Example #1
0
dvar_vector model_parameters::cnorm(const double& x, const dvar_vector& mu, const dvar_vector& sd)
{
	dvar_vector rst(sage,nage);
	dvar_vector stx(sage,nage);
	for(int a= sage; a<= nage; a++)
	{
		stx(a) = (x-mu( a ))/sd( a );
		rst(a) = cumd_norm(stx( a ));
	}
	return(rst);
}
inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
#ifdef _LP64
  stx(d, a, offset);
#else
  std(d, a, offset);
#endif
}
inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
#ifdef _LP64
  stx(d, s1, s2);
#else
  std(d, s1, s2);
#endif
}
Example #4
0
static char * STX1() {
    CPU *c = getCPU();
    uint16_t address = 0xFFEE;
    OP_CODE_INFO *o = getOP_CODE_INFO(0,address,modeImmediate);
    setRegByte(c,IND_X,-39);
    stx(c,o);
    int8_t addrVal = read(c,address);
    mu_assert("STX1 err, address at 0xFFEE != -39", addrVal == -39);
    freeOP_CODE_INFO(o);
    free(c);
    return 0;
}
void C1_MacroAssembler::initialize_object(
    Register obj,                        // result: pointer to object after successful allocation
    Register klass,                      // object klass
    Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,          // object size in bytes if   known at compile time
    Register t1,                         // temp register
    Register t2                          // temp register
) {
    const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;

    initialize_header(obj, klass, noreg, t1, t2);

#ifdef ASSERT
    {
        Label ok;
        ld(klass, in_bytes(Klass::layout_helper_offset()), t1);
        if (var_size_in_bytes != noreg) {
            cmp_and_brx_short(t1, var_size_in_bytes, Assembler::equal, Assembler::pt, ok);
        } else {
            cmp_and_brx_short(t1, con_size_in_bytes, Assembler::equal, Assembler::pt, ok);
        }
        stop("bad size in initialize_object");
        should_not_reach_here();

        bind(ok);
    }

#endif

    // initialize body
    const int threshold = 5 * HeapWordSize;              // approximate break even point for code size
    if (var_size_in_bytes != noreg) {
        // use a loop
        add(obj, hdr_size_in_bytes, t1);               // compute address of first element
        sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body
        initialize_body(t1, t2);
#ifndef _LP64
    } else if (con_size_in_bytes < threshold * 2) {
        // on v9 we can do double word stores to fill twice as much space.
        assert(hdr_size_in_bytes % 8 == 0, "double word aligned");
        assert(con_size_in_bytes % 8 == 0, "double word aligned");
        for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i);
#endif
    } else if (con_size_in_bytes <= threshold) {
        // use explicit NULL stores
        for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize)     st_ptr(G0, obj, i);
    } else if (con_size_in_bytes > hdr_size_in_bytes) {
        // use a loop
        const Register base  = t1;
        const Register index = t2;
        add(obj, hdr_size_in_bytes, base);               // compute address of first element
        // compute index = number of words to clear
        set(con_size_in_bytes - hdr_size_in_bytes, index);
        initialize_body(base, index);
    }

    if (CURRENT_ENV->dtrace_alloc_probes()) {
        assert(obj == O0, "must be");
        call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
             relocInfo::runtime_call_type);
        delayed()->nop();
    }

