliteExprCode(pParse, pExpr->pLeft); sqliteVdbeAddOp(v, op, 0, 0); break; } case TK_CONCAT: { sqliteExprCode(pParse, pExpr->pLeft); sqliteExprCode(pParse, pExpr->pRight); sqliteVdbeAddOp(v, OP_Concat, 2, 0); break; } case TK_UMINUS: { assert( pExpr->pLeft ); if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){ Token *p = &pExpr->pLeft->token; char *z = sqliteMalloc( p->n + 2 ); sprintf(z, "-%.*s", p->n, p->z); if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){ sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0); }else{ sqliteVdbeAddOp(v, OP_String, 0, 0); } sqliteVdbeChangeP3(v, -1, z, p->n+1); sqliteFree(z); break; } /* Fall through into TK_NOT */ } case TK_BITNOT: case TK_NOT: { sqliteExprCode(pParse, pExpr->pLeft); sqliteVdbeAddOp(v, op, 0, 0); break; } case TK_ISNULL: case TK_NOTNULL: { int dest; sqliteVdbeAddOp(v, OP_Integer, 1, 0); sqliteExprCode(pParse, pExpr->pLeft); dest = sqliteVdbeCurrentAddr(v) + 2; sqliteVdbeAddOp(v, op, 1, dest); sqliteVdbeAddOp(v, OP_AddImm, -1, 0); break; } case TK_AGG_FUNCTION: { sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); break; } case TK_GLOB: case TK_LIKE: case TK_FUNCTION: { ExprList *pList = pExpr->pList; int nExpr = pList ? pList->nExpr : 0; FuncDef *pDef; int nId; const char *zId; getFunctionName(pExpr, &zId, &nId); pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0); assert( pDef!=0 ); nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes); sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER); break; } case TK_SELECT: { sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); break; } case TK_IN: { int addr; sqliteVdbeAddOp(v, OP_Integer, 1, 0); sqliteExprCode(pParse, pExpr->pLeft); addr = sqliteVdbeCurrentAddr(v); sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4); sqliteVdbeAddOp(v, OP_Pop, 1, 0); sqliteVdbeAddOp(v, OP_String, 0, 0); sqliteVdbeAddOp(v, OP_Goto, 0, addr+6); if( pExpr->pSelect ){ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6); }else{ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6); } sqliteVdbeAddOp(v, OP_AddImm, -1, 0); break; } case TK_BETWEEN: { sqliteExprCode(pParse, pExpr->pLeft); sqliteVdbeAddOp(v, OP_Dup, 0, 0); sqliteExprCode(pParse, pExpr->pList->a[0].pExpr); sqliteVdbeAddOp(v, OP_Ge, 0, 0); sqliteVdbeAddOp(v, OP_Pull, 1, 0); sqliteExprCode(pParse, pExpr->pList->a[1].pExpr); sqliteVdbeAddOp(v, OP_Le, 0, 0); sqliteVdbeAddOp(v, OP_And, 0, 0); break; } case TK_UPLUS: case TK_AS: { sqliteExprCode(pParse, pExpr->pLeft); break; } case TK_CASE: { int expr_end_label; int jumpInst; int addr; int nExpr; int i; assert(pExpr->pList); assert((pExpr->pList->nExpr % 2) == 0); assert(pExpr->pList->nExpr > 0); nExpr = pExpr->pList->nExpr; expr_end_label = sqliteVdbeMakeLabel(v); if( pExpr->pLeft ){ sqliteExprCode(pParse, pExpr->pLeft); } for(i=0; i<nExpr; i=i+2){ sqliteExprCode(pParse, pExpr->pList->a[i].pExpr); if( pExpr->pLeft ){ sqliteVdbeAddOp(v, OP_Dup, 1, 1); jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0); sqliteVdbeAddOp(v, OP_Pop, 1, 0); }else{ jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0); } sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr); sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label); addr = sqliteVdbeCurrentAddr(v); sqliteVdbeChangeP2(v, jumpInst, addr); } if( pExpr->pLeft ){ sqliteVdbeAddOp(v, OP_Pop, 1, 0); } if( pExpr->pRight ){ sqliteExprCode(pParse, pExpr->pRight); }else{ sqliteVdbeAddOp(v, OP_String, 0, 0); } sqliteVdbeResolveLabel(v, expr_end_label); break; } case TK_RAISE: { if( !pParse->trigStack ){ sqliteErrorMsg(pParse, "RAISE() may only be used within a trigger-program"); pParse->nErr++; return; } if( pExpr->iColumn == OE_Rollback || pExpr->iColumn == OE_Abort || pExpr->iColumn == OE_Fail ){ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, pExpr->token.z, pExpr->token.n); sqliteVdbeDequoteP3(v, -1); } else { assert( pExpr->iColumn == OE_Ignore ); sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump, "(IGNORE jump)", 0); } } break; } }