Example #1
0
void ins_reset_altitude_ref( void ) {
#if USE_GPS
  ins_impl.ltp_def.lla.alt = gps.lla_pos.alt;
  ins_impl.ltp_def.hmsl = gps.hmsl;
  stateSetLocalOrigin_i(&ins_impl.ltp_def);
#endif
}
void ins_init(void) {

#if USE_INS_NAV_INIT
    struct LlaCoor_i llh_nav0; /* Height above the ellipsoid */
    llh_nav0.lat = INT32_RAD_OF_DEG(NAV_LAT0);
    llh_nav0.lon = INT32_RAD_OF_DEG(NAV_LON0);
    /* NAV_ALT0 = ground alt above msl, NAV_MSL0 = geoid-height (msl) over ellipsoid */
    llh_nav0.alt = NAV_ALT0 + NAV_MSL0;

    struct EcefCoor_i ecef_nav0;
    ecef_of_lla_i(&ecef_nav0, &llh_nav0);

    ltp_def_from_ecef_i(&ins_impl.ltp_def, &ecef_nav0);
    ins_impl.ltp_def.hmsl = NAV_ALT0;
    stateSetLocalOrigin_i(&ins_impl.ltp_def);

    ins_impl.ltp_initialized = TRUE;
#else
    ins_impl.ltp_initialized  = FALSE;
#endif

    INT32_VECT3_ZERO(ins_impl.ltp_pos);
    INT32_VECT3_ZERO(ins_impl.ltp_speed);
    INT32_VECT3_ZERO(ins_impl.ltp_accel);

#if PERIODIC_TELEMETRY
    register_periodic_telemetry(DefaultPeriodic, "INS", send_ins);
    register_periodic_telemetry(DefaultPeriodic, "INS_Z", send_ins_z);
    register_periodic_telemetry(DefaultPeriodic, "INS_REF", send_ins_ref);
#endif
}
void ins_reset_local_origin(void) {
    ltp_def_from_ecef_i(&ins_impl.ltp_def, &gps.ecef_pos);
    ins_impl.ltp_def.lla.alt = gps.lla_pos.alt;
    ins_impl.ltp_def.hmsl = gps.hmsl;
    stateSetLocalOrigin_i(&ins_impl.ltp_def);
    ins_impl.ltp_initialized = TRUE;
}
Example #4
0
void ins_update_gps(void) {
#if USE_GPS
  //Check for GPS fix
  if (gps.fix == GPS_FIX_3D) {
    //Set the initial coordinates
    if(!ins_impl.ltp_initialized) {
      ltp_def_from_ecef_i(&ins_impl.ltp_def, &gps.ecef_pos);
      ins_impl.ltp_def.lla.alt = gps.lla_pos.alt;
      ins_impl.ltp_def.hmsl = gps.hmsl;
      ins_impl.ltp_initialized = TRUE;
      stateSetLocalOrigin_i(&ins_impl.ltp_def);
    }

    //Set the x and y and maybe z position in ltp and save
    struct NedCoor_i ins_gps_pos_cm_ned;
    ned_of_ecef_point_i(&ins_gps_pos_cm_ned, &ins_impl.ltp_def, &gps.ecef_pos);

    //When we don't want to use the height of the navdata we can use the gps height
#if USE_GPS_HEIGHT
    INT32_VECT3_SCALE_2(ins_impl.ltp_pos, ins_gps_pos_cm_ned, INT32_POS_OF_CM_NUM, INT32_POS_OF_CM_DEN);
#else
    INT32_VECT2_SCALE_2(ins_impl.ltp_pos, ins_gps_pos_cm_ned, INT32_POS_OF_CM_NUM, INT32_POS_OF_CM_DEN);
#endif

    //Set the local origin
    stateSetPositionNed_i(&ins_impl.ltp_pos);
  }
#endif /* USE_GPS */
}
void ins_reset_local_origin( void ) {
#if INS_UPDATE_FW_ESTIMATOR
  struct UtmCoor_f utm;
#ifdef GPS_USE_LATLONG
  /* Recompute UTM coordinates in this zone */
  struct LlaCoor_f lla;
  lla.lat = gps.lla_pos.lat / 1e7;
  lla.lon = gps.lla_pos.lon / 1e7;
  utm.zone = (DegOfRad(gps.lla_pos.lon/1e7)+180) / 6 + 1;
  utm_of_lla_f(&utm, &lla);
#else
  utm.zone = gps.utm_pos.zone;
  utm.east = gps.utm_pos.east / 100.0f;
  utm.north = gps.utm_pos.north / 100.0f;
#endif
  // ground_alt
  utm.alt = gps.hmsl / 1000.0f;
  // reset state UTM ref
  stateSetLocalUtmOrigin_f(&utm);
#else
  struct LtpDef_i ltp_def;
  ltp_def_from_ecef_i(&ltp_def, &gps.ecef_pos);
  ltp_def.hmsl = gps.hmsl;
  stateSetLocalOrigin_i(&ltp_def);
#endif
}
Example #6
0
void ins_init()
{