    verify_oop(obj);
}
inline void MacroAssembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
inline void MacroAssembler::stx(Register d, const Address& a, int offset) {
  if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
  else               {                          stx(d, a.base(), a.disp() + offset); }
}
inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
inline void MacroAssembler::clrx( Register s1, Register s2) { stx( G0, s1, s2 ); }
inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
  if (a.is_register())
    mov(s, a.as_register());
  else
    stx(s, a.as_address());
}
Example #11
0
/** 
 * @brief emulate instruction 
 * @return returns false if something goes wrong (e.g. illegal instruction)
 *
 * Current limitations:
 * 
 * - Illegal instructions are not implemented
 * - Excess cycles due to page boundary crossing are not calculated
 * - Some known architectural bugs are not emulated
 */
bool Cpu::emulate()
{
  /* fetch instruction */
  uint8_t insn = fetch_op();
  bool retval = true;
  /* emulate instruction */
  switch(insn)
  {
  /* BRK */
  case 0x0: brk(); break;
  /* ORA (nn,X) */
  case 0x1: ora(load_byte(addr_indx()),6); break;
  /* ORA nn */
  case 0x5: ora(load_byte(addr_zero()),3); break;
  /* ASL nn */
  case 0x6: asl_mem(addr_zero(),5); break;
  /* PHP */
  case 0x8: php(); break;
  /* ORA #nn */
  case 0x9: ora(fetch_op(),2); break;
  /* ASL A */
  case 0xA: asl_a(); break;
  /* ORA nnnn */
  case 0xD: ora(load_byte(addr_abs()),4); break;
  /* ASL nnnn */
  case 0xE: asl_mem(addr_abs(),6); break; 
  /* BPL nn */
  case 0x10: bpl(); break;
  /* ORA (nn,Y) */
  case 0x11: ora(load_byte(addr_indy()),5); break;
  /* ORA nn,X */
  case 0x15: ora(load_byte(addr_zerox()),4); break;
  /* ASL nn,X */
  case 0x16: asl_mem(addr_zerox(),6); break;
  /* CLC */
  case 0x18: clc(); break;
  /* ORA nnnn,Y */
  case 0x19: ora(load_byte(addr_absy()),4); break;
  /* ORA nnnn,X */
  case 0x1D: ora(load_byte(addr_absx()),4); break;
  /* ASL nnnn,X */
  case 0x1E: asl_mem(addr_absx(),7); break;
  /* JSR */
  case 0x20: jsr(); break;
  /* AND (nn,X) */
  case 0x21: _and(load_byte(addr_indx()),6); break;
  /* BIT nn */
  case 0x24: bit(addr_zero(),3); break;
  /* AND nn */
  case 0x25: _and(load_byte(addr_zero()),3); break;
  /* ROL nn */
  case 0x26: rol_mem(addr_zero(),5); break;
  /* PLP */
  case 0x28: plp(); break;
  /* AND #nn */
  case 0x29: _and(fetch_op(),2); break;
  /* ROL A */
  case 0x2A: rol_a(); break;
  /* BIT nnnn */
  case 0x2C: bit(addr_abs(),4); break;
  /* AND nnnn */
  case 0x2D: _and(load_byte(addr_abs()),4); break;
  /* ROL nnnn */
  case 0x2E: rol_mem(addr_abs(),6); break;
  /* BMI nn */
  case 0x30: bmi(); break;
  /* AND (nn,Y) */
  case 0x31: _and(load_byte(addr_indy()),5); break;               
  /* AND nn,X */
  case 0x35: _and(load_byte(addr_zerox()),4); break;
  /* ROL nn,X */
  case 0x36: rol_mem(addr_zerox(),6); break;
  /* SEC */
  case 0x38: sec(); break;
  /* AND nnnn,Y */
  case 0x39: _and(load_byte(addr_absy()),4); break;
  /* AND nnnn,X */
  case 0x3D: _and(load_byte(addr_absx()),4); break;
  /* ROL nnnn,X */
  case 0x3E: rol_mem(addr_absx(),7); break;
  /* RTI */
  case 0x40: rti(); break;
  /* EOR (nn,X) */
  case 0x41: eor(load_byte(addr_indx()),6); break;
  /* EOR nn */
