Example #1
0
/**
 *  Propagate the received states into the vehicle
 *  state machine
 */
void ins_vectornav_propagate()
{
  // Acceleration [m/s^2]
  // in fixed point for sending as ABI and telemetry msgs
  ACCELS_BFP_OF_REAL(ins_vn.accel_i, ins_vn.accel);

  // Rates [rad/s]
  static struct FloatRates body_rate;
  // in fixed point for sending as ABI and telemetry msgs
  RATES_BFP_OF_REAL(ins_vn.gyro_i, ins_vn.gyro);
  float_rmat_ratemult(&body_rate, orientationGetRMat_f(&ins_vn.body_to_imu), &ins_vn.gyro); // compute body rates
  stateSetBodyRates_f(&body_rate);   // Set state [rad/s]

  // Attitude [deg]
  ins_vectornav_yaw_pitch_roll_to_attitude(&ins_vn.attitude); // convert to correct units and axis [rad]
  static struct FloatQuat imu_quat; // convert from euler to quat
  float_quat_of_eulers(&imu_quat, &ins_vn.attitude);
  static struct FloatRMat imu_rmat; // convert from quat to rmat
  float_rmat_of_quat(&imu_rmat, &imu_quat);
  static struct FloatRMat ltp_to_body_rmat; // rotate to body frame
  float_rmat_comp(&ltp_to_body_rmat, &imu_rmat, orientationGetRMat_f(&ins_vn.body_to_imu));
  stateSetNedToBodyRMat_f(&ltp_to_body_rmat); // set body states [rad]

  // NED (LTP) velocity [m/s]
  // North east down (NED), also known as local tangent plane (LTP),
  // is a geographical coordinate system for representing state vectors that is commonly used in aviation.
  // It consists of three numbers: one represents the position along the northern axis,
  // one along the eastern axis, and one represents vertical position. Down is chosen as opposed to
  // up in order to comply with the right-hand rule.
  // The origin of this coordinate system is usually chosen to be the aircraft's center of gravity.
  // x = North
  // y = East
  // z = Down
  stateSetSpeedNed_f(&ins_vn.vel_ned); // set state

  // NED (LTP) acceleration [m/s^2]
  static struct FloatVect3 accel_meas_ltp;// first we need to rotate linear acceleration from imu-frame to body-frame
  float_rmat_transp_vmult(&accel_meas_ltp, orientationGetRMat_f(&ins_vn.body_to_imu), &(ins_vn.lin_accel));
  static struct NedCoor_f ltp_accel; // assign to NedCoord_f struct
  VECT3_ASSIGN(ltp_accel, accel_meas_ltp.x, accel_meas_ltp.y, accel_meas_ltp.z);
  stateSetAccelNed_f(&ltp_accel); // then set the states
  ins_vn.ltp_accel_f = ltp_accel;

  // LLA position [rad, rad, m]
  //static struct LlaCoor_f lla_pos; // convert from deg to rad, and from double to float
  ins_vn.lla_pos.lat = RadOfDeg((float)ins_vn.pos_lla[0]); // ins_impl.pos_lla[0] = lat
  ins_vn.lla_pos.lon = RadOfDeg((float)ins_vn.pos_lla[1]); // ins_impl.pos_lla[1] = lon
  ins_vn.lla_pos.alt = ((float)ins_vn.pos_lla[2]); // ins_impl.pos_lla[2] = alt
  LLA_BFP_OF_REAL(gps.lla_pos, ins_vn.lla_pos);
  stateSetPositionLla_i(&gps.lla_pos);

  // ECEF position
  struct LtpDef_f def;
  ltp_def_from_lla_f(&def, &ins_vn.lla_pos);
  struct EcefCoor_f ecef_vel;
  ecef_of_ned_point_f(&ecef_vel, &def, &ins_vn.vel_ned);
  ECEF_BFP_OF_REAL(gps.ecef_vel, ecef_vel);