  // init position
#if INS_UPDATE_FW_ESTIMATOR
  struct UtmCoor_f utm0;
  utm0.north = (float)nav_utm_north0;
  utm0.east = (float)nav_utm_east0;
  utm0.alt = GROUND_ALT;
  utm0.zone = nav_utm_zone0;
  stateSetLocalUtmOrigin_f(&utm0);
  stateSetPositionUtm_f(&utm0);
#else
  struct LlaCoor_i llh_nav0; /* Height above the ellipsoid */
  llh_nav0.lat = NAV_LAT0;
  llh_nav0.lon = NAV_LON0;
  /* NAV_ALT0 = ground alt above msl, NAV_MSL0 = geoid-height (msl) over ellipsoid */
  llh_nav0.alt = NAV_ALT0 + NAV_MSL0;
  struct EcefCoor_i ecef_nav0;
  ecef_of_lla_i(&ecef_nav0, &llh_nav0);
  struct LtpDef_i ltp_def;
  ltp_def_from_ecef_i(&ltp_def, &ecef_nav0);
  ltp_def.hmsl = NAV_ALT0;
  stateSetLocalOrigin_i(&ltp_def);
#endif

  B.x = INS_H_X;
  B.y = INS_H_Y;
  B.z = INS_H_Z;

  // Bind to BARO_ABS message
  AbiBindMsgBARO_ABS(INS_BARO_ID, &baro_ev, baro_cb);

  // init state and measurements
  init_invariant_state();

  // init gains
  ins_impl.gains.lv   = INS_INV_LV;
  ins_impl.gains.lb   = INS_INV_LB;
  ins_impl.gains.mv   = INS_INV_MV;
  ins_impl.gains.mvz  = INS_INV_MVZ;
  ins_impl.gains.mh   = INS_INV_MH;
  ins_impl.gains.nx   = INS_INV_NX;
  ins_impl.gains.nxz  = INS_INV_NXZ;
  ins_impl.gains.nh   = INS_INV_NH;
  ins_impl.gains.ov   = INS_INV_OV;
  ins_impl.gains.ob   = INS_INV_OB;
  ins_impl.gains.rv   = INS_INV_RV;
  ins_impl.gains.rh   = INS_INV_RH;
  ins_impl.gains.sh   = INS_INV_SH;

  ins.status = INS_UNINIT;
  ins_impl.reset = FALSE;

#if !INS_UPDATE_FW_ESTIMATOR && PERIODIC_TELEMETRY
  register_periodic_telemetry(DefaultPeriodic, "INS_REF", send_ins_ref);
#endif
}
Example #7
0
void ins_update_gps(void) {
#if USE_GPS
  if (gps.fix == GPS_FIX_3D) {
    if (!ins_ltp_initialised) {
      ltp_def_from_ecef_i(&ins_ltp_def, &gps.ecef_pos);
      ins_ltp_def.lla.alt = gps.lla_pos.alt;
      ins_ltp_def.hmsl = gps.hmsl;
      ins_ltp_initialised = TRUE;
      stateSetLocalOrigin_i(&ins_ltp_def);
    }
    ned_of_ecef_point_i(&ins_gps_pos_cm_ned, &ins_ltp_def, &gps.ecef_pos);
    ned_of_ecef_vect_i(&ins_gps_speed_cm_s_ned, &ins_ltp_def, &gps.ecef_vel);
#if USE_HFF
    VECT2_ASSIGN(ins_gps_pos_m_ned, ins_gps_pos_cm_ned.x, ins_gps_pos_cm_ned.y);
    VECT2_SDIV(ins_gps_pos_m_ned, ins_gps_pos_m_ned, 100.);
    VECT2_ASSIGN(ins_gps_speed_m_s_ned, ins_gps_speed_cm_s_ned.x, ins_gps_speed_cm_s_ned.y);
    VECT2_SDIV(ins_gps_speed_m_s_ned, ins_gps_speed_m_s_ned, 100.);
    if (ins.hf_realign) {
      ins.hf_realign = FALSE;
#ifdef SITL
      struct FloatVect2 true_pos, true_speed;
      VECT2_COPY(true_pos, fdm.ltpprz_pos);
      VECT2_COPY(true_speed, fdm.ltpprz_ecef_vel);
      b2_hff_realign(true_pos, true_speed);
#else
      const struct FloatVect2 zero = {0.0, 0.0};
      b2_hff_realign(ins_gps_pos_m_ned, zero);
#endif
    }
    b2_hff_update_gps();
#if !USE_VFF /* vff not used */
    ins_ltp_pos.z =  (ins_gps_pos_cm_ned.z * INT32_POS_OF_CM_NUM) / INT32_POS_OF_CM_DEN;
    ins_ltp_speed.z =  (ins_gps_speed_cm_s_ned.z * INT32_SPEED_OF_CM_S_NUM) INT32_SPEED_OF_CM_S_DEN;
#endif /* vff not used */
#endif /* hff used */


