Example #1
0
bool SvmClassifier::Save(const string &model_name) const
{
    // Save the normalization parameters and penalty coefficient
    vector<float> c(1, c_);
    if (!SaveMat(model_name + "_normA", normA_, c))
    {
        return false;
    }
    if (!SaveMat(model_name + "_normB", normB_))
    {
        return false;
    }

    // Save the SVM model
    if (svm_model_ == NULL)
    {
        return false;
    }
    if (svm_save_model((model_name + FILE_EXT).c_str(),
            svm_model_) != 0)
    {
        return false;
    }

    return true;
}
Example #2
0
int main(int argc, char **argv)
{
	char input_file_name[1024];
	char model_file_name[1024];
	const char *error_msg;

	parse_command_line(argc, argv, input_file_name, model_file_name);
	read_problem(input_file_name);
	error_msg = svm_check_parameter(&prob,&param);

	if(error_msg)
	{
		fprintf(stderr,"Error: %s\n",error_msg);
		exit(1);
	}

	if(cross_validation)
	{
		do_cross_validation();
	}
	else
	{
		model = svm_train(&prob,&param);
		svm_save_model(model_file_name,model);
		svm_destroy_model(model);
	}
	svm_destroy_param(&param);
	free(prob.y);
	free(prob.x);
	free(x_space);

	return 0;
}
Example #3
0
void svm_train_and_test(const std::vector<feature_t> &feats, const std::vector<int> &labels, const char * model_file, std::ofstream &ofs)
{
	svm_model * model;
	if(_access(model_file, 0) == -1)
	{
		auto param = svm_fill_parameter();
		auto prob = svm_fill_problem(feats, labels);
		model = svm_train(prob, param);
		svm_save_model(model_file, model);
		auto acc = svm_test_acc(prob, model);
		svm_destroy_param(param);
		svm_free_problem(prob);
		std::cout<<model_file<<"  acc: "<<acc*100<<std::endl;
		ofs<<model_file<<"  acc: "<<acc*100<<std::endl;
	}
	else
	{
		model = svm_load_model(model_file);
		auto acc = svm_test_acc(feats, labels, model);
		std::cout<<model_file<<"  acc: "<<acc*100<<std::endl;
		ofs<<model_file<<"  acc: "<<acc*100<<std::endl;
	}
	//free
	svm_free_and_destroy_model(&model);
}
Example #4
0
static void cmd_train(const char *modelfile, double cParam, double gParam,
                      WindowFile &trainA, WindowFile &trainB)
{
    SVMProblem problem(trainA, trainB);
    SVMParam param(cParam, gParam, true);
    svm_model *model = svm_train(&problem, &param);
    svm_save_model(modelfile, model);
    svm_free_and_destroy_model(&model);
}
Example #5
0
int jpcnn_save_predictor(const char* filename, void* predictorHandle) {
  SPredictorInfo* predictorInfo = (SPredictorInfo*)(predictorHandle);
  struct svm_model* model = predictorInfo->model;
  const int saveResult = svm_save_model(filename, model);
  if (saveResult != 0) {
    fprintf(stderr, "Couldn't save libsvm model file to '%s'\n", filename);
    return 0;
  }
  return 1;
}
Example #6
0
double svm_train_and_test(const std::vector<feature_t> &train_feats, const std::vector<int> &train_labels, const std::vector<feature_t> &test_feats, const std::vector<int> &test_labels, const char * model_file)
{
	svm_model * model;
	auto param = svm_fill_parameter();
	auto prob = svm_fill_problem(train_feats, train_labels);
	model = svm_train(prob, param);
	svm_save_model(model_file, model);
	auto acc = svm_test_acc(test_feats, test_labels, model);
	svm_destroy_param(param);
	svm_free_problem(prob);
	//free
	svm_free_and_destroy_model(&model);
	return acc;
}
Example #7
0
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
    struct svm_model *model;
    char *filename;
    const char *error_msg;
    int status;

    /* check input */
    if(nrhs != 2) {
        mexPrintf("Usage: svm_savemodel(model, 'filename');\n");
        fake_answer(plhs);
        return;
    }
    if(!mxIsStruct(prhs[0])) {
        mexPrintf("model file should be a struct array\n");
        fake_answer(plhs);
        return;
    }
    if(!mxIsChar(prhs[1]) || mxGetM(prhs[1])!=1) {
        mexPrintf("filename should be given as char(s)\n");
        fake_answer(plhs);
        return;
    }

    /* convert MATLAB struct to C struct */
    model = matlab_matrix_to_model(prhs[0], &error_msg);
    if(model == NULL) {
        mexPrintf("Error: can't read model: %s\n", error_msg);
        fake_answer(plhs);
        return;
    }

    /* get filename */
    filename = mxArrayToString(prhs[1]);

    /* save model to file */
    status = svm_save_model(filename,model);
    if (status != 0) {
        mexWarnMsgTxt("Error occured while writing to file.");
    }

    /* destroy model */
    svm_free_and_destroy_model(&model);
    mxFree(filename);

