Example #1
0
/* Public key blob as used by Pageant: exponent before modulus. */
unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
{
    int length, pos;
    unsigned char *ret;

    length = (ssh1_bignum_length(key->modulus) +
	      ssh1_bignum_length(key->exponent) + 4);
    ret = snewn(length, unsigned char);

    PUT_32BIT(ret, bignum_bitcount(key->modulus));
    pos = 4;
    pos += ssh1_write_bignum(ret + pos, key->exponent);
    pos += ssh1_write_bignum(ret + pos, key->modulus);

    *len = length;
    return ret;
}
Example #2
0
/*
 * DH stage 1: invent a number x between 1 and q, and compute e =
 * g^x mod p. Return e.
 * 
 * If `nbits' is greater than zero, it is used as an upper limit
 * for the number of bits in x. This is safe provided that (a) you
 * use twice as many bits in x as the number of bits you expect to
 * use in your session key, and (b) the DH group is a safe prime
 * (which SSH demands that it must be).
 * 
 * P. C. van Oorschot, M. J. Wiener
 * "On Diffie-Hellman Key Agreement with Short Exponents".
 * Advances in Cryptology: Proceedings of Eurocrypt '96
 * Springer-Verlag, May 1996.
 */
Bignum dh_create_e(void *handle, int nbits)
{
    struct dh_ctx *ctx = (struct dh_ctx *)handle;
    int i;

    int nbytes;
    unsigned char *buf;

    nbytes = ssh1_bignum_length(ctx->qmask);
    buf = snewn(nbytes, unsigned char);

    do {
	/*
	 * Create a potential x, by ANDing a string of random bytes
	 * with qmask.
	 */
	if (ctx->x)
	    freebn(ctx->x);
	if (nbits == 0 || nbits > bignum_bitcount(ctx->qmask)) {
	    ssh1_write_bignum(buf, ctx->qmask);
	    for (i = 2; i < nbytes; i++)
		buf[i] &= random_byte();
	    ssh1_read_bignum(buf, nbytes, &ctx->x);   /* can't fail */
	} else {
	    int b, nb;
	    ctx->x = bn_power_2(nbits);
	    b = nb = 0;
	    for (i = 0; i < nbits; i++) {
		if (nb == 0) {
		    nb = 8;
		    b = random_byte();
		}
		bignum_set_bit(ctx->x, i, b & 1);
		b >>= 1;
		nb--;
	    }
	}
    } while (bignum_cmp(ctx->x, One) <= 0 || bignum_cmp(ctx->x, ctx->q) >= 0);

    sfree(buf);

    /*
     * Done. Now compute e = g^x mod p.
     */
    ctx->e = modpow(ctx->g, ctx->x, ctx->p);

    return ctx->e;
}
Example #3
0
/*
 * Save an RSA key file. Return nonzero on success.
 */
int saversakey(const Filename *filename, struct RSAKey *key, char *passphrase)
{
    unsigned char buf[16384];
    unsigned char keybuf[16];
    struct MD5Context md5c;
    unsigned char *p, *estart;
    FILE *fp;

    /*
     * Write the initial signature.
     */
    p = buf;
    memcpy(p, rsa_signature, sizeof(rsa_signature));
    p += sizeof(rsa_signature);

    /*
     * One byte giving encryption type, and one reserved (zero)
     * uint32.
     */
    *p++ = (passphrase ? SSH_CIPHER_3DES : 0);
    PUT_32BIT(p, 0);
    p += 4;

    /*
     * An ordinary SSH-1 public key consists of: a uint32
     * containing the bit count, then two bignums containing the
     * modulus and exponent respectively.
     */
    PUT_32BIT(p, bignum_bitcount(key->modulus));
    p += 4;
    p += ssh1_write_bignum(p, key->modulus);
    p += ssh1_write_bignum(p, key->exponent);

    /*
     * A string containing the comment field.
     */
    if (key->comment) {
	PUT_32BIT(p, strlen(key->comment));
	p += 4;
	memcpy(p, key->comment, strlen(key->comment));
	p += strlen(key->comment);
    } else {
	PUT_32BIT(p, 0);
	p += 4;
    }

    /*
     * The encrypted portion starts here.
     */
    estart = p;

    /*
     * Two bytes, then the same two bytes repeated.
     */
    *p++ = random_byte();
    *p++ = random_byte();
    p[0] = p[-2];
    p[1] = p[-1];
    p += 2;

    /*
     * Four more bignums: the decryption exponent, then iqmp, then
     * q, then p.
     */
    p += ssh1_write_bignum(p, key->private_exponent);
    p += ssh1_write_bignum(p, key->iqmp);
    p += ssh1_write_bignum(p, key->q);
    p += ssh1_write_bignum(p, key->p);

    /*
     * Now write zeros until the encrypted portion is a multiple of
     * 8 bytes.
     */
    while ((p - estart) % 8)
	*p++ = '\0';

    /*
     * Now encrypt the encrypted portion.
     */
    if (passphrase) {
	MD5Init(&md5c);
	MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
	MD5Final(keybuf, &md5c);
	des3_encrypt_pubkey(keybuf, estart, p - estart);
	smemclr(keybuf, sizeof(keybuf));	/* burn the evidence */
    }

    /*
     * Done. Write the result to the file.
     */
    fp = f_open(filename, "wb", TRUE);
    if (fp) {
	int ret = (fwrite(buf, 1, p - buf, fp) == (size_t) (p - buf));
        if (fclose(fp))
            ret = 0;
	return ret;
    } else
	return 0;
}