void ModeSmartRTL::update()
{
    switch (smart_rtl_state) {
        case SmartRTL_WaitForPathCleanup:
            // check if return path is computed and if yes, begin journey home
            if (g2.smart_rtl.request_thorough_cleanup()) {
                smart_rtl_state = SmartRTL_PathFollow;
                _load_point = true;
            }
            // Note: this may lead to an unnecessary 20ms slow down of the vehicle (but it is unlikely)
            stop_vehicle();
            break;

        case SmartRTL_PathFollow:
            // load point if required
            if (_load_point) {
                Vector3f next_point;
                if (!g2.smart_rtl.pop_point(next_point)) {
                    // if not more points, we have reached home
                    gcs().send_text(MAV_SEVERITY_INFO, "Reached destination");
                    smart_rtl_state = SmartRTL_StopAtHome;
                    break;
                }
                _load_point = false;
                // set target destination to new point
                if (!set_desired_location_NED(next_point)) {
                    // this failure should never happen but we add it just in case
                    gcs().send_text(MAV_SEVERITY_INFO, "SmartRTL: failed to set destination");
                    smart_rtl_state = SmartRTL_Failure;
                }
            }
            // check if we've reached the next point
            _distance_to_destination = get_distance(rover.current_loc, _destination);
            if (_distance_to_destination <= rover.g.waypoint_radius || location_passed_point(rover.current_loc, _origin, _destination)) {
                _load_point = true;
            }
            // continue driving towards destination
            calc_steering_to_waypoint(_origin, _destination);
            calc_throttle(calc_reduced_speed_for_turn_or_distance(_desired_speed), true);
            break;

        case SmartRTL_StopAtHome:
        case SmartRTL_Failure:
            _reached_destination = true;
            if (rover.is_boat()) {
                // boats attempt to hold position at home
                calc_steering_to_waypoint(rover.current_loc, _destination);
                calc_throttle(calc_reduced_speed_for_turn_or_distance(_desired_speed), true);
            } else {
                // rovers stop
                stop_vehicle();
            }
            break;
    }
}
Example #2
0
void ModeSteering::update()
{
    float desired_steering, desired_throttle;
    get_pilot_desired_steering_and_throttle(desired_steering, desired_throttle);

    // convert pilot throttle input to desired speed (up to twice the cruise speed)
    const float target_speed = desired_throttle * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f);

    // get speed forward
    float speed;
    if (!attitude_control.get_forward_speed(speed)) {
        // no valid speed so stop
        g2.motors.set_throttle(0.0f);
        g2.motors.set_steering(0.0f);
        _desired_lat_accel = 0.0f;
        return;
    }

    // determine if pilot is requesting pivot turn
    bool is_pivot_turning = g2.motors.have_skid_steering() && is_zero(target_speed) && (!is_zero(desired_steering));

    // In steering mode we control lateral acceleration directly.
    // For pivot steering vehicles we use the TURN_MAX_G parameter
    // For regular steering vehicles we use the maximum lateral acceleration at full steering lock for this speed: V^2/R where R is the radius of turn.
    float max_g_force;
    if (is_pivot_turning) {
        max_g_force = g.turn_max_g * GRAVITY_MSS;
    } else {
        max_g_force = speed * speed / MAX(g2.turn_radius, 0.1f);
    }

    // constrain to user set TURN_MAX_G
    max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS);

    // convert pilot steering input to desired lateral acceleration
    _desired_lat_accel = max_g_force * (desired_steering / 4500.0f);

    // reverse target lateral acceleration if backing up
    bool reversed = false;
    if (is_negative(target_speed)) {
        reversed = true;
        _desired_lat_accel = -_desired_lat_accel;
    }

    // mark us as in_reverse when using a negative throttle
    rover.set_reverse(reversed);

    // run speed to throttle output controller
    if (is_zero(target_speed) && !is_pivot_turning) {
        stop_vehicle();
    } else {
        // run lateral acceleration to steering controller
        calc_steering_from_lateral_acceleration(false);
        calc_throttle(target_speed, false);
    }
}
Example #3
0
void ModeSteering::update()
{
    // convert pilot throttle input to desired speed (up to twice the cruise speed)
    float target_speed = channel_throttle->get_control_in() * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f);

