// preserves obj, destroys len_in_bytes
void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1) {
    assert(hdr_size_in_bytes >= 0, "header size must be positive or 0");
    Label done;

    // len_in_bytes is positive and ptr sized
    subptr(len_in_bytes, hdr_size_in_bytes);
    jcc(Assembler::zero, done);
    zero_memory(obj, len_in_bytes, hdr_size_in_bytes, t1);
    bind(done);
}
// preserves obj, destroys len_in_bytes
void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1) {
  Label done;
  assert(obj != len_in_bytes && obj != t1 && t1 != len_in_bytes, "registers must be different");
  assert((hdr_size_in_bytes & (BytesPerWord - 1)) == 0, "header size is not a multiple of BytesPerWord");
  Register index = len_in_bytes;
  // index is positive and ptr sized
  subptr(index, hdr_size_in_bytes);
  jcc(Assembler::zero, done);
  // initialize topmost word, divide index by 2, check if odd and test if zero
  // note: for the remaining code to work, index must be a multiple of BytesPerWord
#ifdef ASSERT
  { Label L;
    testptr(index, BytesPerWord - 1);
    jcc(Assembler::zero, L);
    stop("index is not a multiple of BytesPerWord");
    bind(L);
  }
#endif
  xorptr(t1, t1);    // use _zero reg to clear memory (shorter code)
  if (UseIncDec) {
    shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
  } else {
    shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
    shrptr(index, 1);
  }
#ifndef _LP64
  // index could have been not a multiple of 8 (i.e., bit 2 was set)
  { Label even;
    // note: if index was a multiple of 8, than it cannot
    //       be 0 now otherwise it must have been 0 before
    //       => if it is even, we don't need to check for 0 again
    jcc(Assembler::carryClear, even);
    // clear topmost word (no jump needed if conditional assignment would work here)
    movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - 0*BytesPerWord), t1);
    // index could be 0 now, need to check again
    jcc(Assembler::zero, done);
    bind(even);
  }
#endif // !_LP64
  // initialize remaining object fields: rdx is a multiple of 2 now
  { Label loop;
    bind(loop);
    movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - 1*BytesPerWord), t1);
    NOT_LP64(movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - 2*BytesPerWord), t1);)
    decrement(index);
    jcc(Assembler::notZero, loop);
  }
void OptoRuntime::generate_exception_blob() {

  // Capture info about frame layout
  enum layout {
    thread_off,                 // last_java_sp
    // The frame sender code expects that rbp will be in the "natural" place and
    // will override any oopMap setting for it. We must therefore force the layout
    // so that it agrees with the frame sender code.
    rbp_off,
    return_off,                 // slot for return address
    framesize
  };

  // allocate space for the code
  ResourceMark rm;
  // setup code generation tools
  CodeBuffer   buffer("exception_blob", 512, 512);
  MacroAssembler* masm = new MacroAssembler(&buffer);

  OopMapSet *oop_maps = new OopMapSet();

  address start = __ pc();

  __ push(rdx);
  __ subptr(rsp, return_off * wordSize);   // Prolog!

  // rbp, location is implicitly known
  __ movptr(Address(rsp,rbp_off  *wordSize), rbp);

  // Store exception in Thread object. We cannot pass any arguments to the
  // handle_exception call, since we do not want to make any assumption
  // about the size of the frame where the exception happened in.
  __ get_thread(rcx);
  __ movptr(Address(rcx, JavaThread::exception_oop_offset()), rax);
  __ movptr(Address(rcx, JavaThread::exception_pc_offset()),  rdx);

  // This call does all the hard work.  It checks if an exception handler
  // exists in the method.
  // If so, it returns the handler address.
  // If not, it prepares for stack-unwinding, restoring the callee-save
  // registers of the frame being removed.
  //
  __ movptr(Address(rsp, thread_off * wordSize), rcx); // Thread is first argument
  __ set_last_Java_frame(rcx, noreg, noreg, NULL);

  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));

  // No registers to map, rbp is known implicitly
  oop_maps->add_gc_map( __ pc() - start,  new OopMap( framesize, 0 ));
  __ get_thread(rcx);
  __ reset_last_Java_frame(rcx, false, false);

  // Restore callee-saved registers
  __ movptr(rbp, Address(rsp, rbp_off * wordSize));

  __ addptr(rsp, return_off * wordSize);   // Epilog!
  __ pop(rdx); // Exception pc

  // rax: exception handler for given <exception oop/exception pc>

  // Restore SP from BP if the exception PC is a MethodHandle call.
  __ cmpl(Address(rcx, JavaThread::is_method_handle_exception_offset()), 0);
  __ cmovptr(Assembler::notEqual, rsp, rbp);

  // We have a handler in rax, (could be deopt blob)
  // rdx - throwing pc, deopt blob will need it.