    /* return status value (0: success, -1: failure) */
    plhs[0] = mxCreateDoubleScalar(status);

    return;
}
int main(int argc, char **argv)
{
	char input_file_name[1024];
	char model_file_name[1024];
	const char *error_msg;

	parse_command_line(argc, argv, input_file_name, model_file_name);
	read_problem(input_file_name);
#ifdef CUSTOM_SOLVER
    if (param.svm_type == ONE_CLASS)
    {
        param.strong_footlier_indexes = filter_strong_footliers(input_file_name);
    }
#endif
	error_msg = svm_check_parameter(&prob,&param);

	if(error_msg)
	{
		fprintf(stderr,"Error: %s\n",error_msg);
		exit(1);
	}

	if(cross_validation)
	{
		if(param.svm_type == R2 || param.svm_type == R2q)
			fprintf(stderr, "\"R^2\" cannot do cross validation.\n");
		else
			do_cross_validation();
	}
	else
	{
		model = svm_train(&prob,&param);
		if(param.svm_type == R2 || param.svm_type == R2q)
			fprintf(stderr, "\"R^2\" does not generate model.\n");
		else if(svm_save_model(model_file_name,model))
		{
			fprintf(stderr, "can't save model to file %s\n", model_file_name);
			exit(1);
		}
		svm_free_and_destroy_model(&model);
	}
	svm_destroy_param(&param);
	free(prob.y);
	free(prob.x);
	free(x_space);
	free(line);

	return 0;
}
Example #9
0
static VALUE cModel_save(VALUE obj, VALUE filename)
{
  const struct svm_model *model;
  const char *path;
  int rc; 

  Data_Get_Struct(obj, struct svm_model, model);
  path = StringValueCStr(filename);
  
  if(rc = svm_save_model(path, model)) {
    rb_raise(rb_eStandardError, "Error on saving model, code: %i", rc);
  }
  
  return Qnil;
}
Example #10
0
int main(int argc, char **argv)
{
	char input_file_name[1024];
	char model_file_name[1024];
	const char *error_msg;

	parse_command_line(argc, argv, input_file_name, model_file_name);
	read_problem(input_file_name);
	error_msg = svm_check_parameter(&prob,&param);

	if(error_msg)
	{
		fprintf(stderr,"ERROR: %s\n",error_msg);
		exit(1);
	}

	if(cross_validation)
	{
		if (nr_fold <= 10)
		{
			do_cross_validation();
		}
		else
		{
			double cv;
			nr_fold = nr_fold - 10;
			cv =  binary_class_cross_validation(&prob, &param, nr_fold);
			printf("Cross Validation = %g%%\n",100.0*cv);
		}
	}
	else
	{
		model = svm_train(&prob,&param);
		if(svm_save_model(model_file_name,model))
		{
			fprintf(stderr, "can't save model to file %s\n", model_file_name);
			exit(1);
		}
		svm_free_and_destroy_model(&model);
	}
	svm_destroy_param(&param);
	free(prob.y);
	free(prob.x);
	free(x_space);
	free(line);

	return 0;
}
Example #11
0
bool CmySvmArth::Train( char* path)
{
	const char *error_msg;
	error_msg = svm_check_parameter(&prob,&param);
	if(error_msg)
	{
		fprintf(stderr,"ERROR: %s\n",error_msg);
		free(prob.y);
		free(prob.x);
		free(x_space);
		free(line);
		line = NULL;
		x_space = NULL;
		return false;
	}
	if(cross_validation)
	{
		do_cross_validation();
	}
	else
	{
		model = svm_train(&prob,&param);
		if(path!=NULL&&svm_save_model(path,model))
		{
			fprintf(stderr, "can't save model to file %s\n", path);
			return false;
		}
		if(path!=NULL)
		{
			svm_free_and_destroy_model(&model);
		}
	}
	svm_destroy_param(&param);
	free(prob.y);
	free(prob.x);
	if(path!=NULL)
	{
		free(x_space);
		free(line);
		line = NULL;
		x_space = NULL;
	}
	return true;
}
Example #12
0
int SVMTrainModel::train(double &RecRate, std::vector<int> &ConfusionTable)
{ 

  if((!have_input_file_name) || (!have_model_file_name))
  {
    fprintf(stderr,"ERROR: Set Input and Model files first!\n");
    exit(1);
  }

  const char *error_msg;
  
  readProblem(input_file_name);
  error_msg = svm_check_parameter(&prob,&param);
  
  if(error_msg)
  {
    fprintf(stderr,"ERROR: %s\n",error_msg);
    exit(1);
  }
  
  if(cross_validation)
  {
    do_cross_validation(RecRate,ConfusionTable);
  }
  else
  {
    model = svm_train(&prob,&param);
    if(svm_save_model(model_file_name,model))
    {
      fprintf(stderr, "can't save model to file %s\n", model_file_name);
      exit(1);
    }
    svm_free_and_destroy_model(&model);
  }
  svm_destroy_param(&param);
  free(prob.y);
  free(prob.x);
  free(x_space);
  free(line);
  