  case 0x45: eor(load_byte(addr_zero()),3); break;
  /* LSR nn */
  case 0x46: lsr_mem(addr_zero(),5); break;
  /* PHA */
  case 0x48: pha(); break;
  /* EOR #nn */
  case 0x49: eor(fetch_op(),2); break;
  /* BVC */
  case 0x50: bvc(); break;
  /* JMP nnnn */
  case 0x4C: jmp(); break;
  /* EOR nnnn */
  case 0x4D: eor(load_byte(addr_abs()),4); break;
  /* LSR A */
  case 0x4A: lsr_a(); break;
  /* LSR nnnn */
  case 0x4E: lsr_mem(addr_abs(),6); break;
  /* EOR (nn,Y) */
  case 0x51: eor(load_byte(addr_indy()),5); break;
  /* EOR nn,X */
  case 0x55: eor(load_byte(addr_zerox()),4); break;
  /* LSR nn,X */
  case 0x56: lsr_mem(addr_zerox(),6); break;
  /* CLI */
  case 0x58: cli(); break;
  /* EOR nnnn,Y */
  case 0x59: eor(load_byte(addr_absy()),4); break;
  /* EOR nnnn,X */
  case 0x5D: eor(load_byte(addr_absx()),4); break;
  /* LSR nnnn,X */
  case 0x5E: lsr_mem(addr_absx(),7); break;
  /* RTS */
  case 0x60: rts(); break;
  /* ADC (nn,X) */
  case 0x61: adc(load_byte(addr_indx()),6); break;
  /* ADC nn */
  case 0x65: adc(load_byte(addr_zero()),3); break;
  /* ROR nn */
  case 0x66: ror_mem(addr_zero(),5); break;
  /* PLA */
  case 0x68: pla(); break;
  /* ADC #nn */
  case 0x69: adc(fetch_op(),2); break;
  /* ROR A */
  case 0x6A: ror_a(); break;
  /* JMP (nnnn) */
  case 0x6C: jmp_ind(); break;
  /* ADC nnnn */
  case 0x6D: adc(load_byte(addr_abs()),4); break;
  /* ROR nnnn */
  case 0x6E: ror_mem(addr_abs(),6); break;
  /* BVS */
  case 0x70: bvs(); break;
  /* ADC (nn,Y) */
  case 0x71: adc(load_byte(addr_indy()),5); break;
  /* ADC nn,X */
  case 0x75: adc(load_byte(addr_zerox()),4); break;
  /* ROR nn,X */
  case 0x76: ror_mem(addr_zerox(),6); break;
  /* SEI */
  case 0x78: sei(); break;
  /* ADC nnnn,Y */
  case 0x79: adc(load_byte(addr_absy()),4); break;
  /* ADC nnnn,X */
  case 0x7D: adc(load_byte(addr_absx()),4); break;
  /* ROR nnnn,X */
  case 0x7E: ror_mem(addr_absx(),7); break;
  /* STA (nn,X) */
  case 0x81: sta(addr_indx(),6); break;
  /* STY nn */
  case 0x84: sty(addr_zero(),3); break;
  /* STA nn */
  case 0x85: sta(addr_zero(),3); break;
  /* STX nn */
  case 0x86: stx(addr_zero(),3); break;
  /* DEY */
  case 0x88: dey(); break;
  /* TXA */
  case 0x8A: txa(); break;
  /* STY nnnn */
  case 0x8C: sty(addr_abs(),4); break;
  /* STA nnnn */
  case 0x8D: sta(addr_abs(),4); break;
  /* STX nnnn */
  case 0x8E: stx(addr_abs(),4); break;
  /* BCC nn */
  case 0x90: bcc(); break;
  /* STA (nn,Y) */
  case 0x91: sta(addr_indy(),6); break;
  /* STY nn,X */
  case 0x94: sty(addr_zerox(),4); break;
  /* STA nn,X */
  case 0x95: sta(addr_zerox(),4); break;
  /* STX nn,Y */
  case 0x96: stx(addr_zeroy(),4); break;
  /* TYA */
  case 0x98: tya(); break;
  /* STA nnnn,Y */
  case 0x99: sta(addr_absy(),5); break;
  /* TXS */
  case 0x9A: txs(); break;
  /* STA nnnn,X */
  case 0x9D: sta(addr_absx(),5); break;
  /* LDY #nn */
  case 0xA0: ldy(fetch_op(),2); break; 
  /* LDA (nn,X) */
  case 0xA1: lda(load_byte(addr_indx()),6); break;
  /* LDX #nn */
  case 0xA2: ldx(fetch_op(),2); break;
  /* LDY nn */
  case 0xA4: ldy(load_byte(addr_zero()),3); break;
  /* LDA nn */
  case 0xA5: lda(load_byte(addr_zero()),3); break;
  /* LDX nn */
  case 0xA6: ldx(load_byte(addr_zero()),3); break;
  /* TAY */
  case 0xA8: tay(); break;
  /* LDA #nn */