    // get speed forward
    float speed;
    if (!attitude_control.get_forward_speed(speed)) {
        // no valid speed so stop
        g2.motors.set_throttle(0.0f);
        g2.motors.set_steering(0.0f);
        lateral_acceleration = 0.0f;
        return;
    }

    // in steering mode we control lateral acceleration directly. We first calculate the maximum lateral
    // acceleration at full steering lock for this speed. That is V^2/R where R is the radius of turn.
    float max_g_force = speed * speed / MAX(g2.turn_radius, 0.1f);

    // constrain to user set TURN_MAX_G
    max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS);

    // convert pilot steering input to desired lateral acceleration
    lateral_acceleration = max_g_force * (channel_steer->get_control_in() / 4500.0f);

    // reverse target lateral acceleration if backing up
    bool reversed = false;
    if (is_negative(target_speed)) {
        reversed = true;
        lateral_acceleration = -lateral_acceleration;
    }

    // mark us as in_reverse when using a negative throttle
    rover.set_reverse(reversed);

    // run speed to throttle output controller
    if (is_zero(target_speed)) {
        stop_vehicle();
    } else {
        // run steering controller
        calc_nav_steer(reversed);
        calc_throttle(target_speed, false);
    }
}
Example #4
0
void ModeRTL::update()
{
    if (!_reached_destination || rover.is_boat()) {
        // calculate distance to home
        _distance_to_destination = get_distance(rover.current_loc, _destination);
        // check if we've reached the destination
        if (!_reached_destination && (_distance_to_destination <= rover.g.waypoint_radius || location_passed_point(rover.current_loc, _origin, _destination))) {
            // trigger reached
            _reached_destination = true;
            gcs().send_text(MAV_SEVERITY_INFO, "Reached destination");
        }
        // continue driving towards destination
        calc_steering_to_waypoint(_reached_destination ? rover.current_loc :_origin, _destination);
        calc_throttle(calc_reduced_speed_for_turn_or_distance(_desired_speed), true);
    } else {
        // we've reached destination so stop
        stop_vehicle();
        _desired_lat_accel = 0.0f;
    }
}
Example #5
0
void ModeRTL::update()
{
    // calculate distance to home
    _distance_to_destination = rover.current_loc.get_distance(_destination);
    const bool near_wp = _distance_to_destination <= rover.g.waypoint_radius;
    // check if we've reached the destination
    if (!_reached_destination && (near_wp || location_passed_point(rover.current_loc, _origin, _destination))) {
        // trigger reached
        _reached_destination = true;
        gcs().send_text(MAV_SEVERITY_INFO, "Reached destination");
    }
    // determine if we should keep navigating
    if (!_reached_destination || (rover.is_boat() && !near_wp)) {
        // continue driving towards destination
        calc_steering_to_waypoint(_reached_destination ? rover.current_loc :_origin, _destination, _reversed);
        calc_throttle(calc_reduced_speed_for_turn_or_distance(_reversed ? -_desired_speed : _desired_speed), true, true);
    } else {
        // we've reached destination so stop
        stop_vehicle();
    }
}
Example #6
0
void ModeGuided::update()
{
    switch (_guided_mode) {
        case Guided_WP:
        {
            if (!_reached_destination || rover.is_boat()) {
                // check if we've reached the destination
                _distance_to_destination = get_distance(rover.current_loc, _destination);
                if (!_reached_destination && (_distance_to_destination <= rover.g.waypoint_radius || location_passed_point(rover.current_loc, _origin, _destination))) {
                    _reached_destination = true;
                    rover.gcs().send_mission_item_reached_message(0);
                }
                // drive towards destination
                calc_steering_to_waypoint(_reached_destination ? rover.current_loc : _origin, _destination);
                calc_throttle(calc_reduced_speed_for_turn_or_distance(_desired_speed), true);
            } else {
                stop_vehicle();
            }
            break;
        }