  return 0;
}
Example #13
0
int main(int argc, char **argv)
{
	char input_file_name[1024];
	char model_file_name[1024];
	const char *error_msg;

	parse_command_line(argc, argv, input_file_name, model_file_name);
	read_problem(input_file_name);
	error_msg = svm_check_parameter(&prob,&param);
	if(error_msg)
	{
		fprintf(stderr,"ERROR: %s\n",error_msg);
		exit(1);
	}

	if(cross_validation)
	{
		do_cross_validation();
	}
	else
	{
		model = svm_train(&prob,&param);
		if(svm_save_model(model_file_name,model))
		{
			fprintf(stderr, "can't save model to file %s\n", model_file_name);
			exit(1);
		}
		svm_free_and_destroy_model(&model);
	}
	svm_destroy_param(&param);
	free(prob.y);
#ifdef _DENSE_REP
	for (int i = 0; i < prob.l; ++i)
		free((prob.x+i)->values);
#else
	free(x_space);
#endif
	free(prob.x);
	free(line);

	return 0;
}
int savemodel(const char *filename, const mxArray *matlab_struct)  
{  
    const char *error_msg;  
    struct svm_model* model;  
    int result;  
    model = matlab_matrix_to_model(matlab_struct, &error_msg);  
      
    if (model == NULL)  
    {  
        mexPrintf("Error: can't read model: %s\n", error_msg);  
    }  
      
    result = svm_save_model(filename, model);  
      
    if( result != 0 )  
    {  
        mexPrintf("Error: can't write model to file!\n");  
    }  
      
    return result;  
}  
Example #15
0
void SVM::train(char* pInputSampleFileName, char* OutputModelFilename, double &dRetTrainError, double &dRetCrossValError)
{
	struct svm_parameter strSvmParameters;
	struct svm_problem strSvmProblem;
	struct svm_model *pstrSvmModel;
	const char *error_msg;
	double dCrossValError = -1;
	double dTrainError = -1;

	//set parameters
	this->setParameters(strSvmParameters);

	//read sample file
	this->read_problem(pInputSampleFileName, strSvmProblem, strSvmParameters);

	//check parameters
	error_msg = svm_check_parameter(&strSvmProblem, &strSvmParameters);

	//train model
	pstrSvmModel = svm_train(&strSvmProblem, &strSvmParameters);

	//do cross validation check
	dCrossValError = this->crossValidationSamples(strSvmProblem, strSvmParameters, 5);

	//save trained model
	svm_save_model(OutputModelFilename, pstrSvmModel);

	//test trained model with training set -> train error
	cout << "test model " << OutputModelFilename << " with the training set " << pInputSampleFileName << std::endl;
	this->test(pInputSampleFileName, OutputModelFilename, dTrainError);

	//clean up
	svm_destroy_model(pstrSvmModel);
	svm_destroy_param(&strSvmParameters);
	free(strSvmProblem.y);
	free(strSvmProblem.x);

	dRetTrainError = dTrainError;
	dRetCrossValError = dCrossValError;
}
Example #16
0
		bool Problem::CProblem::trainAndSaveModel(const FilePath& path, const Paramter& param) const
		{
			if (!m_hasData)
			{
				return false;
			}

			svm_model* model = svm_train(&m_problem, &param);

			const FilePath parentFilePath = FileSystem::ParentPath(path);

			if (!FileSystem::Exists(parentFilePath) && !FileSystem::CreateDirectories(parentFilePath))
			{
				return false;
			}

			const int32 result = svm_save_model(path.narrow().c_str(), model);

			svm_free_and_destroy_model(&model);

			return (result == 0);
		}
Example #17
0
int svmtrain(int argc, char **argv)
{
	char input_file_name[1024];
	char model_file_name[1024];
	const char *error_msg;

	parse_command_line(argc, argv, input_file_name, model_file_name);
	read_problem(input_file_name);
	error_msg = svm_check_parameter(&prob,&param);

	if(error_msg)
	{
		LOGD("ERROR: %s\n",error_msg);
		exit(1);
	}

	if(cross_validation)
	{
		do_cross_validation();
	}
	else
	{
		modelt = svm_train(&prob,&param);
		if(svm_save_model(model_file_name,modelt))
		{
			LOGD("can't save model to file %s\n", model_file_name);
			exit(1);
		}
		svm_free_and_destroy_model(&modelt);
	}
	svm_destroy_param(&param);
	free(prob.y);
	free(prob.x);
	free(x_space);
	free(line);

	return 0;
}
Example #18
0
bool CmySvmArth::SaveTrainModel(const char* pPath)
{
	if(pPath==NULL||model==NULL)
		return false;

	if(svm_save_model(pPath,model))
	{
		fprintf(stderr, "can't save model to file %s\n", pPath);
		return false;
	}
	svm_free_and_destroy_model(&model);
	if(x_space!=NULL)
	{
		free(x_space);
		x_space = NULL;
	}
	if(line!=NULL)
	{
		free(line);
		line = NULL;
	}
	return true;
}
Example #19
0
void svmwrite (double *v, int *r, int *c,
		  int    *rowindex,
		  int    *colindex,
		  double *coefs,
		  double *rho,
	          int    *compprob,
	          double *probA,
	          double *probB,
		  int    *nclasses,
		  int    *totnSV,
		  int    *labels,
		  int    *nSV,
		  int    *sparsemodel,

		  int    *svm_type,
		  int    *kernel_type,
		  int    *degree,
		  double *gamma,
		  double *coef0,

		  char **filename) 

