int f2c_stbmv(char* uplo, char* trans, char* diag, integer* N, integer* K, real* A, integer* lda, real* X, integer* incX) { stbmv_(uplo, trans, diag, N, K, A, lda, X, incX); return 0; }
/* Subroutine */ int stbt03_(char *uplo, char *trans, char *diag, integer *n, integer *kd, integer *nrhs, real *ab, integer *ldab, real *scale, real *cnorm, real *tscal, real *x, integer *ldx, real *b, integer * ldb, real *work, real *resid) { /* System generated locals */ integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2, r__3; /* Local variables */ static integer j; extern logical lsame_(char *, char *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); static real xscal; extern /* Subroutine */ int stbmv_(char *, char *, char *, integer *, integer *, real *, integer *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *); static real tnorm, xnorm; extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, real *, integer *), slabad_(real *, real *); static integer ix; extern doublereal slamch_(char *); static real bignum; extern integer isamax_(integer *, real *, integer *); static real smlnum, eps, err; #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1] #define ab_ref(a_1,a_2) ab[(a_2)*ab_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= STBT03 computes the residual for the solution to a scaled triangular system of equations A*x = s*b or A'*x = s*b when A is a triangular band matrix. Here A' is the transpose of A, s is a scalar, and x and b are N by NRHS matrices. The test ratio is the maximum over the number of right hand sides of norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), where op(A) denotes A or A' and EPS is the machine epsilon. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular TRANS (input) CHARACTER*1 Specifies the operation applied to A. = 'N': A *x = b (No transpose) = 'T': A'*x = b (Transpose) = 'C': A'*x = b (Conjugate transpose = Transpose) DIAG (input) CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals or subdiagonals of the triangular band matrix A. KD >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. NRHS >= 0. AB (input) REAL array, dimension (LDAB,N) The upper or lower triangular band matrix A, stored in the first kd+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KD+1. SCALE (input) REAL The scaling factor s used in solving the triangular system. CNORM (input) REAL array, dimension (N) The 1-norms of the columns of A, not counting the diagonal. TSCAL (input) REAL The scaling factor used in computing the 1-norms in CNORM. CNORM actually contains the column norms of TSCAL*A. X (input) REAL array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input) REAL array, dimension (LDB,NRHS) The right hand side vectors for the system of linear equations. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK (workspace) REAL array, dimension (N) RESID (output) REAL The maximum over the number of right hand sides of norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). ===================================================================== Quick exit if N = 0 Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; --cnorm; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --work; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.f; return 0; } eps = slamch_("Epsilon"); smlnum = slamch_("Safe minimum"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Compute the norm of the triangular matrix A using the column norms already computed by SLATBS. */ tnorm = 0.f; if (lsame_(diag, "N")) { if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ r__2 = tnorm, r__3 = *tscal * (r__1 = ab_ref(*kd + 1, j), dabs(r__1)) + cnorm[j]; tnorm = dmax(r__2,r__3); /* L10: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ r__2 = tnorm, r__3 = *tscal * (r__1 = ab_ref(1, j), dabs(r__1) ) + cnorm[j]; tnorm = dmax(r__2,r__3); /* L20: */ } } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ r__1 = tnorm, r__2 = *tscal + cnorm[j]; tnorm = dmax(r__1,r__2); /* L30: */ } } /* Compute the maximum over the number of right hand sides of norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { scopy_(n, &x_ref(1, j), &c__1, &work[1], &c__1); ix = isamax_(n, &work[1], &c__1); /* Computing MAX */ r__2 = 1.f, r__3 = (r__1 = x_ref(ix, j), dabs(r__1)); xnorm = dmax(r__2,r__3); xscal = 1.f / xnorm / (real) (*kd + 1); sscal_(n, &xscal, &work[1], &c__1); stbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], & c__1); r__1 = -(*scale) * xscal; saxpy_(n, &r__1, &b_ref(1, j), &c__1, &work[1], &c__1); ix = isamax_(n, &work[1], &c__1); err = *tscal * (r__1 = work[ix], dabs(r__1)); ix = isamax_(n, &x_ref(1, j), &c__1); xnorm = (r__1 = x_ref(ix, j), dabs(r__1)); if (err * smlnum <= xnorm) { if (xnorm > 0.f) { err /= xnorm; } } else { if (err > 0.f) { err = 1.f / eps; } } if (err * smlnum <= tnorm) { if (tnorm > 0.f) { err /= tnorm; } } else { if (err > 0.f) { err = 1.f / eps; } } *resid = dmax(*resid,err); /* L40: */ } return 0; /* End of STBT03 */ } /* stbt03_ */
void stbmv(char uplo, char trans, char diag, int n, int k, float *a, int lda, float *x, int incx ) { stbmv_( &uplo, &trans, &diag, &n, &k, a, &lda, x, &incx ); }
/* Subroutine */ int stbt02_(char *uplo, char *trans, char *diag, integer *n, integer *kd, integer *nrhs, real *ab, integer *ldab, real *x, integer *ldx, real *b, integer *ldb, real *work, real *resid) { /* System generated locals */ integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2; /* Local variables */ integer j; real eps; extern logical lsame_(char *, char *); real anorm, bnorm; extern doublereal sasum_(integer *, real *, integer *); extern /* Subroutine */ int stbmv_(char *, char *, char *, integer *, integer *, real *, integer *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *); real xnorm; extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, real *, integer *); extern doublereal slamch_(char *), slantb_(char *, char *, char *, integer *, integer *, real *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* STBT02 computes the residual for the computed solution to a */ /* triangular system of linear equations A*x = b or A' *x = b when */ /* A is a triangular band matrix. Here A' is the transpose of A and */ /* x and b are N by NRHS matrices. The test ratio is the maximum over */ /* the number of right hand sides of */ /* norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ /* where op(A) denotes A or A' and EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* TRANS (input) CHARACTER*1 */ /* Specifies the operation applied to A. */ /* = 'N': A *x = b (No transpose) */ /* = 'T': A'*x = b (Transpose) */ /* = 'C': A'*x = b (Conjugate transpose = Transpose) */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals or subdiagonals of the */ /* triangular band matrix A. KD >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices X and B. NRHS >= 0. */ /* AB (input) REAL array, dimension (LDAB,N) */ /* The upper or lower triangular band matrix A, stored in the */ /* first kd+1 rows of the array. The j-th column of A is stored */ /* in the j-th column of the array AB as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* X (input) REAL array, dimension (LDX,NRHS) */ /* The computed solution vectors for the system of linear */ /* equations. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* B (input) REAL array, dimension (LDB,NRHS) */ /* The right hand side vectors for the system of linear */ /* equations. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* WORK (workspace) REAL array, dimension (N) */ /* RESID (output) REAL */ /* The maximum over the number of right hand sides of */ /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 or NRHS = 0 */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.f; return 0; } /* Compute the 1-norm of A or A'. */ if (lsame_(trans, "N")) { anorm = slantb_("1", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1] ); } else { anorm = slantb_("I", uplo, diag, n, kd, &ab[ab_offset], ldab, &work[1] ); } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Compute the maximum over the number of right hand sides of */ /* norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); stbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], & c__1); saxpy_(n, &c_b10, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); bnorm = sasum_(n, &work[1], &c__1); xnorm = sasum_(n, &x[j * x_dim1 + 1], &c__1); if (xnorm <= 0.f) { *resid = 1.f / eps; } else { /* Computing MAX */ r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; *resid = dmax(r__1,r__2); } /* L10: */ } return 0; /* End of STBT02 */ } /* stbt02_ */