        case Guided_HeadingAndSpeed:
        {
            // stop vehicle if target not updated within 3 seconds
            if (have_attitude_target && (millis() - _des_att_time_ms) > 3000) {
                gcs().send_text(MAV_SEVERITY_WARNING, "target not received last 3secs, stopping");
                have_attitude_target = false;
            }
            if (have_attitude_target) {
                // run steering and throttle controllers
                const float yaw_error = wrap_PI(radians((_desired_yaw_cd - ahrs.yaw_sensor) * 0.01f));
                const float steering_out = attitude_control.get_steering_out_angle_error(yaw_error, g2.motors.have_skid_steering(), g2.motors.limit.steer_left, g2.motors.limit.steer_right, _desired_speed < 0);
                g2.motors.set_steering(steering_out * 4500.0f);
                calc_throttle(_desired_speed, true);
            } else {
                stop_vehicle();
                g2.motors.set_steering(0.0f);
            }
            break;
        }

        case Guided_TurnRateAndSpeed:
        {
            // stop vehicle if target not updated within 3 seconds
            if (have_attitude_target && (millis() - _des_att_time_ms) > 3000) {
                gcs().send_text(MAV_SEVERITY_WARNING, "target not received last 3secs, stopping");
                have_attitude_target = false;
            }
            if (have_attitude_target) {
                // run steering and throttle controllers
                float steering_out = attitude_control.get_steering_out_rate(radians(_desired_yaw_rate_cds / 100.0f), g2.motors.have_skid_steering(), g2.motors.limit.steer_left, g2.motors.limit.steer_right, _desired_speed < 0);
                g2.motors.set_steering(steering_out * 4500.0f);
                calc_throttle(_desired_speed, true);
            } else {
                stop_vehicle();
                g2.motors.set_steering(0.0f);
            }
            break;
        }

        default:
            gcs().send_text(MAV_SEVERITY_WARNING, "Unknown GUIDED mode");
            break;
    }
}
Example #7
0
void ModeGuided::update()
{
    switch (_guided_mode) {
        case Guided_WP:
        {
            _distance_to_destination = get_distance(rover.current_loc, _destination);
            const bool near_wp = _distance_to_destination <= rover.g.waypoint_radius;
            // check if we've reached the destination
            if (!_reached_destination && (near_wp || location_passed_point(rover.current_loc, _origin, _destination))) {
                _reached_destination = true;
                rover.gcs().send_mission_item_reached_message(0);
            }
            // determine if we should keep navigating
            if (!_reached_destination || (rover.is_boat() && !near_wp)) {
                // drive towards destination
                calc_steering_to_waypoint(_reached_destination ? rover.current_loc : _origin, _destination, _reversed);
                calc_throttle(calc_reduced_speed_for_turn_or_distance(_reversed ? -_desired_speed : _desired_speed), true, true);
            } else {
                stop_vehicle();
            }
            break;
        }

        case Guided_HeadingAndSpeed:
        {
            // stop vehicle if target not updated within 3 seconds
            if (have_attitude_target && (millis() - _des_att_time_ms) > 3000) {
                gcs().send_text(MAV_SEVERITY_WARNING, "target not received last 3secs, stopping");
                have_attitude_target = false;
            }
            if (have_attitude_target) {
                // run steering and throttle controllers
                calc_steering_to_heading(_desired_yaw_cd, _desired_speed < 0);
                calc_throttle(calc_reduced_speed_for_turn_or_distance(_desired_speed), true, true);
            } else {
                stop_vehicle();
            }
            break;
        }

        case Guided_TurnRateAndSpeed:
        {
            // stop vehicle if target not updated within 3 seconds
            if (have_attitude_target && (millis() - _des_att_time_ms) > 3000) {
                gcs().send_text(MAV_SEVERITY_WARNING, "target not received last 3secs, stopping");
                have_attitude_target = false;
            }
            if (have_attitude_target) {
                // run steering and throttle controllers
                float steering_out = attitude_control.get_steering_out_rate(radians(_desired_yaw_rate_cds / 100.0f),
                                                                            g2.motors.limit.steer_left,
                                                                            g2.motors.limit.steer_right,
                                                                            rover.G_Dt);
                g2.motors.set_steering(steering_out * 4500.0f);
                calc_throttle(_desired_speed, true, true);
            } else {
                stop_vehicle();
            }
            break;
        }

        default:
            gcs().send_text(MAV_SEVERITY_WARNING, "Unknown GUIDED mode");
            break;
    }
}