#if !USE_HFF /* hff not used */
#if !USE_VFF /* neither hf nor vf used */
    INT32_VECT3_SCALE_3(ins_ltp_pos, ins_gps_pos_cm_ned, INT32_POS_OF_CM_NUM, INT32_POS_OF_CM_DEN);
    INT32_VECT3_SCALE_3(ins_ltp_speed, ins_gps_speed_cm_s_ned, INT32_SPEED_OF_CM_S_NUM, INT32_SPEED_OF_CM_S_DEN);
#else /* only vff used */
    INT32_VECT2_SCALE_2(ins_ltp_pos, ins_gps_pos_cm_ned, INT32_POS_OF_CM_NUM, INT32_POS_OF_CM_DEN);
    INT32_VECT2_SCALE_2(ins_ltp_speed, ins_gps_speed_cm_s_ned, INT32_SPEED_OF_CM_S_NUM, INT32_SPEED_OF_CM_S_DEN);
#endif

#if USE_GPS_LAG_HACK
    VECT2_COPY(d_pos, ins_ltp_speed);
    INT32_VECT2_RSHIFT(d_pos, d_pos, 11);
    VECT2_ADD(ins_ltp_pos, d_pos);
#endif
#endif /* hff not used */

    INS_NED_TO_STATE();
  }
#endif /* USE_GPS */
}
void ins_reset_altitude_ref(void) {
    struct LlaCoor_i lla = {
        state.ned_origin_i.lla.lon,
        state.ned_origin_i.lla.lat,
        gps.lla_pos.alt
    };
    ltp_def_from_lla_i(&ins_impl.ltp_def, &lla),
                       ins_impl.ltp_def.hmsl = gps.hmsl;
    stateSetLocalOrigin_i(&ins_impl.ltp_def);
}
Example #9
0
void ins_reset_local_origin(void)
{
  if (ins_module.gps.fix >= GPS_FIX_3D) {
    ltp_def_from_ecef_i(&ins_module.ltp_def, &ins_module.gps.ecef_pos);
    ins_module.ltp_def.lla.alt = ins_module.gps.lla_pos.alt;
    ins_module.ltp_def.hmsl = ins_module.gps.hmsl;
    ins_module.ltp_initialized = true;
    stateSetLocalOrigin_i(&ins_module.ltp_def);
  } else {
    ins_module.ltp_initialized = false;
  }

  ins_module_reset_local_origin();
}
Example #10
0
/**
 * initialize the local origin (ltp_def) from flight plan position
 */
void ins_init_origin_from_flightplan(void)
{
  struct LlaCoor_i llh_nav0; /* Height above the ellipsoid */
  llh_nav0.lat = NAV_LAT0;
  llh_nav0.lon = NAV_LON0;
  /* NAV_ALT0 = ground alt above msl, NAV_MSL0 = geoid-height (msl) over ellipsoid */
  llh_nav0.alt = NAV_ALT0 + NAV_MSL0;

  struct EcefCoor_i ecef_nav0;
  ecef_of_lla_i(&ecef_nav0, &llh_nav0);

  ltp_def_from_ecef_i(&ins_vn.ltp_def, &ecef_nav0);
  ins_vn.ltp_def.hmsl = NAV_ALT0;
  stateSetLocalOrigin_i(&ins_vn.ltp_def);
}
void ins_reset_altitude_ref( void ) {
#if INS_UPDATE_FW_ESTIMATOR
  struct UtmCoor_f utm = state.utm_origin_f;
  utm.alt = gps.hmsl / 1000.0f;
  stateSetLocalUtmOrigin_f(&utm);
#else
  struct LlaCoor_i lla = {
    state.ned_origin_i.lla.lon,
    state.ned_origin_i.lla.lat,
    gps.lla_pos.alt
  };
  struct LtpDef_i ltp_def;
  ltp_def_from_lla_i(&ltp_def, &lla),
  ltp_def.hmsl = gps.hmsl;
  stateSetLocalOrigin_i(&ltp_def);
#endif
}
Example #12
0
void ins_reset_altitude_ref(void)
{
  struct LlaCoor_i lla = {
    .lat = state.ned_origin_i.lla.lat,
    .lon = state.ned_origin_i.lla.lon,
    .alt = gps.lla_pos.alt
  };
  ltp_def_from_lla_i(&ins_gp.ltp_def, &lla);
  ins_gp.ltp_def.hmsl = gps.hmsl;
  stateSetLocalOrigin_i(&ins_gp.ltp_def);
}