  // ECEF velocity
  gps.ecef_pos.x = stateGetPositionEcef_i()->x;
  gps.ecef_pos.y = stateGetPositionEcef_i()->y;
  gps.ecef_pos.z = stateGetPositionEcef_i()->z;


#if GPS_USE_LATLONG
  // GPS UTM
  /* Computes from (lat, long) in the referenced UTM zone */
  struct UtmCoor_f utm_f;
  utm_f.zone = nav_utm_zone0;
  /* convert to utm */
  //utm_of_lla_f(&utm_f, &lla_f);
  utm_of_lla_f(&utm_f, &ins_vn.lla_pos);
  /* copy results of utm conversion */
  gps.utm_pos.east = (int32_t)(utm_f.east * 100);
  gps.utm_pos.north = (int32_t)(utm_f.north * 100);
  gps.utm_pos.alt = (int32_t)(utm_f.alt * 1000);
  gps.utm_pos.zone = (uint8_t)nav_utm_zone0;
#endif

  // GPS Ground speed
  float speed = sqrt(ins_vn.vel_ned.x * ins_vn.vel_ned.x + ins_vn.vel_ned.y * ins_vn.vel_ned.y);
  gps.gspeed = ((uint16_t)(speed * 100));

  // GPS course
  gps.course = (int32_t)(1e7 * (atan2(ins_vn.vel_ned.y, ins_vn.vel_ned.x)));

  // Because we have not HMSL data from Vectornav, we are using LLA-Altitude
  // as a workaround
  gps.hmsl = (uint32_t)(gps.lla_pos.alt);

  // set position uncertainty
  ins_vectornav_set_pacc();

  // set velocity uncertainty
  ins_vectornav_set_sacc();

  // check GPS status
  gps.last_msg_time = sys_time.nb_sec;
  gps.last_msg_ticks = sys_time.nb_sec_rem;
  if (gps.fix == GPS_FIX_3D) {
    gps.last_3dfix_time = sys_time.nb_sec;
    gps.last_3dfix_ticks = sys_time.nb_sec_rem;
  }

  // read INS status
  ins_vectornav_check_status();

  // update internal states for telemetry purposes
  // TODO: directly convert vectornav output instead of using state interface
  // to support multiple INS running at the same time
  ins_vn.ltp_pos_i = *stateGetPositionNed_i();
  ins_vn.ltp_speed_i = *stateGetSpeedNed_i();
  ins_vn.ltp_accel_i = *stateGetAccelNed_i();