  __ push(rax);

  // Get the exception
  __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  // Get the exception pc in case we are deoptimized
  __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
#ifdef ASSERT
  __ movptr(Address(rcx, JavaThread::exception_handler_pc_offset()), NULL_WORD);
  __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
#endif
  // Clear the exception oop so GC no longer processes it as a root.
  __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);

  __ pop(rcx);

  // rax: exception oop
  // rcx: exception handler
  // rdx: exception pc
  __ jmp (rcx);

  // -------------
  // make sure all code is generated
  masm->flush();

  _exception_blob = ExceptionBlob::create(&buffer, oop_maps, framesize);
}
int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register scratch, Label& slow_case) {
    const int aligned_mask = BytesPerWord -1;
    const int hdr_offset = oopDesc::mark_offset_in_bytes();
    assert(hdr == rax, "hdr must be rax, for the cmpxchg instruction");
    assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
    Label done;
    int null_check_offset = -1;

    verify_oop(obj);

    // save object being locked into the BasicObjectLock
    movptr(Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()), obj);

    if (UseBiasedLocking) {
        assert(scratch != noreg, "should have scratch register at this point");
        null_check_offset = biased_locking_enter(disp_hdr, obj, hdr, scratch, false, done, &slow_case);
    } else {
        null_check_offset = offset();
    }

    // Load object header
    movptr(hdr, Address(obj, hdr_offset));
    // and mark it as unlocked
    orptr(hdr, markOopDesc::unlocked_value);
    // save unlocked object header into the displaced header location on the stack
    movptr(Address(disp_hdr, 0), hdr);
    // test if object header is still the same (i.e. unlocked), and if so, store the
    // displaced header address in the object header - if it is not the same, get the
    // object header instead
    if (os::is_MP()) MacroAssembler::lock(); // must be immediately before cmpxchg!
    cmpxchgptr(disp_hdr, Address(obj, hdr_offset));
    // if the object header was the same, we're done
    if (PrintBiasedLockingStatistics) {
        cond_inc32(Assembler::equal,
                   ExternalAddress((address)BiasedLocking::fast_path_entry_count_addr()));
    }
    jcc(Assembler::equal, done);
    // if the object header was not the same, it is now in the hdr register
    // => test if it is a stack pointer into the same stack (recursive locking), i.e.:
    //
    // 1) (hdr & aligned_mask) == 0
    // 2) rsp <= hdr
    // 3) hdr <= rsp + page_size
    //
    // these 3 tests can be done by evaluating the following expression:
    //
    // (hdr - rsp) & (aligned_mask - page_size)
    //
    // assuming both the stack pointer and page_size have their least
    // significant 2 bits cleared and page_size is a power of 2
    subptr(hdr, rsp);
    andptr(hdr, aligned_mask - os::vm_page_size());
    // for recursive locking, the result is zero => save it in the displaced header
    // location (NULL in the displaced hdr location indicates recursive locking)
    movptr(Address(disp_hdr, 0), hdr);
    // otherwise we don't care about the result and handle locking via runtime call
    jcc(Assembler::notZero, slow_case);
    // done
    bind(done);
    return null_check_offset;
}
address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  address entry = __ pc();

  // rbx: method
  // r14: pointer to locals
  // c_rarg3: first stack arg - wordSize
  __ mov(c_rarg3, rsp);
  // adjust rsp
  __ subptr(rsp, 4 * wordSize);
  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address,
                              InterpreterRuntime::slow_signature_handler),
             rbx, r14, c_rarg3);

  // rax: result handler

  // Stack layout:
  // rsp: 3 integer or float args (if static first is unused)
  //      1 float/double identifiers
  //        return address
  //        stack args
  //        garbage
  //        expression stack bottom
  //        bcp (NULL)
  //        ...

  // Do FP first so we can use c_rarg3 as temp
  __ movl(c_rarg3, Address(rsp, 3 * wordSize)); // float/double identifiers

  for ( int i= 0; i < Argument::n_int_register_parameters_c-1; i++ ) {
    XMMRegister floatreg = as_XMMRegister(i+1);
    Label isfloatordouble, isdouble, next;

    __ testl(c_rarg3, 1 << (i*2));      // Float or Double?
    __ jcc(Assembler::notZero, isfloatordouble);

    // Do Int register here
    switch ( i ) {
      case 0:
        __ movl(rscratch1, Address(rbx, Method::access_flags_offset()));
        __ testl(rscratch1, JVM_ACC_STATIC);
        __ cmovptr(Assembler::zero, c_rarg1, Address(rsp, 0));
        break;
      case 1:
        __ movptr(c_rarg2, Address(rsp, wordSize));
        break;
      case 2:
        __ movptr(c_rarg3, Address(rsp, 2 * wordSize));
        break;
      default:
        break;
    }

    __ jmp (next);

    __ bind(isfloatordouble);
    __ testl(c_rarg3, 1 << ((i*2)+1));     // Double?
    __ jcc(Assembler::notZero, isdouble);