#include "subsystems/abi.h"
static abi_event gps_ev;
static void gps_cb(uint8_t sender_id __attribute__((unused)),
                   uint32_t stamp __attribute__((unused)),
                   struct GpsState *gps_s)
{
  if (gps_s->fix == GPS_FIX_3D) {
    if (!ins_gp.ltp_initialized) {
      ins_reset_local_origin();
    }

    /* simply scale and copy pos/speed from gps */
    struct NedCoor_i gps_pos_cm_ned;
    ned_of_ecef_point_i(&gps_pos_cm_ned, &ins_gp.ltp_def, &gps_s->ecef_pos);
    INT32_VECT3_SCALE_2(ins_gp.ltp_pos, gps_pos_cm_ned,
                        INT32_POS_OF_CM_NUM, INT32_POS_OF_CM_DEN);
    stateSetPositionNed_i(&ins_gp.ltp_pos);

    struct NedCoor_i gps_speed_cm_s_ned;
    ned_of_ecef_vect_i(&gps_speed_cm_s_ned, &ins_gp.ltp_def, &gps_s->ecef_vel);
    INT32_VECT3_SCALE_2(ins_gp.ltp_speed, gps_speed_cm_s_ned,
                        INT32_SPEED_OF_CM_S_NUM, INT32_SPEED_OF_CM_S_DEN);
    stateSetSpeedNed_i(&ins_gp.ltp_speed);
  }
}

void ins_gps_passthrough_register(void);
{
  ins_register_impl(ins_gps_passthrough_init);
  AbiBindMsgGPS(ABI_BROADCAST, &gps_ev, gps_cb);
}
Example #13
0
void ins_reset_local_origin(void)
{
#if USE_GPS
  if (GpsFixValid()) {
    ltp_def_from_ecef_i(&ins_int.ltp_def, &gps.ecef_pos);
    ins_int.ltp_def.lla.alt = gps.lla_pos.alt;
    ins_int.ltp_def.hmsl = gps.hmsl;
    ins_int.ltp_initialized = TRUE;
    stateSetLocalOrigin_i(&ins_int.ltp_def);
  } else {
    ins_int.ltp_initialized = FALSE;
  }
#else
  ins_int.ltp_initialized = FALSE;
#endif

#if USE_HFF
  ins_int.hf_realign = TRUE;
#endif
  ins_int.vf_reset = TRUE;
}
Example #14
0
void ins_init() {
#if USE_INS_NAV_INIT
  ins_ltp_initialised = TRUE;

  /** FIXME: should use the same code than MOVE_WP in firmwares/rotorcraft/datalink.c */
  struct LlaCoor_i llh_nav0; /* Height above the ellipsoid */
  llh_nav0.lat = INT32_RAD_OF_DEG(NAV_LAT0);
  llh_nav0.lon = INT32_RAD_OF_DEG(NAV_LON0);
  /* NAV_ALT0 = ground alt above msl, NAV_MSL0 = geoid-height (msl) over ellipsoid */
  llh_nav0.alt = NAV_ALT0 + NAV_MSL0;

  struct EcefCoor_i ecef_nav0;
  ecef_of_lla_i(&ecef_nav0, &llh_nav0);

  ltp_def_from_ecef_i(&ins_ltp_def, &ecef_nav0);
  ins_ltp_def.hmsl = NAV_ALT0;
  stateSetLocalOrigin_i(&ins_ltp_def);
#else
  ins_ltp_initialised  = FALSE;
#endif
#if USE_VFF
  ins_baro_initialised = FALSE;
#if USE_SONAR
  ins_update_on_agl = FALSE;
#endif
  vff_init(0., 0., 0.);
#endif
  ins.vf_realign = FALSE;
  ins.hf_realign = FALSE;
#if USE_HFF
  b2_hff_init(0., 0., 0., 0.);
#endif
  INT32_VECT3_ZERO(ins_ltp_pos);
  INT32_VECT3_ZERO(ins_ltp_speed);
  INT32_VECT3_ZERO(ins_ltp_accel);

  // TODO correct init
  ins.status = INS_RUNNING;

}
Example #15
0
void ins_reset_altitude_ref(void)
{
#if INS_UPDATE_FW_ESTIMATOR
  struct UtmCoor_f utm = state.utm_origin_f;
  utm.alt = gps.hmsl / 1000.0f;
  stateSetLocalUtmOrigin_f(&utm);
#else
  struct LlaCoor_i lla = {
    .lat = state.ned_origin_i.lla.lat,
    .lon = state.ned_origin_i.lla.lon,
    .alt = gps.lla_pos.alt
  };
  struct LtpDef_i ltp_def;
  ltp_def_from_lla_i(&ltp_def, &lla);
  ltp_def.hmsl = gps.hmsl;
  stateSetLocalOrigin_i(&ltp_def);
#endif
}

void ahrs_init(void)
{
  ahrs.status = AHRS_UNINIT;
}

void ahrs_align(void)
{
  /* Compute an initial orientation from accel and mag directly as quaternion */
  ahrs_float_get_quat_from_accel_mag(&ins_impl.state.quat, &ahrs_aligner.lp_accel, &ahrs_aligner.lp_mag);

