/* Differential SSS estimation. * Returns m0 and m1 estimates * * Source: "SSS Detection Method for Initial Cell Search in 3GPP LTE FDD/TDD Dual Mode Receiver" * Jung-In Kim, Jung-Su Han, Hee-Jin Roh and Hyung-Jin Choi * */ int srslte_sss_synch_m0m1_diff_coh(srslte_sss_synch_t *q, cf_t *input, cf_t ce[2*SRSLTE_SSS_N], uint32_t *m0, float *m0_value, uint32_t *m1, float *m1_value) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL && input != NULL && m0 != NULL && m1 != NULL) { cf_t yprod[SRSLTE_SSS_N]; cf_t y[2][SRSLTE_SSS_N]; extract_pair_sss(q, input, ce, y); srslte_vec_prod_conj_ccc(&y[0][1], y[0], yprod, SRSLTE_SSS_N - 1); corr_all_zs(yprod, q->fc_tables[q->N_id_2].sd, q->corr_output_m0); *m0 = srslte_vec_max_fi(q->corr_output_m0, SRSLTE_SSS_N); if (m0_value) { *m0_value = q->corr_output_m0[*m0]; } srslte_vec_prod_cfc(y[1], q->fc_tables[q->N_id_2].z1[*m0], y[1], SRSLTE_SSS_N); srslte_vec_prod_conj_ccc(&y[1][1], y[1], yprod, SRSLTE_SSS_N - 1); corr_all_zs(yprod, q->fc_tables[q->N_id_2].sd, q->corr_output_m1); *m1 = srslte_vec_max_fi(q->corr_output_m1, SRSLTE_SSS_N); if (m1_value) { *m1_value = q->corr_output_m1[*m1]; } ret = SRSLTE_SUCCESS; } return ret; }
/* Complex division is conjugate multiplication + real division */ void srslte_vec_div_ccc(cf_t *x, cf_t *y, float *y_mod, cf_t *z, float *z_real, float *z_imag, uint32_t len) { #ifdef DIV_USE_VEC srslte_vec_prod_conj_ccc(x,y,z,len); srslte_vec_abs_square_cf(y,y_mod,len); srslte_vec_div_cfc(z,y_mod,z,z_real,z_imag,len); #else int i; for (i=0;i<len;i++) { z[i] = x[i] / y[i]; } #endif }
int srslte_chest_ul_estimate(srslte_chest_ul_t *q, cf_t *input, cf_t *ce, uint32_t nof_prb, uint32_t sf_idx, uint32_t cyclic_shift_for_dmrs, uint32_t n_prb[2]) { if (!q->dmrs_signal_configured) { fprintf(stderr, "Error must call srslte_chest_ul_set_cfg() before using the UL estimator\n"); return SRSLTE_ERROR; } if (!srslte_dft_precoding_valid_prb(nof_prb)) { fprintf(stderr, "Error invalid nof_prb=%d\n", nof_prb); return SRSLTE_ERROR_INVALID_INPUTS; } int nrefs_sym = nof_prb*SRSLTE_NRE; int nrefs_sf = nrefs_sym*2; /* Get references from the input signal */ srslte_refsignal_dmrs_pusch_get(&q->dmrs_signal, input, nof_prb, n_prb, q->pilot_recv_signal); /* Use the known DMRS signal to compute Least-squares estimates */ srslte_vec_prod_conj_ccc(q->pilot_recv_signal, q->dmrs_pregen.r[cyclic_shift_for_dmrs][sf_idx][nof_prb], q->pilot_estimates, nrefs_sf); if (n_prb[0] != n_prb[1]) { printf("ERROR: intra-subframe frequency hopping not supported in the estimator!!\n"); } if (ce != NULL) { if (q->smooth_filter_len > 0) { average_pilots(q, q->pilot_estimates, ce, nrefs_sym, n_prb); interpolate_pilots(q, ce, nrefs_sym, n_prb); /* If averaging, compute noise from difference between received and averaged estimates */ q->noise_estimate = estimate_noise_pilots(q, ce, nrefs_sym, n_prb); } else { // Copy estimates to CE vector without averaging for (int i=0;i<2;i++) { memcpy(&ce[SRSLTE_REFSIGNAL_UL_L(i, q->cell.cp)*q->cell.nof_prb*SRSLTE_NRE+n_prb[i]*SRSLTE_NRE], &q->pilot_estimates[i*nrefs_sym], nrefs_sym*sizeof(cf_t)); } interpolate_pilots(q, ce, nrefs_sym, n_prb); q->noise_estimate = 0; } } // Estimate received pilot power q->pilot_power = srslte_vec_avg_power_cf(q->pilot_recv_signal, nrefs_sf); return 0; }