// Do Float Here
    __ movflt(floatreg, Address(rsp, i * wordSize));
    __ jmp(next);

// Do Double here
    __ bind(isdouble);
    __ movdbl(floatreg, Address(rsp, i * wordSize));

    __ bind(next);
  }


  // restore rsp
  __ addptr(rsp, 4 * wordSize);

  __ ret(0);

  return entry;
}
address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {

  // rbx,: Method*
  // rcx: scratrch
  // r13: sender sp

  if (!InlineIntrinsics) return NULL; // Generate a vanilla entry

  address entry_point = __ pc();

  // These don't need a safepoint check because they aren't virtually
  // callable. We won't enter these intrinsics from compiled code.
  // If in the future we added an intrinsic which was virtually callable
  // we'd have to worry about how to safepoint so that this code is used.

  // mathematical functions inlined by compiler
  // (interpreter must provide identical implementation
  // in order to avoid monotonicity bugs when switching
  // from interpreter to compiler in the middle of some
  // computation)
  //
  // stack: [ ret adr ] <-- rsp
  //        [ lo(arg) ]
  //        [ hi(arg) ]
  //

  if (kind == Interpreter::java_lang_math_fmaD) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    __ movdbl(xmm1, Address(rsp, 3 * wordSize));
    __ movdbl(xmm2, Address(rsp, 5 * wordSize));
    __ fmad(xmm0, xmm1, xmm2, xmm0);
  } else if (kind == Interpreter::java_lang_math_fmaF) {
    __ movflt(xmm0, Address(rsp, wordSize));
    __ movflt(xmm1, Address(rsp, 2 * wordSize));
    __ movflt(xmm2, Address(rsp, 3 * wordSize));
    __ fmaf(xmm0, xmm1, xmm2, xmm0);
  } else if (kind == Interpreter::java_lang_math_sqrt) {
    __ sqrtsd(xmm0, Address(rsp, wordSize));
  } else if (kind == Interpreter::java_lang_math_exp) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dexp() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dexp())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dexp));
    }
  } else if (kind == Interpreter::java_lang_math_log) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dlog() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dlog())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dlog));
    }
  } else if (kind == Interpreter::java_lang_math_log10) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dlog10() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dlog10())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10));
    }
  } else if (kind == Interpreter::java_lang_math_sin) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dsin() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dsin())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dsin));
    }
  } else if (kind == Interpreter::java_lang_math_cos) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dcos() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dcos())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dcos));
    }
  } else if (kind == Interpreter::java_lang_math_pow) {
    __ movdbl(xmm1, Address(rsp, wordSize));
    __ movdbl(xmm0, Address(rsp, 3 * wordSize));
    if (StubRoutines::dpow() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dpow())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dpow));
    }
  } else if (kind == Interpreter::java_lang_math_tan) {
    __ movdbl(xmm0, Address(rsp, wordSize));
    if (StubRoutines::dtan() != NULL) {
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dtan())));
    } else {
      __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dtan));
    }
  } else {
    __ fld_d(Address(rsp, wordSize));
    switch (kind) {
    case Interpreter::java_lang_math_abs:
      __ fabs();
      break;
    default:
      ShouldNotReachHere();
    }

    // return double result in xmm0 for interpreter and compilers.
    __ subptr(rsp, 2*wordSize);
    // Round to 64bit precision
    __ fstp_d(Address(rsp, 0));
    __ movdbl(xmm0, Address(rsp, 0));
    __ addptr(rsp, 2*wordSize);
  }


  __ pop(rax);
  __ mov(rsp, r13);
  __ jmp(rax);

  return entry_point;
}
address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  address entry = __ pc();

  // rbx: method
  // r14: pointer to locals
  // c_rarg3: first stack arg - wordSize
  __ mov(c_rarg3, rsp);
  // adjust rsp
  __ subptr(rsp, 14 * wordSize);
  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address,
                              InterpreterRuntime::slow_signature_handler),
             rbx, r14, c_rarg3);

  // rax: result handler

  // Stack layout:
  // rsp: 5 integer args (if static first is unused)
  //      1 float/double identifiers
  //      8 double args
  //        return address
  //        stack args
  //        garbage
  //        expression stack bottom
  //        bcp (NULL)
  //        ...