  /* use average gyro as initial value for bias */
  struct FloatRates bias0;
  RATES_COPY(bias0, ahrs_aligner.lp_gyro);
  RATES_FLOAT_OF_BFP(ins_impl.state.bias, bias0);

  // ins and ahrs are now running
  ahrs.status = AHRS_RUNNING;
  ins.status = INS_RUNNING;
}
Example #16
0
void ins_init() {
#if USE_INS_NAV_INIT
  struct LlaCoor_i llh_nav0; /* Height above the ellipsoid */
  llh_nav0.lat = NAV_LAT0;
  llh_nav0.lon = NAV_LON0;
  /* NAV_ALT0 = ground alt above msl, NAV_MSL0 = geoid-height (msl) over ellipsoid */
  llh_nav0.alt = NAV_ALT0 + NAV_MSL0;

  struct EcefCoor_i ecef_nav0;
  ecef_of_lla_i(&ecef_nav0, &llh_nav0);

  ltp_def_from_ecef_i(&ins_impl.ltp_def, &ecef_nav0);
  ins_impl.ltp_def.hmsl = NAV_ALT0;
  stateSetLocalOrigin_i(&ins_impl.ltp_def);

  ins_impl.ltp_initialized = TRUE;
#else
  ins_impl.ltp_initialized  = FALSE;
#endif

  INT32_VECT3_ZERO(ins_impl.ltp_pos);
  INT32_VECT3_ZERO(ins_impl.ltp_speed);
  INT32_VECT3_ZERO(ins_impl.ltp_accel);
}
Example #17
0
void ins_reset_altitude_ref(void)
{
#if USE_GPS
  struct LlaCoor_i lla = {
    .lat = state.ned_origin_i.lla.lat,
    .lon = state.ned_origin_i.lla.lon,
    .alt = gps.lla_pos.alt
  };
  ltp_def_from_lla_i(&ins_int.ltp_def, &lla);
  ins_int.ltp_def.hmsl = gps.hmsl;
  stateSetLocalOrigin_i(&ins_int.ltp_def);
#endif
  ins_int.vf_reset = TRUE;
}

void ins_int_propagate(struct Int32Vect3 *accel, float dt)
{
  /* untilt accels */
  struct Int32Vect3 accel_meas_body;
  struct Int32RMat *body_to_imu_rmat = orientationGetRMat_i(&imu.body_to_imu);
  int32_rmat_transp_vmult(&accel_meas_body, body_to_imu_rmat, accel);
  struct Int32Vect3 accel_meas_ltp;
  int32_rmat_transp_vmult(&accel_meas_ltp, stateGetNedToBodyRMat_i(), &accel_meas_body);

  float z_accel_meas_float = ACCEL_FLOAT_OF_BFP(accel_meas_ltp.z);

  /* Propagate only if we got any measurement during the last INS_MAX_PROPAGATION_STEPS.
   * Otherwise halt the propagation to not diverge and only set the acceleration.
   * This should only be relevant in the startup phase when the baro is not yet initialized
   * and there is no gps fix yet...
   */
  if (ins_int.propagation_cnt < INS_MAX_PROPAGATION_STEPS) {
    vff_propagate(z_accel_meas_float, dt);
    ins_update_from_vff();
  } else {
    // feed accel from the sensors
    // subtract -9.81m/s2 (acceleration measured due to gravity,
    // but vehicle not accelerating in ltp)
    ins_int.ltp_accel.z = accel_meas_ltp.z + ACCEL_BFP_OF_REAL(9.81);
  }

#if USE_HFF
  /* propagate horizontal filter */
  b2_hff_propagate();
  /* convert and copy result to ins_int */
  ins_update_from_hff();
#else
  ins_int.ltp_accel.x = accel_meas_ltp.x;
  ins_int.ltp_accel.y = accel_meas_ltp.y;
#endif /* USE_HFF */

  ins_ned_to_state();

  /* increment the propagation counter, while making sure it doesn't overflow */
  if (ins_int.propagation_cnt < 100 * INS_MAX_PROPAGATION_STEPS) {
    ins_int.propagation_cnt++;
  }
}

static void baro_cb(uint8_t __attribute__((unused)) sender_id, float pressure)
{
  if (!ins_int.baro_initialized && pressure > 1e-7) {
    // wait for a first positive value
    ins_int.qfe = pressure;
    ins_int.baro_initialized = TRUE;
  }

  if (ins_int.baro_initialized) {
    if (ins_int.vf_reset) {
      ins_int.vf_reset = FALSE;
      ins_int.qfe = pressure;
      vff_realign(0.);
      ins_update_from_vff();
    } else {
      ins_int.baro_z = -pprz_isa_height_of_pressure(pressure, ins_int.qfe);
#if USE_VFF_EXTENDED
      vff_update_baro(ins_int.baro_z);
#else
      vff_update(ins_int.baro_z);
#endif
    }
    ins_ned_to_state();