  // send ABI messages
  uint32_t now_ts = get_sys_time_usec();
  AbiSendMsgGPS(GPS_UBX_ID, now_ts, &gps);
  AbiSendMsgIMU_GYRO_INT32(IMU_ASPIRIN_ID, now_ts, &ins_vn.gyro_i);
  AbiSendMsgIMU_ACCEL_INT32(IMU_ASPIRIN_ID, now_ts, &ins_vn.accel_i);
}
Example #2
0
void gx3_packet_read_message(void) {
  ahrs_impl.gx3_accel.x     = bef(&ahrs_impl.gx3_packet.msg_buf[1]);
  ahrs_impl.gx3_accel.y     = bef(&ahrs_impl.gx3_packet.msg_buf[5]);
  ahrs_impl.gx3_accel.z     = bef(&ahrs_impl.gx3_packet.msg_buf[9]);
  ahrs_impl.gx3_rate.p      = bef(&ahrs_impl.gx3_packet.msg_buf[13]);
  ahrs_impl.gx3_rate.q      = bef(&ahrs_impl.gx3_packet.msg_buf[17]);
  ahrs_impl.gx3_rate.r      = bef(&ahrs_impl.gx3_packet.msg_buf[21]);
  ahrs_impl.gx3_rmat.m[0]   = bef(&ahrs_impl.gx3_packet.msg_buf[25]);
  ahrs_impl.gx3_rmat.m[1]   = bef(&ahrs_impl.gx3_packet.msg_buf[29]);
  ahrs_impl.gx3_rmat.m[2]   = bef(&ahrs_impl.gx3_packet.msg_buf[33]);
  ahrs_impl.gx3_rmat.m[3]   = bef(&ahrs_impl.gx3_packet.msg_buf[37]);
  ahrs_impl.gx3_rmat.m[4]   = bef(&ahrs_impl.gx3_packet.msg_buf[41]);
  ahrs_impl.gx3_rmat.m[5]   = bef(&ahrs_impl.gx3_packet.msg_buf[45]);
  ahrs_impl.gx3_rmat.m[6]   = bef(&ahrs_impl.gx3_packet.msg_buf[49]);
  ahrs_impl.gx3_rmat.m[7]   = bef(&ahrs_impl.gx3_packet.msg_buf[53]);
  ahrs_impl.gx3_rmat.m[8]   = bef(&ahrs_impl.gx3_packet.msg_buf[57]);
  ahrs_impl.gx3_time    = (uint32_t)(ahrs_impl.gx3_packet.msg_buf[61] << 24 |
                                     ahrs_impl.gx3_packet.msg_buf[62] << 16 | ahrs_impl.gx3_packet.msg_buf[63] << 8 | ahrs_impl.gx3_packet.msg_buf[64]);
  ahrs_impl.gx3_chksm   = GX3_CHKSM(ahrs_impl.gx3_packet.msg_buf);

  ahrs_impl.gx3_freq = 62500.0 / (float)(ahrs_impl.gx3_time - ahrs_impl.gx3_ltime);
  ahrs_impl.gx3_ltime = ahrs_impl.gx3_time;

  // Acceleration
  VECT3_SMUL(ahrs_impl.gx3_accel, ahrs_impl.gx3_accel, 9.80665); // Convert g into m/s2
  ACCELS_BFP_OF_REAL(imu.accel, ahrs_impl.gx3_accel); // for backwards compatibility with fixed point interface
  imuf.accel = ahrs_impl.gx3_accel;

  // Rates
  struct FloatRates body_rate;
  imuf.gyro = ahrs_impl.gx3_rate;
  /* compute body rates */
  struct FloatRMat *body_to_imu_rmat = orientationGetRMat_f(&imuf.body_to_imu);
  FLOAT_RMAT_TRANSP_RATEMULT(body_rate, *body_to_imu_rmat, imuf.gyro);
  /* Set state */
  stateSetBodyRates_f(&body_rate);

  // Attitude
  struct FloatRMat ltp_to_body_rmat;
  FLOAT_RMAT_COMP(ltp_to_body_rmat, ahrs_impl.gx3_rmat, *body_to_imu_rmat);

#if AHRS_USE_GPS_HEADING && USE_GPS
  struct FloatEulers ltp_to_body_eulers;
  float_eulers_of_rmat(&ltp_to_body_eulers, &ltp_to_body_rmat);
  float course_f = (float)DegOfRad(gps.course / 1e7);
  if (course_f > 180.0) {
    course_f -= 360.0;
  }
  ltp_to_body_eulers.psi = (float)RadOfDeg(course_f);
  stateSetNedToBodyEulers_f(&ltp_to_body_eulers);
#else // !AHRS_USE_GPS_HEADING
#ifdef IMU_MAG_OFFSET
  struct FloatEulers ltp_to_body_eulers;
  float_eulers_of_rmat(&ltp_to_body_eulers, &ltp_to_body_rmat);
  ltp_to_body_eulers.psi -= ahrs_impl.mag_offset;
  stateSetNedToBodyEulers_f(&ltp_to_body_eulers);
#else
  stateSetNedToBodyRMat_f(&ltp_to_body_rmat);
#endif // IMU_MAG_OFFSET
#endif // !AHRS_USE_GPS_HEADING
}