  // Do FP first so we can use c_rarg3 as temp
  __ movl(c_rarg3, Address(rsp, 5 * wordSize)); // float/double identifiers

  for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
    const XMMRegister r = as_XMMRegister(i);

    Label d, done;

    __ testl(c_rarg3, 1 << i);
    __ jcc(Assembler::notZero, d);
    __ movflt(r, Address(rsp, (6 + i) * wordSize));
    __ jmp(done);
    __ bind(d);
    __ movdbl(r, Address(rsp, (6 + i) * wordSize));
    __ bind(done);
  }

  // Now handle integrals.  Only do c_rarg1 if not static.
  __ movl(c_rarg3, Address(rbx, Method::access_flags_offset()));
  __ testl(c_rarg3, JVM_ACC_STATIC);
  __ cmovptr(Assembler::zero, c_rarg1, Address(rsp, 0));

  __ movptr(c_rarg2, Address(rsp, wordSize));
  __ movptr(c_rarg3, Address(rsp, 2 * wordSize));
  __ movptr(c_rarg4, Address(rsp, 3 * wordSize));
  __ movptr(c_rarg5, Address(rsp, 4 * wordSize));

  // restore rsp
  __ addptr(rsp, 14 * wordSize);

  __ ret(0);

  return entry;
}
address InterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {

  // rbx,: methodOop
  // rcx: scratrch
  // rsi: sender sp

  if (!InlineIntrinsics) return NULL; // Generate a vanilla entry

  address entry_point = __ pc();

  // These don't need a safepoint check because they aren't virtually
  // callable. We won't enter these intrinsics from compiled code.
  // If in the future we added an intrinsic which was virtually callable
  // we'd have to worry about how to safepoint so that this code is used.

  // mathematical functions inlined by compiler
  // (interpreter must provide identical implementation
  // in order to avoid monotonicity bugs when switching
  // from interpreter to compiler in the middle of some
  // computation)
  //
  // stack: [ ret adr ] <-- rsp
  //        [ lo(arg) ]
  //        [ hi(arg) ]
  //

  // Note: For JDK 1.2 StrictMath doesn't exist and Math.sin/cos/sqrt are
  //       native methods. Interpreter::method_kind(...) does a check for
  //       native methods first before checking for intrinsic methods and
  //       thus will never select this entry point. Make sure it is not
  //       called accidentally since the SharedRuntime entry points will
  //       not work for JDK 1.2.
  //
  // We no longer need to check for JDK 1.2 since it's EOL'ed.
  // The following check existed in pre 1.6 implementation,
  //    if (Universe::is_jdk12x_version()) {
  //      __ should_not_reach_here();
  //    }
  // Universe::is_jdk12x_version() always returns false since
  // the JDK version is not yet determined when this method is called.
  // This method is called during interpreter_init() whereas
  // JDK version is only determined when universe2_init() is called.

  // Note: For JDK 1.3 StrictMath exists and Math.sin/cos/sqrt are
  //       java methods.  Interpreter::method_kind(...) will select
  //       this entry point for the corresponding methods in JDK 1.3.
  // get argument
  __ fld_d(Address(rsp, 1*wordSize));
  switch (kind) {
    case Interpreter::java_lang_math_sin :
        __ trigfunc('s');
        break;
    case Interpreter::java_lang_math_cos :
        __ trigfunc('c');
        break;
    case Interpreter::java_lang_math_tan :
        __ trigfunc('t');
        break;
    case Interpreter::java_lang_math_sqrt:
        __ fsqrt();
        break;
    case Interpreter::java_lang_math_abs:
        __ fabs();
        break;
    case Interpreter::java_lang_math_log:
        __ flog();
        // Store to stack to convert 80bit precision back to 64bits
        __ push_fTOS();
        __ pop_fTOS();
        break;
    case Interpreter::java_lang_math_log10:
        __ flog10();
        // Store to stack to convert 80bit precision back to 64bits
        __ push_fTOS();
        __ pop_fTOS();
        break;
    default                              :
        ShouldNotReachHere();
  }

  // return double result in xmm0 for interpreter and compilers.
  if (UseSSE >= 2) {
    __ subptr(rsp, 2*wordSize);
    __ fstp_d(Address(rsp, 0));
    __ movdbl(xmm0, Address(rsp, 0));
    __ addptr(rsp, 2*wordSize);
  }

  // done, result in FPU ST(0) or XMM0
  __ pop(rdi);                               // get return address
  __ mov(rsp, rsi);                          // set sp to sender sp
  __ jmp(rdi);

  return entry_point;
}
Example #9
0
//------------------------------------------------------------------------------
// MethodHandles::generate_method_handle_stub
//
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  // Here is the register state during an interpreted call,
  // as set up by generate_method_handle_interpreter_entry():
  // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
  // - rcx: receiver method handle
  // - rax: method handle type (only used by the check_mtype entry point)
  // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  // - rdx: garbage temp, can blow away

  const Register rcx_recv    = rcx;
  const Register rax_argslot = rax;
  const Register rbx_temp    = rbx;
  const Register rdx_temp    = rdx;

  // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
  // and gen_c2i_adapter (from compiled calls):
  const Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);

  // Argument registers for _raise_exception.
  // 32-bit: Pass first two oop/int args in registers ECX and EDX.
  const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
  const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
  const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
  assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);

  guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");

  // some handy addresses
  Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
  Address rbx_method_fce(     rbx,      methodOopDesc::from_compiled_offset() );

  Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
  Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );

  Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );

  Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
  Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
  Address vmarg;                // __ argument_address(vmargslot)

  const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();

  if (have_entry(ek)) {
    __ nop();                   // empty stubs make SG sick
    return;
  }

  address interp_entry = __ pc();

  trace_method_handle(_masm, entry_name(ek));

  BLOCK_COMMENT(entry_name(ek));

  switch ((int) ek) {
  case _raise_exception:
    {
      // Not a real MH entry, but rather shared code for raising an
      // exception.  Since we use the compiled entry, arguments are
      // expected in compiler argument registers.
      assert(raise_exception_method(), "must be set");
      assert(raise_exception_method()->from_compiled_entry(), "method must be linked");

      const Register rdi_pc = rax;
      __ pop(rdi_pc);  // caller PC
      __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started

      Register rbx_method = rbx_temp;
      Label L_no_method;
      // FIXME: fill in _raise_exception_method with a suitable java.lang.invoke method
      __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
      __ testptr(rbx_method, rbx_method);
      __ jccb(Assembler::zero, L_no_method);

      const int jobject_oop_offset = 0;
      __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
      __ testptr(rbx_method, rbx_method);
      __ jccb(Assembler::zero, L_no_method);
      __ verify_oop(rbx_method);

      NOT_LP64(__ push(rarg2_required));
      __ push(rdi_pc);         // restore caller PC
      __ jmp(rbx_method_fce);  // jump to compiled entry

      // Do something that is at least causes a valid throw from the interpreter.
      __ bind(L_no_method);
      __ push(rarg2_required);
      __ push(rarg1_actual);
      __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
    }
    break;

  case _invokestatic_mh:
  case _invokespecial_mh:
    {
      Register rbx_method = rbx_temp;
      __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
      __ verify_oop(rbx_method);
      // same as TemplateTable::invokestatic or invokespecial,
      // minus the CP setup and profiling:
      if (ek == _invokespecial_mh) {
        // Must load & check the first argument before entering the target method.
        __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
        __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
        __ null_check(rcx_recv);
        __ verify_oop(rcx_recv);
      }
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokevirtual_mh:
    {
      // same as TemplateTable::invokevirtual,
      // minus the CP setup and profiling:

      // pick out the vtable index and receiver offset from the MH,
      // and then we can discard it:
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rbx_index = rbx_temp;
      __ movl(rbx_index, rcx_dmh_vmindex);
      // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

      // get target methodOop & entry point
      const int base = instanceKlass::vtable_start_offset() * wordSize;
      assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
      Address vtable_entry_addr(rax_klass,
                                rbx_index, Address::times_ptr,
                                base + vtableEntry::method_offset_in_bytes());
      Register rbx_method = rbx_temp;
      __ movptr(rbx_method, vtable_entry_addr);

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokeinterface_mh:
    {
      // same as TemplateTable::invokeinterface,
      // minus the CP setup and profiling:

      // pick out the interface and itable index from the MH.
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rdx_intf  = rdx_temp;
      Register rbx_index = rbx_temp;
      __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
      __ movl(rbx_index, rcx_dmh_vmindex);
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

      Register rdi_temp   = rdi;
      Register rbx_method = rbx_index;

      // get interface klass
      Label no_such_interface;
      __ verify_oop(rdx_intf);
      __ lookup_interface_method(rax_klass, rdx_intf,
                                 // note: next two args must be the same:
                                 rbx_index, rbx_method,
                                 rdi_temp,
                                 no_such_interface);

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
      __ hlt();

      __ bind(no_such_interface);
      // Throw an exception.
      // For historical reasons, it will be IncompatibleClassChangeError.
      __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
      assert_different_registers(rarg2_required, rbx_temp);
      __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
      __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
      __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
    }
    break;

  case _bound_ref_mh:
  case _bound_int_mh:
  case _bound_long_mh:
  case _bound_ref_direct_mh:
  case _bound_int_direct_mh:
  case _bound_long_direct_mh:
    {
      bool direct_to_method = (ek >= _bound_ref_direct_mh);
      BasicType arg_type  = T_ILLEGAL;
      int       arg_mask  = _INSERT_NO_MASK;
      int       arg_slots = -1;
      get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);

      // make room for the new argument:
      __ movl(rax_argslot, rcx_bmh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask, rax_argslot, rbx_temp, rdx_temp);

      // store bound argument into the new stack slot:
      __ load_heap_oop(rbx_temp, rcx_bmh_argument);
      if (arg_type == T_OBJECT) {
        __ movptr(Address(rax_argslot, 0), rbx_temp);
      } else {
        Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
        const int arg_size = type2aelembytes(arg_type);
        __ load_sized_value(rdx_temp, prim_value_addr, arg_size, is_signed_subword_type(arg_type), rbx_temp);
        __ store_sized_value(Address(rax_argslot, 0), rdx_temp, arg_size, rbx_temp);
      }

      if (direct_to_method) {
        Register rbx_method = rbx_temp;
        __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
        __ verify_oop(rbx_method);
        __ jmp(rbx_method_fie);
      } else {
        __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
        __ verify_oop(rcx_recv);
        __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
      }
    }
    break;

  case _adapter_retype_only:
  case _adapter_retype_raw:
    // immediately jump to the next MH layer:
    __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
    __ verify_oop(rcx_recv);
    __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    // This is OK when all parameter types widen.
    // It is also OK when a return type narrows.
    break;

  case _adapter_check_cast:
    {
      // temps:
      Register rbx_klass = rbx_temp; // interesting AMH data