    /* reset the counter to indicate we just had a measurement update */
    ins_int.propagation_cnt = 0;
  }
}

#if USE_GPS
void ins_int_update_gps(struct GpsState *gps_s)
{
  if (gps_s->fix < GPS_FIX_3D) {
    return;
  }

  if (!ins_int.ltp_initialized) {
    ins_reset_local_origin();
  }

  struct NedCoor_i gps_pos_cm_ned;
  ned_of_ecef_point_i(&gps_pos_cm_ned, &ins_int.ltp_def, &gps_s->ecef_pos);

  /* calculate body frame position taking BODY_TO_GPS translation (in cm) into account */
#ifdef INS_BODY_TO_GPS_X
  /* body2gps translation in body frame */
  struct Int32Vect3 b2g_b = {
    .x = INS_BODY_TO_GPS_X,
    .y = INS_BODY_TO_GPS_Y,
    .z = INS_BODY_TO_GPS_Z
  };
  /* rotate offset given in body frame to navigation/ltp frame using current attitude */
  struct Int32Quat q_b2n = *stateGetNedToBodyQuat_i();
  QUAT_INVERT(q_b2n, q_b2n);
  struct Int32Vect3 b2g_n;
  int32_quat_vmult(&b2g_n, &q_b2n, &b2g_b);
  /* subtract body2gps translation in ltp from gps position */
  VECT3_SUB(gps_pos_cm_ned, b2g_n);
#endif

  /// @todo maybe use gps_s->ned_vel directly??
  struct NedCoor_i gps_speed_cm_s_ned;
  ned_of_ecef_vect_i(&gps_speed_cm_s_ned, &ins_int.ltp_def, &gps_s->ecef_vel);

#if INS_USE_GPS_ALT
  vff_update_z_conf(((float)gps_pos_cm_ned.z) / 100.0, INS_VFF_R_GPS);
#endif
#if INS_USE_GPS_ALT_SPEED
  vff_update_vz_conf(((float)gps_speed_cm_s_ned.z) / 100.0, INS_VFF_VZ_R_GPS);
#endif

#if USE_HFF
  /* horizontal gps transformed to NED in meters as float */
  struct FloatVect2 gps_pos_m_ned;
  VECT2_ASSIGN(gps_pos_m_ned, gps_pos_cm_ned.x, gps_pos_cm_ned.y);
  VECT2_SDIV(gps_pos_m_ned, gps_pos_m_ned, 100.0f);

  struct FloatVect2 gps_speed_m_s_ned;
  VECT2_ASSIGN(gps_speed_m_s_ned, gps_speed_cm_s_ned.x, gps_speed_cm_s_ned.y);
  VECT2_SDIV(gps_speed_m_s_ned, gps_speed_m_s_ned, 100.);

  if (ins_int.hf_realign) {
    ins_int.hf_realign = FALSE;
    const struct FloatVect2 zero = {0.0f, 0.0f};
    b2_hff_realign(gps_pos_m_ned, zero);
  }
  // run horizontal filter
  b2_hff_update_gps(&gps_pos_m_ned, &gps_speed_m_s_ned);
  // convert and copy result to ins_int
  ins_update_from_hff();

#else  /* hff not used */
  /* simply copy horizontal pos/speed from gps */
  INT32_VECT2_SCALE_2(ins_int.ltp_pos, gps_pos_cm_ned,
                      INT32_POS_OF_CM_NUM, INT32_POS_OF_CM_DEN);
  INT32_VECT2_SCALE_2(ins_int.ltp_speed, gps_speed_cm_s_ned,
                      INT32_SPEED_OF_CM_S_NUM, INT32_SPEED_OF_CM_S_DEN);
#endif /* USE_HFF */

  ins_ned_to_state();

  /* reset the counter to indicate we just had a measurement update */
  ins_int.propagation_cnt = 0;
}
#else
void ins_int_update_gps(struct GpsState *gps_s __attribute__((unused))) {}
#endif /* USE_GPS */


#if USE_SONAR
static void sonar_cb(uint8_t __attribute__((unused)) sender_id, float distance)
{
  static float last_offset = 0.;

  /* update filter assuming a flat ground */
  if (distance < INS_SONAR_MAX_RANGE && distance > INS_SONAR_MIN_RANGE
#ifdef INS_SONAR_THROTTLE_THRESHOLD
      && stabilization_cmd[COMMAND_THRUST] < INS_SONAR_THROTTLE_THRESHOLD
#endif
#ifdef INS_SONAR_BARO_THRESHOLD
      && ins_int.baro_z > -INS_SONAR_BARO_THRESHOLD /* z down */
#endif
      && ins_int.update_on_agl
      && ins_int.baro_initialized) {
    vff_update_z_conf(-(distance), VFF_R_SONAR_0 + VFF_R_SONAR_OF_M * fabsf(distance));
    last_offset = vff.offset;
  } else {
    /* update offset with last value to avoid divergence */
    vff_update_offset(last_offset);
  }