{
    struct svm_model m;
    int i;
    char *fname = *filename;    

    /* set up model */
    m.l        = *totnSV;
    m.nr_class = *nclasses;
    m.sv_coef  = (double **) malloc (m.nr_class * sizeof(double*));
    for (i = 0; i < m.nr_class - 1; i++) {
	m.sv_coef[i] = (double *) malloc (m.l * sizeof (double));
	memcpy (m.sv_coef[i], coefs + i*m.l, m.l * sizeof (double));
    }
    
    if (*sparsemodel > 0)
	m.SV   = transsparse(v, *r, rowindex, colindex);
    else
	m.SV   = sparsify(v, *r, *c);
    
    m.rho      = rho;
    m.label    = labels;
    m.nSV      = nSV;
    if (*compprob) {
	m.probA    = probA;
	m.probB    = probB;
    } else {
	m.probA    = NULL;
	m.probB    = NULL;
    }

    /* set up parameter */
    m.param.svm_type    = *svm_type;
    m.param.kernel_type = *kernel_type;
    m.param.degree      = *degree;
    m.param.gamma       = *gamma;
    m.param.coef0       = *coef0;

    m.free_sv           = 1;

    /* write svm model */
    svm_save_model(fname, &m);

    for (i = 0; i < m.nr_class - 1; i++)
	free(m.sv_coef[i]);
    free(m.sv_coef);

    for (i = 0; i < *r; i++)
	free (m.SV[i]);
    free (m.SV);

}
int main(int argc, char**argv) 
{
  if (argc < 3) {
    printf("\nUSAGE: %s <ASCII model file> <binary model file>\n",argv[0]);
    printf(" Convert an ASCII LibSVM model file into a binary LibSVM model file.\n\n");
    printf("USAGE: %s - <binary model file> <ASCII model file>\n",argv[0]);
    printf(" Convert a binary LibSVM model file into an ASCII LibSVM model file.\n\n");
    return -1;
  }

  if (argv[1][0] == '-') {  // bin -> ASCII
 
    if (argc < 4) {

      printf("USAGE: %s - <binary model file> <ASCII model file>\n",argv[0]);
      printf(" Convert a binary LibSVM model file into an ASCII LibSVM model file.\n\n");
      return -1;
    
    }

    printf("Loading binary model '%s'... ",argv[2]);

    svm_model * m = svm_load_binary_model(argv[2]);

    if (m==NULL) {
      printf("\nERROR: failed loading model '%s'!\n",argv[2]);
      return -2;
    }

    printf ("OK\n");
    printf("Saving ASCII model '%s'... ",argv[3]);
 
    int r = svm_save_model(argv[3],m);
    if (!r) printf ("OK\n");
    else { 
      printf("ERROR: failed saving ASCII model '%s' (code=%i)\n",argv[3],r); 
      return -3;
    }

    svm_destroy_model(m);
 
  } else { // ASCII -> bin

    printf("Loading ASCII model '%s'... ",argv[1]);

    svm_model * m = svm_load_model(argv[1]);

    if (m==NULL) {
      printf("\nERROR: failed loading model '%s'!\n",argv[1]);
      return -2;
    }

    printf ("OK\n");
    printf("Saving binary model '%s'... ",argv[2]);
 
    int r = svm_save_binary_model(argv[2],m);
    if (!r) printf ("OK\n");
    else { 
      printf("ERROR: failed saving binary model '%s' (code=%i)\n",argv[2],r); 
      return -3;
    }

    svm_destroy_model(m);

  }

  return 0;
}
Example #21
0
void SVM::save_model(string model_name)
{
	svm_save_model(model_name.c_str(), model);
}
Example #22
0
Transformation SVMTrain::analyze(const DataSet* dataset) const {
  G_INFO("Doing SVMTrain analysis...");

  QStringList sdescs = selectDescriptors(dataset->layout(), StringType, _descriptorNames, _exclude, false);

  if (!sdescs.isEmpty()) {
    throw GaiaException("SVMTrain: if you want to use string descriptors for training your SVM, "
                        "you first need to enumerate them using the 'enumerate' transform on them. "
                        "String descriptors: ", sdescs.join(", "));
  }

  QStringList descs = selectDescriptors(dataset->layout(), UndefinedType, _descriptorNames, _exclude);
  // sort descriptors in the order in which they are taken inside the libsvm dataset
  sort(descs.begin(), descs.end(), DescCompare(dataset->layout()));
  Region region = dataset->layout().descriptorLocation(descs);