      // check a reference argument before jumping to the next layer of MH:
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      // What class are we casting to?
      __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));

      Label done;
      __ movptr(rdx_temp, vmarg);
      __ testptr(rdx_temp, rdx_temp);
      __ jcc(Assembler::zero, done);         // no cast if null
      __ load_klass(rdx_temp, rdx_temp);

      // live at this point:
      // - rbx_klass:  klass required by the target method
      // - rdx_temp:   argument klass to test
      // - rcx_recv:   adapter method handle
      __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);

      // If we get here, the type check failed!
      // Call the wrong_method_type stub, passing the failing argument type in rax.
      Register rax_mtype = rax_argslot;
      __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
      __ movptr(rdx_temp, vmarg);

      assert_different_registers(rarg2_required, rdx_temp);
      __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
      __ mov(          rarg1_actual,   rdx_temp);                     // bad object
      __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));

      __ bind(done);
      // get the new MH:
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_prim:
  case _adapter_ref_to_prim:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place conversion to int or an int subword
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      switch (ek) {
      case _adapter_opt_i2i:
        __ movl(rdx_temp, vmarg);
        break;
      case _adapter_opt_l2i:
        {
          // just delete the extra slot; on a little-endian machine we keep the first
          __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
          remove_arg_slots(_masm, -stack_move_unit(),
                           rax_argslot, rbx_temp, rdx_temp);
          vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
          __ movl(rdx_temp, vmarg);
        }
        break;
      case _adapter_opt_unboxi:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
            if (is_subword_type(BasicType(bt)))
              assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
          }
#endif
          __ null_check(rdx_temp, value_offset);
          __ movl(rdx_temp, Address(rdx_temp, value_offset));
          // We load this as a word.  Because we are little-endian,
          // the low bits will be correct, but the high bits may need cleaning.
          // The vminfo will guide us to clean those bits.
        }
        break;
      default:
        ShouldNotReachHere();
      }

      // Do the requested conversion and store the value.
      Register rbx_vminfo = rbx_temp;
      __ movl(rbx_vminfo, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");

      // get the new MH:
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      // (now we are done with the old MH)

      // original 32-bit vmdata word must be of this form:
      //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
      __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
      __ shll(rdx_temp /*, rcx*/);
      Label zero_extend, done;
      __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
      __ jccb(Assembler::zero, zero_extend);

      // this path is taken for int->byte, int->short
      __ sarl(rdx_temp /*, rcx*/);
      __ jmpb(done);

      __ bind(zero_extend);
      // this is taken for int->char
      __ shrl(rdx_temp /*, rcx*/);

      __ bind(done);
      __ movl(vmarg, rdx_temp);  // Store the value.
      __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv

      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place int-to-long or ref-to-long conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);

      // on a little-endian machine we keep the first slot and add another after
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                       rax_argslot, rbx_temp, rdx_temp);
      Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
      Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);

      switch (ek) {
      case _adapter_opt_i2l:
        {
#ifdef _LP64
          __ movslq(rdx_temp, vmarg1);  // Load sign-extended
          __ movq(vmarg1, rdx_temp);    // Store into first slot
#else
          __ movl(rdx_temp, vmarg1);
          __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
          __ movl(vmarg2, rdx_temp); // store second word
#endif
        }
        break;
      case _adapter_opt_unboxl:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg1);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
          assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
          __ null_check(rdx_temp, value_offset);
#ifdef _LP64
          __ movq(rbx_temp, Address(rdx_temp, value_offset));
          __ movq(vmarg1, rbx_temp);
#else
          __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
          __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
          __ movl(vmarg1, rbx_temp);
          __ movl(vmarg2, rdx_temp);
#endif
        }
        break;
      default:
        ShouldNotReachHere();
      }

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
    {
      // perform an in-place floating primitive conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      if (ek == _adapter_opt_f2d) {
        insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                         rax_argslot, rbx_temp, rdx_temp);
      }
      Address vmarg(rax_argslot, -Interpreter::stackElementSize);