  /* reset the counter to indicate we just had a measurement update */
  ins_int.propagation_cnt = 0;
}
#endif // USE_SONAR


/** initialize the local origin (ltp_def) from flight plan position */
static void ins_init_origin_from_flightplan(void)
{

  struct LlaCoor_i llh_nav0; /* Height above the ellipsoid */
  llh_nav0.lat = NAV_LAT0;
  llh_nav0.lon = NAV_LON0;
  /* NAV_ALT0 = ground alt above msl, NAV_MSL0 = geoid-height (msl) over ellipsoid */
  llh_nav0.alt = NAV_ALT0 + NAV_MSL0;

  struct EcefCoor_i ecef_nav0;
  ecef_of_lla_i(&ecef_nav0, &llh_nav0);

  ltp_def_from_ecef_i(&ins_int.ltp_def, &ecef_nav0);
  ins_int.ltp_def.hmsl = NAV_ALT0;
  stateSetLocalOrigin_i(&ins_int.ltp_def);

}

/** copy position and speed to state interface */
static void ins_ned_to_state(void)
{
  stateSetPositionNed_i(&ins_int.ltp_pos);
  stateSetSpeedNed_i(&ins_int.ltp_speed);
  stateSetAccelNed_i(&ins_int.ltp_accel);

#if defined SITL && USE_NPS
  if (nps_bypass_ins) {
    sim_overwrite_ins();
  }
#endif
}
Example #18
0
void ins_reset_altitude_ref(void)
{
#if USE_GPS
  struct LlaCoor_i lla = {
    .lat = state.ned_origin_i.lla.lat,
    .lon = state.ned_origin_i.lla.lon,
    .alt = gps.lla_pos.alt
  };
  ltp_def_from_lla_i(&ins_impl.ltp_def, &lla);
  ins_impl.ltp_def.hmsl = gps.hmsl;
  stateSetLocalOrigin_i(&ins_impl.ltp_def);
#endif
  ins_impl.vf_reset = TRUE;
}

void ins_propagate(float dt)
{
  /* untilt accels */
  struct Int32Vect3 accel_meas_body;
  struct Int32RMat *body_to_imu_rmat = orientationGetRMat_i(&imu.body_to_imu);
  int32_rmat_transp_vmult(&accel_meas_body, body_to_imu_rmat, &imu.accel);
  struct Int32Vect3 accel_meas_ltp;
  int32_rmat_transp_vmult(&accel_meas_ltp, stateGetNedToBodyRMat_i(), &accel_meas_body);

  float z_accel_meas_float = ACCEL_FLOAT_OF_BFP(accel_meas_ltp.z);
  if (ins_impl.baro_initialized) {
    vff_propagate(z_accel_meas_float, dt);
    ins_update_from_vff();
  } else { // feed accel from the sensors
    // subtract -9.81m/s2 (acceleration measured due to gravity,
    // but vehicle not accelerating in ltp)
    ins_impl.ltp_accel.z = accel_meas_ltp.z + ACCEL_BFP_OF_REAL(9.81);
  }

#if USE_HFF
  /* propagate horizontal filter */
  b2_hff_propagate();
  /* convert and copy result to ins_impl */
  ins_update_from_hff();
#else
  ins_impl.ltp_accel.x = accel_meas_ltp.x;
  ins_impl.ltp_accel.y = accel_meas_ltp.y;
#endif /* USE_HFF */

  ins_ned_to_state();
}

static void baro_cb(uint8_t __attribute__((unused)) sender_id, const float *pressure)
{
  if (!ins_impl.baro_initialized && *pressure > 1e-7) {
    // wait for a first positive value
    ins_impl.qfe = *pressure;
    ins_impl.baro_initialized = TRUE;
  }

  if (ins_impl.baro_initialized) {
    if (ins_impl.vf_reset) {
      ins_impl.vf_reset = FALSE;
      ins_impl.qfe = *pressure;
      vff_realign(0.);
      ins_update_from_vff();
    } else {
      ins_impl.baro_z = -pprz_isa_height_of_pressure(*pressure, ins_impl.qfe);
#if USE_VFF_EXTENDED
      vff_update_baro(ins_impl.baro_z);
#else
      vff_update(ins_impl.baro_z);
#endif
    }
    ins_ned_to_state();
  }
}