// Frequency-domain filtering of the central 64 sub-carriers void srslte_pss_filter(srslte_pss_t *q, const cf_t *input, cf_t *output) { srslte_dft_run_c(&q->dftp_input, input, q->tmp_fft); memcpy(&q->tmp_fft2[q->fft_size/2-SRSLTE_PSS_LEN/2], &q->tmp_fft[q->fft_size/2-SRSLTE_PSS_LEN/2], sizeof(cf_t)*SRSLTE_PSS_LEN); if (q->chest_on_filter) { srslte_vec_prod_conj_ccc(&q->tmp_fft[(q->fft_size-SRSLTE_PSS_LEN)/2], q->pss_signal_freq[q->N_id_2], q->tmp_ce, SRSLTE_PSS_LEN); } srslte_dft_run_c(&q->idftp_input, q->tmp_fft2, output); }
static void extract_pair_sss(srslte_sss_synch_t *q, cf_t *input, cf_t *ce, cf_t y[2][SRSLTE_SSS_N]) { cf_t input_fft[SRSLTE_SYMBOL_SZ_MAX]; srslte_dft_run_c(&q->dftp_input, input, input_fft); if (ce) { srslte_vec_prod_conj_ccc(&input_fft[q->fft_size/2-SRSLTE_SSS_N], ce, &input_fft[q->fft_size/2-SRSLTE_SSS_N], 2*SRSLTE_SSS_N); } for (int i = 0; i < SRSLTE_SSS_N; i++) { y[0][i] = input_fft[q->fft_size/2-SRSLTE_SSS_N + 2 * i]; y[1][i] = input_fft[q->fft_size/2-SRSLTE_SSS_N + 2 * i + 1]; } srslte_vec_prod_cfc(y[0], q->fc_tables[q->N_id_2].c[0], y[0], SRSLTE_SSS_N); srslte_vec_prod_cfc(y[1], q->fc_tables[q->N_id_2].c[1], y[1], SRSLTE_SSS_N); }
/* Computes frequency-domain channel estimation of the PSS symbol * input signal is in the time-domain. * ce is the returned frequency-domain channel estimates. */ int srslte_pss_chest(srslte_pss_t *q, const cf_t *input, cf_t ce[SRSLTE_PSS_LEN]) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL && input != NULL) { if (!srslte_N_id_2_isvalid(q->N_id_2)) { ERROR("Error finding PSS peak, Must set N_id_2 first\n"); return SRSLTE_ERROR; } /* Transform to frequency-domain */ srslte_dft_run_c(&q->dftp_input, input, q->tmp_fft); /* Compute channel estimate taking the PSS sequence as reference */ srslte_vec_prod_conj_ccc(&q->tmp_fft[(q->fft_size-SRSLTE_PSS_LEN)/2], q->pss_signal_freq[q->N_id_2], ce, SRSLTE_PSS_LEN); ret = SRSLTE_SUCCESS; } return ret; }
int srslte_chest_ul_estimate_pucch(srslte_chest_ul_t *q, cf_t *input, cf_t *ce, srslte_pucch_format_t format, uint32_t n_pucch, uint32_t sf_idx, uint8_t *pucch2_ack_bits) { if (!q->dmrs_signal_configured) { fprintf(stderr, "Error must call srslte_chest_ul_set_cfg() before using the UL estimator\n"); return SRSLTE_ERROR; } int n_rs = srslte_refsignal_dmrs_N_rs(format, q->cell.cp); if (!n_rs) { fprintf(stderr, "Error computing N_rs\n"); return SRSLTE_ERROR; } int nrefs_sf = SRSLTE_NRE*n_rs*2; /* Get references from the input signal */ srslte_refsignal_dmrs_pucch_get(&q->dmrs_signal, format, n_pucch, input, q->pilot_recv_signal); /* Generate known pilots */ uint8_t pucch2_bits[2] = {0, 0}; if (format == SRSLTE_PUCCH_FORMAT_2A || format == SRSLTE_PUCCH_FORMAT_2B) { float max = -1e9; int i_max = 0; int m = 0; if (format == SRSLTE_PUCCH_FORMAT_2A) { m = 2; } else { m = 4; } for (int i=0;i<m;i++) { pucch2_bits[0] = i%2; pucch2_bits[1] = i/2; srslte_refsignal_dmrs_pucch_gen(&q->dmrs_signal, format, n_pucch, sf_idx, pucch2_bits, q->pilot_known_signal); srslte_vec_prod_conj_ccc(q->pilot_recv_signal, q->pilot_known_signal, q->pilot_estimates_tmp[i], nrefs_sf); float x = cabsf(srslte_vec_acc_cc(q->pilot_estimates_tmp[i], nrefs_sf)); if (x >= max) { max = x; i_max = i; } } memcpy(q->pilot_estimates, q->pilot_estimates_tmp[i_max], nrefs_sf*sizeof(cf_t)); pucch2_ack_bits[0] = i_max%2; pucch2_ack_bits[1] = i_max/2; } else { srslte_refsignal_dmrs_pucch_gen(&q->dmrs_signal, format, n_pucch, sf_idx, pucch2_bits, q->pilot_known_signal); /* Use the known DMRS signal to compute Least-squares estimates */ srslte_vec_prod_conj_ccc(q->pilot_recv_signal, q->pilot_known_signal, q->pilot_estimates, nrefs_sf); } if (ce != NULL) { /* FIXME: Currently averaging entire slot, performance good enough? */ for (int ns=0;ns<2;ns++) { // Average all slot for (int i=1;i<n_rs;i++) { srslte_vec_sum_ccc(&q->pilot_estimates[ns*n_rs*SRSLTE_NRE], &q->pilot_estimates[(i+ns*n_rs)*SRSLTE_NRE], &q->pilot_estimates[ns*n_rs*SRSLTE_NRE], SRSLTE_NRE); } srslte_vec_sc_prod_ccc(&q->pilot_estimates[ns*n_rs*SRSLTE_NRE], (float) 1.0/n_rs, &q->pilot_estimates[ns*n_rs*SRSLTE_NRE], SRSLTE_NRE); // Average in freq domain srslte_chest_average_pilots(&q->pilot_estimates[ns*n_rs*SRSLTE_NRE], &q->pilot_recv_signal[ns*n_rs*SRSLTE_NRE], q->smooth_filter, SRSLTE_NRE, 1, q->smooth_filter_len); // Determine n_prb uint32_t n_prb = srslte_pucch_n_prb(&q->dmrs_signal.pucch_cfg, format, n_pucch, q->cell.nof_prb, q->cell.cp, ns); // copy estimates to slot for (int i=0;i<SRSLTE_CP_NSYMB(q->cell.cp);i++) { memcpy(&ce[SRSLTE_RE_IDX(q->cell.nof_prb, i+ns*SRSLTE_CP_NSYMB(q->cell.cp), n_prb*SRSLTE_NRE)], &q->pilot_recv_signal[ns*n_rs*SRSLTE_NRE], sizeof(cf_t)*SRSLTE_NRE); } } } return 0; }
int srslte_prach_detect_offset(srslte_prach_t *p, uint32_t freq_offset, cf_t *signal, uint32_t sig_len, uint32_t *indices, float *t_offsets, float *peak_to_avg, uint32_t *n_indices) { int ret = SRSLTE_ERROR; if(p != NULL && signal != NULL && sig_len > 0 && indices != NULL) { if(sig_len < p->N_ifft_prach){ fprintf(stderr, "srslte_prach_detect: Signal length is %d and should be %d\n", sig_len, p->N_ifft_prach); return SRSLTE_ERROR_INVALID_INPUTS; } // FFT incoming signal srslte_dft_run(p->fft, signal, p->signal_fft); *n_indices = 0; // Extract bins of interest uint32_t N_rb_ul = srslte_nof_prb(p->N_ifft_ul); uint32_t k_0 = freq_offset*N_RB_SC - N_rb_ul*N_RB_SC/2 + p->N_ifft_ul/2; uint32_t K = DELTA_F/DELTA_F_RA; uint32_t begin = PHI + (K*k_0) + (K/2); memcpy(p->prach_bins, &p->signal_fft[begin], p->N_zc*sizeof(cf_t)); for(int i=0;i<p->N_roots;i++){ cf_t *root_spec = p->dft_seqs[p->root_seqs_idx[i]]; srslte_vec_prod_conj_ccc(p->prach_bins, root_spec, p->corr_spec, p->N_zc); srslte_dft_run(p->zc_ifft, p->corr_spec, p->corr_spec); srslte_vec_abs_square_cf(p->corr_spec, p->corr, p->N_zc); float corr_ave = srslte_vec_acc_ff(p->corr, p->N_zc)/p->N_zc; uint32_t winsize = 0; if(p->N_cs != 0){ winsize = p->N_cs; }else{ winsize = p->N_zc; } uint32_t n_wins = p->N_zc/winsize; float max_peak = 0; for(int j=0;j<n_wins;j++) { uint32_t start = (p->N_zc-(j*p->N_cs))%p->N_zc; uint32_t end = start+winsize; if (end>p->deadzone) { end-=p->deadzone; } start += p->deadzone; p->peak_values[j] = 0; for(int k=start;k<end;k++) { if(p->corr[k] > p->peak_values[j]) { p->peak_values[j] = p->corr[k]; p->peak_offsets[j] = k-start; if (p->peak_values[j] > max_peak) { max_peak = p->peak_values[j]; } } } } if (max_peak > p->detect_factor*corr_ave) { for (int j=0;j<n_wins;j++) { if(p->peak_values[j] > p->detect_factor*corr_ave) { printf("ncs=%d, nzc=%d, nwins=%d, Nroot=%d, i=%d, j=%d, start=%d, peak_value=%f, peak_offset=%d, tseq=%f\n", p->N_cs, p->N_zc, n_wins, p->N_roots, i, j, (p->N_zc-(j*p->N_cs))%p->N_zc, p->peak_values[j], p->peak_offsets[j], p->T_seq*1e6); memcpy(save_corr, p->corr, p->N_zc*sizeof(float)); if (indices) { indices[*n_indices] = (i*n_wins)+j; } if (peak_to_avg) { peak_to_avg[*n_indices] = p->peak_values[j]/corr_ave; } if (t_offsets) { t_offsets[*n_indices] = (float) p->peak_offsets[j]*p->T_seq/p->N_zc; } (*n_indices)++; } } } } ret = SRSLTE_SUCCESS; } return ret; }