  case 0xA9: lda(fetch_op(),2); break;
  /* TAX */
  case 0xAA: tax(); break;
  /* LDY nnnn */
  case 0xAC: ldy(load_byte(addr_abs()),4); break;
  /* LDA nnnn */
  case 0xAD: lda(load_byte(addr_abs()),4); break;
  /* LDX nnnn */
  case 0xAE: ldx(load_byte(addr_abs()),4); break;
  /* BCS nn */
  case 0xB0: bcs(); break;
  /* LDA (nn,Y) */
  case 0xB1: lda(load_byte(addr_indy()),5); break;
  /* LDY nn,X */
  case 0xB4: ldy(load_byte(addr_zerox()),3); break;
  /* LDA nn,X */
  case 0xB5: lda(load_byte(addr_zerox()),3); break;
  /* LDX nn,Y */
  case 0xB6: ldx(load_byte(addr_zeroy()),3); break;
  /* CLV */
  case 0xB8: clv(); break;
  /* LDA nnnn,Y */
  case 0xB9: lda(load_byte(addr_absy()),4); break;
  /* TSX */
  case 0xBA: tsx(); break;
  /* LDY nnnn,X */
  case 0xBC: ldy(load_byte(addr_absx()),4); break;
  /* LDA nnnn,X */
  case 0xBD: lda(load_byte(addr_absx()),4); break;
  /* LDX nnnn,Y */
  case 0xBE: ldx(load_byte(addr_absy()),4); break;
  /* CPY #nn */
  case 0xC0: cpy(fetch_op(),2); break;
  /* CMP (nn,X) */
  case 0xC1: cmp(load_byte(addr_indx()),6); break;
  /* CPY nn */
  case 0xC4: cpy(load_byte(addr_zero()),3); break;
  /* CMP nn */
  case 0xC5: cmp(load_byte(addr_zero()),3); break;
  /* DEC nn */
  case 0xC6: dec(addr_zero(),5); break;
  /* INY */
  case 0xC8: iny(); break;
  /* CMP #nn */
  case 0xC9: cmp(fetch_op(),2); break;
  /* DEX */
  case 0xCA: dex(); break;
  /* CPY nnnn */
  case 0xCC: cpy(load_byte(addr_abs()),4); break;
  /* CMP nnnn */
  case 0xCD: cmp(load_byte(addr_abs()),4); break;
  /* DEC nnnn */
  case 0xCE: dec(addr_abs(),6); break;
  /* BNE nn */
  case 0xD0: bne(); break;
  /* CMP (nn,Y) */
  case 0xD1: cmp(load_byte(addr_indy()),5); break;
  /* CMP nn,X */
  case 0xD5: cmp(load_byte(addr_zerox()),4); break;
  /* DEC nn,X */
  case 0xD6: dec(addr_zerox(),6); break;
  /* CLD */
  case 0xD8: cld(); break;
  /* CMP nnnn,Y */
  case 0xD9: cmp(load_byte(addr_absy()),4); break;
  /* CMP nnnn,X */
  case 0xDD: cmp(load_byte(addr_absx()),4); break;
  /* DEC nnnn,X */
  case 0xDE: dec(addr_absx(),7); break;
  /* CPX #nn */
  case 0xE0: cpx(fetch_op(),2); break;
  /* SBC (nn,X) */
  case 0xE1: sbc(load_byte(addr_indx()),6); break;
  /* CPX nn */
  case 0xE4: cpx(load_byte(addr_zero()),3); break;
  /* SBC nn */
  case 0xE5: sbc(load_byte(addr_zero()),3); break;
  /* INC nn */
  case 0xE6: inc(addr_zero(),5); break;
  /* INX */
  case 0xE8: inx(); break;
  /* SBC #nn */
  case 0xE9: sbc(fetch_op(),2); break;
  /* NOP */
  case 0xEA: nop(); break;
  /* CPX nnnn */
  case 0xEC: cpx(load_byte(addr_abs()),4); break;
  /* SBC nnnn */
  case 0xED: sbc(load_byte(addr_abs()),4); break;
  /* INC nnnn */
  case 0xEE: inc(addr_abs(),6); break;
  /* BEQ nn */
  case 0xF0: beq(); break;
  /* SBC (nn,Y) */
  case 0xF1: sbc(load_byte(addr_indy()),5); break;
  /* SBC nn,X */
  case 0xF5: sbc(load_byte(addr_zerox()),4); break;
  /* INC nn,X */
  case 0xF6: inc(addr_zerox(),6); break;
  /* SED */
  case 0xF8: sed(); break;
  /* SBC nnnn,Y */
  case 0xF9: sbc(load_byte(addr_absy()),4); break;
  /* SBC nnnn,X */
  case 0xFD: sbc(load_byte(addr_absx()),4); break;
  /* INC nnnn,X */
  case 0xFE: inc(addr_absx(),7); break;
  /* Unknown or illegal instruction */
  default:
    D("Unknown instruction: %X at %04x\n", insn,pc());
    retval = false;
  }
  return retval;
}