  QStringList classMapping = svm::createClassMapping(dataset, _className);

  // first, convert the training data into an SVM problem structure
  // NB: all checks about fixed-length and type of descriptors are done in this function
  struct svm_problem prob = svm::dataSetToLibsvmProblem(dataset, _className, region, classMapping);

  // also get dimension (this trick works because a vector in there is the number
  // of dimensions + 1 for the sentinel, and we're not in a sparse representation)
  int dimension = prob.x[1] - prob.x[0] - 1;


  // default values
  struct svm_parameter param;
  //param.svm_type = C_SVC;
  //param.kernel_type = RBF;
  //param.degree = 3;
  //param.gamma = 0;	// 1/k
  param.coef0 = 0;
  param.nu = 0.5;
  param.cache_size = 100;
  //param.C = 1;
  param.eps = 1e-3;
  param.p = 0.1;
  param.shrinking = 1;
  //param.probability = 0;
  param.nr_weight = 0;
  param.weight_label = NULL;
  param.weight = NULL;

  // get parameters
  QString svmType = _params.value("type", "C-SVC").toString().toLower();
  param.svm_type = _svmTypeMap.value(svmType);
  QString kernelType = _params.value("kernel", "RBF").toString().toLower();
  param.kernel_type = _kernelTypeMap.value(kernelType);
  param.degree = _params.value("degree", 3).toInt();
  param.C = _params.value("c", 1).toDouble();
  param.gamma = _params.value("gamma", 1.0/dimension).toDouble();
  param.probability = _params.value("probability", false).toBool() ? 1 : 0;


  const char* error_msg = svm_check_parameter(&prob, &param);

  if (error_msg) {
    throw GaiaException(error_msg);
  }


  // do it!
  struct svm_model* model;

  const bool crossValidation = false;
  if (crossValidation) {
    int nr_fold = 10;
    int total_correct = 0;
    double total_error = 0;
    double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
    double* target = new double[prob.l];

    svm_cross_validation(&prob, &param, nr_fold, target);

    if (param.svm_type == EPSILON_SVR ||
        param.svm_type == NU_SVR) {
      for (int i=0; i<prob.l; i++) {
        double y = prob.y[i];
        double v = target[i];
        total_error += (v-y)*(v-y);
        sumv += v;
        sumy += y;
        sumvv += v*v;
        sumyy += y*y;
        sumvy += v*y;
      }
      G_INFO("Cross Validation Mean squared error =" << total_error/prob.l);
      G_INFO("Cross Validation Squared correlation coefficient =" <<
             ((prob.l*sumvy - sumv*sumy) * (prob.l*sumvy - sumv*sumy)) /
             ((prob.l*sumvv - sumv*sumv) * (prob.l*sumyy - sumy*sumy))
             );
    }
    else {
      for (int i=0; i<prob.l; i++)
        if (target[i] == prob.y[i])
          ++total_correct;
      G_INFO("Cross Validation Accuracy =" << 100.0*total_correct/prob.l << "%");
    }
  }
  else { // !crossValidation
    model = svm_train(&prob, &param);
  }

  // save model to a temporary file (only method available from libsvm...),
  // reload it and put it into a gaia2::Parameter
  QTemporaryFile modelFile;
  modelFile.open();
  QString modelFilename = modelFile.fileName();
  modelFile.close();

  if (svm_save_model(modelFilename.toAscii().constData(), model) == -1) {
    throw GaiaException("SVMTrain: error while saving SVM model to temp file");
  }

  modelFile.open();
  QByteArray modelData = modelFile.readAll();
  modelFile.close();


  // if we asked for the model to be output specifically, also do it
  if (_params.value("modelFilename", "").toString() != "") {
    QString filename = _params.value("modelFilename").toString();
    svm_save_model(filename.toAscii().constData(), model);
  }

  // destroy the model allocated by libsvm
  svm_destroy_model(model);

  Transformation result(dataset->layout());
  result.analyzerName = "svmtrain";
  result.analyzerParams = _params;
  result.applierName = "svmpredict";
  result.params.insert("modelData", modelData);
  result.params.insert("className", _params.value("className"));
  result.params.insert("descriptorNames", descs);
  result.params.insert("classMapping", classMapping);
  result.params.insert("probability", (param.probability == 1 && (param.svm_type == C_SVC ||
                                                                  param.svm_type == NU_SVC)));
  return result;
}
Example #23
0
int main(int argc, char *argv[]) {

    float labels[4] = {1.0, 1.0, -1.0, -1.0};
    cv::Mat labelsMat(4, 1, CV_32FC1, labels);
    float trainingData[4][2] = {{501, 10}, {255, 10},
                                {501, 255}, {10, 501}};
    cv::Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
    
    svm_parameter param;
    param.svm_type = C_SVC;
    param.kernel_type = LINEAR;
    param.degree = 3;
    param.gamma = 0;
    param.coef0 = 0;
    param.nu = 0.5;
    param.cache_size = 100;
    param.C = 1;
    param.eps = 1e-6;
    param.p = 0.1;
    param.shrinking = 1;
    param.probability = 1;
    param.nr_weight = 0;
    param.weight_label = NULL;
    param.weight = NULL;
    