#ifdef _LP64
      if (ek == _adapter_opt_f2d) {
        __ movflt(xmm0, vmarg);
        __ cvtss2sd(xmm0, xmm0);
        __ movdbl(vmarg, xmm0);
      } else {
        __ movdbl(xmm0, vmarg);
        __ cvtsd2ss(xmm0, xmm0);
        __ movflt(vmarg, xmm0);
      }
#else //_LP64
      if (ek == _adapter_opt_f2d) {
        __ fld_s(vmarg);        // load float to ST0
        __ fstp_s(vmarg);       // store single
      } else {
        __ fld_d(vmarg);        // load double to ST0
        __ fstp_s(vmarg);       // store single
      }
#endif //_LP64

      if (ek == _adapter_opt_d2f) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_ref:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_swap_args:
  case _adapter_rot_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_swap_1:
  case _adapter_opt_swap_2:
  case _adapter_opt_rot_1_up:
  case _adapter_opt_rot_1_down:
  case _adapter_opt_rot_2_up:
  case _adapter_opt_rot_2_down:
    {
      int swap_bytes = 0, rotate = 0;
      get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);

      // 'argslot' is the position of the first argument to swap
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'vminfo' is the second
      Register rbx_destslot = rbx_temp;
      __ movl(rbx_destslot, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");
      __ andl(rbx_destslot, CONV_VMINFO_MASK);
      __ lea(rbx_destslot, __ argument_address(rbx_destslot));
      DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));

      if (!rotate) {
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ movptr(rdx_temp, Address(rax_argslot , i));
          __ push(rdx_temp);
          __ movptr(rdx_temp, Address(rbx_destslot, i));
          __ movptr(Address(rax_argslot, i), rdx_temp);
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      } else {
        // push the first chunk, which is going to get overwritten
        for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
          __ movptr(rdx_temp, Address(rax_argslot, i));
          __ push(rdx_temp);
        }

        if (rotate > 0) {
          // rotate upward
          __ subptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot > destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
            __ jccb(Assembler::aboveEqual, L_ok);
            __ stop("source must be above destination (upward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot down to destslot, copying contiguous data upwards
          // pseudo-code:
          //   rax = src_addr - swap_bytes
          //   rbx = dest_addr
          //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
          __ addptr(rax_argslot, -wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
          __ jccb(Assembler::aboveEqual, loop);
        } else {
          __ addptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot < destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
            __ jccb(Assembler::belowEqual, L_ok);
            __ stop("source must be below destination (downward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot up to destslot, copying contiguous data downwards
          // pseudo-code:
          //   rax = src_addr + swap_bytes
          //   rbx = dest_addr
          //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
          __ addptr(rax_argslot, wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
          __ jccb(Assembler::belowEqual, loop);
        }

        // pop the original first chunk into the destination slot, now free
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      }

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_dup_args:
    {
      // 'argslot' is the position of the first argument to duplicate
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'stack_move' is negative number of words to duplicate
      Register rdx_stack_move = rdx_temp;
      __ movl2ptr(rdx_stack_move, rcx_amh_conversion);
      __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT);

      int argslot0_num = 0;
      Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
      assert(argslot0.base() == rsp, "");
      int pre_arg_size = argslot0.disp();
      assert(pre_arg_size % wordSize == 0, "");
      assert(pre_arg_size > 0, "must include PC");

      // remember the old rsp+1 (argslot[0])
      Register rbx_oldarg = rbx_temp;
      __ lea(rbx_oldarg, argslot0);

      // move rsp down to make room for dups
      __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));

      // compute the new rsp+1 (argslot[0])
      Register rdx_newarg = rdx_temp;
      __ lea(rdx_newarg, argslot0);

      __ push(rdi);             // need a temp
      // (preceding push must be done after arg addresses are taken!)

      // pull down the pre_arg_size data (PC)
      for (int i = -pre_arg_size; i < 0; i += wordSize) {
        __ movptr(rdi, Address(rbx_oldarg, i));
        __ movptr(Address(rdx_newarg, i), rdi);
      }

      // copy from rax_argslot[0...] down to new_rsp[1...]
      // pseudo-code:
      //   rbx = old_rsp+1
      //   rdx = new_rsp+1
      //   rax = argslot
      //   while (rdx < rbx) *rdx++ = *rax++
      Label loop;
      __ bind(loop);
      __ movptr(rdi, Address(rax_argslot, 0));
      __ movptr(Address(rdx_newarg, 0), rdi);
      __ addptr(rax_argslot, wordSize);
      __ addptr(rdx_newarg, wordSize);
      __ cmpptr(rdx_newarg, rbx_oldarg);
      __ jccb(Assembler::less, loop);

      __ pop(rdi);              // restore temp

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_drop_args:
    {
      // 'argslot' is the position of the first argument to nuke
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      __ push(rdi);             // need a temp
      // (must do previous push after argslot address is taken)

      // 'stack_move' is number of words to drop
      Register rdi_stack_move = rdi;
      __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
      __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
      remove_arg_slots(_masm, rdi_stack_move,
                       rax_argslot, rbx_temp, rdx_temp);

      __ pop(rdi);              // restore temp

      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_collect_args:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_spread_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_spread_0:
  case _adapter_opt_spread_1:
  case _adapter_opt_spread_more:
    {
      // spread an array out into a group of arguments
      int length_constant = get_ek_adapter_opt_spread_info(ek);