#if USE_GPS
void ins_update_gps(void)
{
  if (gps.fix == GPS_FIX_3D) {
    if (!ins_impl.ltp_initialized) {
      ltp_def_from_ecef_i(&ins_impl.ltp_def, &gps.ecef_pos);
      ins_impl.ltp_def.lla.alt = gps.lla_pos.alt;
      ins_impl.ltp_def.hmsl = gps.hmsl;
      ins_impl.ltp_initialized = TRUE;
      stateSetLocalOrigin_i(&ins_impl.ltp_def);
    }

    struct NedCoor_i gps_pos_cm_ned;
    ned_of_ecef_point_i(&gps_pos_cm_ned, &ins_impl.ltp_def, &gps.ecef_pos);
    /// @todo maybe use gps.ned_vel directly??
    struct NedCoor_i gps_speed_cm_s_ned;
    ned_of_ecef_vect_i(&gps_speed_cm_s_ned, &ins_impl.ltp_def, &gps.ecef_vel);

#if INS_USE_GPS_ALT
    vff_update_z_conf((float)gps_pos_cm_ned.z / 100.0, INS_VFF_R_GPS);
#endif

#if USE_HFF
    /* horizontal gps transformed to NED in meters as float */
    struct FloatVect2 gps_pos_m_ned;
    VECT2_ASSIGN(gps_pos_m_ned, gps_pos_cm_ned.x, gps_pos_cm_ned.y);
    VECT2_SDIV(gps_pos_m_ned, gps_pos_m_ned, 100.0f);

    struct FloatVect2 gps_speed_m_s_ned;
    VECT2_ASSIGN(gps_speed_m_s_ned, gps_speed_cm_s_ned.x, gps_speed_cm_s_ned.y);
    VECT2_SDIV(gps_speed_m_s_ned, gps_speed_m_s_ned, 100.);

    if (ins_impl.hf_realign) {
      ins_impl.hf_realign = FALSE;
      const struct FloatVect2 zero = {0.0f, 0.0f};
      b2_hff_realign(gps_pos_m_ned, zero);
    }
    // run horizontal filter
    b2_hff_update_gps(&gps_pos_m_ned, &gps_speed_m_s_ned);
    // convert and copy result to ins_impl
    ins_update_from_hff();

#else  /* hff not used */
    /* simply copy horizontal pos/speed from gps */
    INT32_VECT2_SCALE_2(ins_impl.ltp_pos, gps_pos_cm_ned,
                        INT32_POS_OF_CM_NUM, INT32_POS_OF_CM_DEN);
    INT32_VECT2_SCALE_2(ins_impl.ltp_speed, gps_speed_cm_s_ned,
                        INT32_SPEED_OF_CM_S_NUM, INT32_SPEED_OF_CM_S_DEN);
#endif /* USE_HFF */

    ins_ned_to_state();
  }
}
#endif /* USE_GPS */


#if USE_SONAR
static void sonar_cb(uint8_t __attribute__((unused)) sender_id, const float *distance)
{
  static float last_offset = 0.;

  /* update filter assuming a flat ground */
  if (*distance < INS_SONAR_MAX_RANGE && *distance > INS_SONAR_MIN_RANGE
#ifdef INS_SONAR_THROTTLE_THRESHOLD
      && stabilization_cmd[COMMAND_THRUST] < INS_SONAR_THROTTLE_THRESHOLD
#endif
#ifdef INS_SONAR_BARO_THRESHOLD
      && ins_impl.baro_z > -INS_SONAR_BARO_THRESHOLD /* z down */
#endif
      && ins_impl.update_on_agl
      && ins_impl.baro_initialized) {
    vff_update_z_conf(-(*distance), VFF_R_SONAR_0 + VFF_R_SONAR_OF_M * fabsf(*distance));
    last_offset = vff.offset;
  } else {
    /* update offset with last value to avoid divergence */
    vff_update_offset(last_offset);
  }
}
#endif // USE_SONAR


/** initialize the local origin (ltp_def) from flight plan position */
static void ins_init_origin_from_flightplan(void)
{

  struct LlaCoor_i llh_nav0; /* Height above the ellipsoid */
  llh_nav0.lat = NAV_LAT0;
  llh_nav0.lon = NAV_LON0;
  /* NAV_ALT0 = ground alt above msl, NAV_MSL0 = geoid-height (msl) over ellipsoid */
  llh_nav0.alt = NAV_ALT0 + NAV_MSL0;

  struct EcefCoor_i ecef_nav0;
  ecef_of_lla_i(&ecef_nav0, &llh_nav0);

  ltp_def_from_ecef_i(&ins_impl.ltp_def, &ecef_nav0);
  ins_impl.ltp_def.hmsl = NAV_ALT0;
  stateSetLocalOrigin_i(&ins_impl.ltp_def);

}

/** copy position and speed to state interface */
static void ins_ned_to_state(void)
{
  stateSetPositionNed_i(&ins_impl.ltp_pos);
  stateSetSpeedNed_i(&ins_impl.ltp_speed);
  stateSetAccelNed_i(&ins_impl.ltp_accel);

#if defined SITL && USE_NPS
  if (nps_bypass_ins) {
    sim_overwrite_ins();
  }
#endif
}