    svm_problem svm_prob_vector = libSVMWrapper(
       trainingDataMat, labelsMat, param);
    struct svm_model *model = new svm_model;
    if (svm_check_parameter(&svm_prob_vector, &param)) {
       std::cout << "ERROR" << std::endl;
    } else {
       model = svm_train(&svm_prob_vector, &param);
    }

    bool is_compute_probability = true;
    std::string model_file_name = "svm";
    bool save_model = true;
    if (save_model) {
       try {
          svm_save_model(model_file_name.c_str(), model);
          std::cout << "Model file Saved Successfully..." << std::endl;
       } catch(std::exception& e) {
          std::cout << e.what() << std::endl;
       }
    }


    bool is_probability_model = svm_check_probability_model(model);
    int svm_type = svm_get_svm_type(model);
    int nr_class = svm_get_nr_class(model);  // number of classes
    double *prob_estimates = new double[nr_class];

    cv::Vec3b green(0, 255, 0);
    cv::Vec3b blue(255, 0, 0);
    int width = 512, height = 512;
    cv::Mat image = cv::Mat::zeros(height, width, CV_8UC3);
    for (int i = 0; i < image.rows; ++i) {
       for (int j = 0; j < image.cols; ++j) {
          cv::Mat sampleMat = (cv::Mat_<float>(1, 2) << j, i);
              
          int dims = sampleMat.cols;
          svm_node* test_pt = new svm_node[dims];
          for (int k = 0; k < dims; k++) {
             test_pt[k].index = k + 1;
             test_pt[k].value = static_cast<double>(sampleMat.at<float>(0, k));
          }
          test_pt[dims].index = -1;

          float response = 0.0f;
          if (is_probability_model && is_compute_probability) {
             response = svm_predict_probability(model, test_pt, prob_estimates);
          } else {
             response = svm_predict(model, test_pt);
          }
          
          /*
          std::cout << "Predict: " << prob << std::endl;
          for (int y = 0; y < nr_class; y++) {
             std::cout << prob_estimates[y] << "  ";
          }std::cout <<  std::endl;
          */
          
          if (prob_estimates[0] > 0.5 || response == 1) {
             image.at<cv::Vec3b>(i, j)  = green;
          } else if (prob_estimates[1] >= 0.5 || response == -1) {
             image.at<cv::Vec3b>(i, j)  = blue;
          }
       }
    }
    cv::imshow("image", image);
    cv::waitKey(0);
    return 0;
}
Example #24
0
int
svmTrain (double gamma, std::vector<std::vector<svm_node> > data, std::vector<int> labels)
{
  struct svm_model* model;
  struct svm_problem prob;      
  struct svm_node* x_space;     
  struct svm_parameter param;   

  // Make sure we have data
  if (data.empty ())
  {
    CORE_ERROR ("No training data\n");
    return (-1);  
  }
  
  prob.l = data.size ();
  prob.y = Malloc (double, prob.l);
  prob.x = Malloc (struct svm_node* , prob.l);
  x_space = Malloc (struct svm_node, data.size () * data[0].size ());
  
  int j = 0;
  for (int i = 0; i < prob.l; ++i)
  {
    prob.y[i] = *(labels.begin () + i);
    prob.x[i] = &x_space[j];
    for (std::vector<svm_node>::iterator it = data[i].begin (); it != data[i].end (); ++it)
    {
      x_space[j].index = it->index;
      x_space[j].value = it->value;
      ++j;
    } 
  }

  param.svm_type = C_SVC;
  param.kernel_type = RBF;
  param.gamma = gamma; 
  param.degree = 3;
  param.coef0 = 0;
  param.nu = 0.5;
  param.cache_size = 100;
  param.C = 1;
  param.eps = 1e-3;
  param.p = 0.1;
  param.shrinking = 1;
  param.probability = 0;
  param.nr_weight = 0;
  param.weight_label = NULL;
  param.weight = NULL;

  // Check whether the parameters are within a feasible range of the problem
  const char* error_msg = svm_check_parameter (&prob, &param);
  if (error_msg)
  {
    CORE_ERROR ("Error checking SVM parameters: %s\n", error_msg);
    return (-1);
  }

  model = svm_train (&prob, &param);
  if (svm_save_model ("model.txt", model))
  {
    CORE_ERROR ("Save SVM model failed\n");
    return (-1);
  }

  svm_free_and_destroy_model (&model);
  svm_destroy_param (&param);
  free (prob.y);
  free (prob.x);
  free (x_space);

  return (0);
}
void LibsvmSvm::save(std::string file) {
  svm_save_model(file.c_str(), _model);
  Util::zip(file);
}
Example #26
0
int Solver_Core::Solve(int num_basis, double cvm_eps)
{
	timeusedForModelSaving = 0;
	modelsWritten = 0;
	algorithmStartTime  = pnow();	
	nextSaveTime = param->saveFactor * (modelsWritten+1) + floor (pow (param->saveExponential, 1));
	saveExponential = param->saveExponential;
	
	this->maxNumBasis = num_basis;