      // find the address of the array argument
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // grab some temps
      { __ push(rsi); __ push(rdi); }
      // (preceding pushes must be done after argslot address is taken!)
#define UNPUSH_RSI_RDI \
      { __ pop(rdi); __ pop(rsi); }

      // arx_argslot points both to the array and to the first output arg
      vmarg = Address(rax_argslot, 0);

      // Get the array value.
      Register  rsi_array       = rsi;
      Register  rdx_array_klass = rdx_temp;
      BasicType elem_type       = T_OBJECT;
      int       length_offset   = arrayOopDesc::length_offset_in_bytes();
      int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
      __ movptr(rsi_array, vmarg);
      Label skip_array_check;
      if (length_constant == 0) {
        __ testptr(rsi_array, rsi_array);
        __ jcc(Assembler::zero, skip_array_check);
      }
      __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
      __ load_klass(rdx_array_klass, rsi_array);

      // Check the array type.
      Register rbx_klass = rbx_temp;
      __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));

      Label ok_array_klass, bad_array_klass, bad_array_length;
      __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
      // If we get here, the type check failed!
      __ jmp(bad_array_klass);
      __ bind(ok_array_klass);

      // Check length.
      if (length_constant >= 0) {
        __ cmpl(Address(rsi_array, length_offset), length_constant);
      } else {
        Register rbx_vminfo = rbx_temp;
        __ movl(rbx_vminfo, rcx_amh_conversion);
        assert(CONV_VMINFO_SHIFT == 0, "preshifted");
        __ andl(rbx_vminfo, CONV_VMINFO_MASK);
        __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
      }
      __ jcc(Assembler::notEqual, bad_array_length);

      Register rdx_argslot_limit = rdx_temp;

      // Array length checks out.  Now insert any required stack slots.
      if (length_constant == -1) {
        // Form a pointer to the end of the affected region.
        __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
        // 'stack_move' is negative number of words to insert
        Register rdi_stack_move = rdi;
        __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
        __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
        Register rsi_temp = rsi_array;  // spill this
        insert_arg_slots(_masm, rdi_stack_move, -1,
                         rax_argslot, rbx_temp, rsi_temp);
        // reload the array (since rsi was killed)
        __ movptr(rsi_array, vmarg);
      } else if (length_constant > 1) {
        int arg_mask = 0;
        int new_slots = (length_constant - 1);
        for (int i = 0; i < new_slots; i++) {
          arg_mask <<= 1;
          arg_mask |= _INSERT_REF_MASK;
        }
        insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
                         rax_argslot, rbx_temp, rdx_temp);
      } else if (length_constant == 1) {
        // no stack resizing required
      } else if (length_constant == 0) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

      // Copy from the array to the new slots.
      // Note: Stack change code preserves integrity of rax_argslot pointer.
      // So even after slot insertions, rax_argslot still points to first argument.
      if (length_constant == -1) {
        // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
        Register rsi_source = rsi_array;
        __ lea(rsi_source, Address(rsi_array, elem0_offset));
        Label loop;
        __ bind(loop);
        __ movptr(rbx_temp, Address(rsi_source, 0));
        __ movptr(Address(rax_argslot, 0), rbx_temp);
        __ addptr(rsi_source, type2aelembytes(elem_type));
        __ addptr(rax_argslot, Interpreter::stackElementSize);
        __ cmpptr(rax_argslot, rdx_argslot_limit);
        __ jccb(Assembler::less, loop);
      } else if (length_constant == 0) {
        __ bind(skip_array_check);
        // nothing to copy
      } else {
        int elem_offset = elem0_offset;
        int slot_offset = 0;
        for (int index = 0; index < length_constant; index++) {
          __ movptr(rbx_temp, Address(rsi_array, elem_offset));
          __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
          elem_offset += type2aelembytes(elem_type);
           slot_offset += Interpreter::stackElementSize;
        }
      }

      // Arguments are spread.  Move to next method handle.
      UNPUSH_RSI_RDI;
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);

      __ bind(bad_array_klass);
      UNPUSH_RSI_RDI;
      assert(!vmarg.uses(rarg2_required), "must be different registers");
      __ movptr(rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
      __ movptr(rarg1_actual,   vmarg);                                         // bad array
      __ movl(  rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));

      __ bind(bad_array_length);
      UNPUSH_RSI_RDI;
      assert(!vmarg.uses(rarg2_required), "must be different registers");
      __ mov   (rarg2_required, rcx_recv);                       // AMH requiring a certain length
      __ movptr(rarg1_actual,   vmarg);                          // bad array
      __ movl(  rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));

#undef UNPUSH_RSI_RDI
    }
    break;

  case _adapter_flyby:
  case _adapter_ricochet:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  default:  ShouldNotReachHere();
  }
  __ hlt();

  address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  __ unimplemented(entry_name(ek)); // %%% FIXME: NYI

  init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}