    // The convergence of CVM does not require the exact MEB on the core-set. 
    // With the recent advance of core-set approximation, the (1+epsilon/2)-MEB approximation on the core-set 
    // can guarantee the quality and the convergence of the (1+epsilon)-MEB approximation for the whole data set.
    // See [Kumar, Mitchell, and Yildirim, 2003]
    //
	// iterate on epsilons
	double epsilonFactor = EPS_SCALING;
	for(double currentEpsilon = INITIAL_EPS; currentEpsilon/epsilonFactor > cvm_eps; currentEpsilon *= epsilonFactor)
	{
		// check epsilon
		currentEpsilon = (currentEpsilon < cvm_eps ? cvm_eps : currentEpsilon);		

		// solve problem with current epsilon (warm start from the previous solution)
		double maxDistance2 = 0.0;
		int maxDistance2Idx = 0;
		double factor       = 1.0 + currentEpsilon;
		factor             *= factor;

        // The convergence of CVM does not require the exact most violating point. 
        // A violating point is enough for the convergence of CVM. 
        // Probabilistic speedup lead to a good tradeoff between convergence and complexity at each iteration
        //
		while (maxDistance2Idx != -1)
		{
			// get a probabilistic sample
			maxDistance2    = r2 * factor;
			maxDistance2Idx = -1;			
			for(int sampleIter = 0; (sampleIter < 7) && (maxDistance2Idx == -1); sampleIter++)			
				maxDistance2 = _maxDistFromSampling(maxDistance2, maxDistance2Idx);

			// check maximal distance
			if (maxDistance2Idx != -1)
			{	
				_UpdateCoreSet(maxDistance2Idx);	
#ifndef RELEASE_VER
				printf("#%d eps: %g |c|: %.10f  R: %.10f |c-x|: %.10f r: %.10f\n",coreNum, currentEpsilon, coreNorm2, r2, maxDistance2, sqrt(maxDistance2/r2)-1.0);
#endif				
				solver->Solve(coreIdx,coreNum,tempD);
				outAlpha = solver->getAlpha();				
				ComputeRadius2();
//				if (coreNum%20 < 1) info(".");				
			}
			
			
			double currentTime = pnow ();
			if ((param->saveExponential >= 0.0) && (currentTime - algorithmStartTime >= nextSaveTime + timeusedForModelSaving )) {
				modelsWritten++;
				printf( "&%d..", modelsWritten);
				nextSaveTime = param->saveFactor * (modelsWritten+1)  + pow (param->saveExponential, modelsWritten + 1);
// 				std::cout << "Algorithm time is now " << currentTime - algorithmStartTime - timeusedForModelSaving << "\n";
// 				std::cout << "  Saving model now at " << currentTime - startTime << "\n";
				double before = pnow();

				svm_model *model = Malloc(svm_model,1);
				model->param = *param;
				model->free_sv = 0;	// XXX
				model->nr_class = param->nr_classes;

				model->label = Malloc(int,model->nr_class);
				for(int i=0;i<model->nr_class;i++)
					model->label[i] = param->label[i];

				model->rho = Malloc(double,1);
				double *alpha = Malloc(double,param->prob->l);
				double THRESHOLD = 1e-5/coreNum;
				for(int i=0;i<1;i++)
					model->rho[i] = -ComputeSolution(alpha, THRESHOLD);	 //overwrite alphas!

				model->nSV = Malloc(int, model->nr_class);
				
				// assume all the nonzeros are false at the beginning,
				// we have binary classification, they will not change in the 
				// outer loop in svm.cpp

				int total_sv = 0;
				for(int i=0;i<model->nr_class;i++)
				{
					int nSV = 0;
					for(int j=0;j<param->count[i];j++) {
						if(fabs(alpha[param->start[i]+j])) {	
							++nSV;
							++total_sv;
						}
					}
					model->nSV[i] = nSV;
				}
				
				model->l = total_sv; //anzahl der sv im model

				// ASSUME PERMUTATION IS IDENTITY
				svm_node **x = Malloc(svm_node *,param->prob->l);
				int i;
				for(int i=0;i<param->prob->l;i++)
					x[i] = param->prob->x[i]; //					x[i] = param->prob->x[perm[i]];
				model->SV = Malloc(svm_node *,total_sv);

				int p = 0;
				for(int i=0;i<param->prob->l;i++) {
					if(fabs(alpha[i]) > 0.0) {
						model->SV[p++] = x[i];
					}
				}

				model->sv_coef = Malloc(double *,model->nr_class-1);
				for(int i=0;i<model->nr_class-1;i++) {
					model->sv_coef[i] = Malloc(double,total_sv);
				}

//				printf ("%d SV  class 0, %d SV  class 1\n", model->nSV[0], model->nSV[1]);
				int q = 0;
				for(int i=0;i<model->nr_class;i++)
				{
					for(int j=0;j < param->count[i];j++) {
						if(fabs(alpha[param->start[i]+j]) > 0.0) {	
							model->sv_coef[0][q++] = alpha[param->start[i]+j];// * param->prob->y[param->start[i]+j];
//							printf ("%d -- %f\n", q, alpha[param->start[i]+j]);
						}
					}
				}				
				
				p = 0;
				char tmp[1000];
				if (strlen(param->modelPath) < 2) {
					sprintf(tmp,"%s_%d",param->modelFile, (int)floor( before - algorithmStartTime - timeusedForModelSaving) ); 
				} else {
					sprintf(tmp,"%s/%d.cvm.model",param->modelPath, (int)floor( before - algorithmStartTime - timeusedForModelSaving) ) ;
				}

				model->probB = NULL;
				model->probA = NULL;
				svm_save_model(tmp, model);
				
				// just to keep compability
				FILE* fModel = fopen(tmp, "a+t");					// append mode
				fprintf(fModel, "CPU Time = %f second\n", before - algorithmStartTime - timeusedForModelSaving);
				fclose(fModel);

				
//				svm_destroy_model(model);
				//free(x);


				double after = pnow();
				timeusedForModelSaving += after - before;
			}

			// check if we are over the walltime
			if (pnow() - param->startTime >  param->wallTime + timeusedForModelSaving) {
				printf ("Hit the walltime, exiting now..\n");
				return coreNum;
			}

			
			if (IsExitOnMaxIter())
			{
				return coreNum;
				break;
			}
		}
	}	
Example #27
0
    //train the svm using the parameters defined inside this method
    void ML2::trainData()
    {

        //file to store the svm model structure
	    string model_file_name1 = flowstatistics_train_name+"_model.csv";
        const char *model_file_name = model_file_name1.c_str();
        //file to read the data from
	    char input_file_name[1024] = "velocityArray.csv";
        //char input_file_name2[1024] = "data/flowstatistics_train_mu.csv";
	    const char *error_msg;

       //parameters of the svm
        /*
       "-s svm_type : set type of SVM (default 0)\n"
	    "	0 -- C-SVC		(multi-class classification)\n"
	    "	1 -- nu-SVC		(multi-class classification)\n"
	    "	2 -- one-class SVM\n"
	    "	3 -- epsilon-SVR	(regression)\n"
	    "	4 -- nu-SVR		(regression)\n"
	    "-t kernel_type : set type of kernel function (default 2)\n"
	    "	0 -- linear: u'*v\n"
	    "	1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
	    "	2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
	    "	3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
	    "	4 -- precomputed kernel (kernel values in training_set_file)\n"
	    "-d degree : set degree in kernel function (default 3)\n"
	    "-g gamma : set gamma in kernel function (default 1/num_features)\n"
	    "-r coef0 : set coef0 in kernel function (default 0)\n"
	    "-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
	    "-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
	    "-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
	    "-m cachesize : set cache memory size in MB (default 100)\n"
	    "-e epsilon : set tolerance of termination criterion (default 0.001)\n"
	    "-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
	    "-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
	    "-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
	    "-v n: n-fold cross validation mode\n"
	    "-q : quiet mode (no outputs)\n"
        */
	    //set the parameters to be used for svm
        param.svm_type = 4;
	    param.kernel_type = 1;//RBF;
	    param.degree = 2;
	    param.gamma = 0.125;	// 1/num_features
	    param.coef0 = 0;
	    param.nu = 0.4;
	    param.cache_size = 100;
	    param.C = 0.125;
	    param.eps = 1e-3;
	    param.p = 0.1;
	    param.shrinking = 1;
	    param.probability = 0;
	    param.nr_weight = 0;
	    param.weight_label = NULL;
	    param.weight = NULL;
        //param.v = 10;
        nr_fold =10;

        //read from the data file
	    read_problem_data( input_file_name, flowcol);

        //checking the parameters, if they are set correctly
	    error_msg = svm_check_parameter(&prob,&param);
	    if(error_msg)
	    {
		    cout<<"ERROR: "<<error_msg<<endl<<flush;
		    exit(1);
	    }

        //do_cross_validation();
        // first do grid search do find optimal parameters 
        //paramSelection();  

        
        // then do training with optimal parameters
        //param.gamma = best_gamma;
	    //param.C = best_C;

        cout<< "start training\n"<<endl<<flush; 
        model = svm_train(&prob,&param);
        cout<< "end training\n"<<endl<<flush; 
        
        // then do cross fold validation
        cout<< "start with cross validation" <<endl<<flush; 
	    do_cross_validation();
        cout<< "end cross validation" <<endl<<flush; 
       
        //save model
	    if(svm_save_model(model_file_name,model))
	    {
		    cout<< "can't save model to file "<< model_file_name <<endl<<flush; 
		    exit(1);
	    } 
	
	
        //free all the pointers used, except the model which is required for prediction
//             svm_destroy_param(&param);
// 	    free(prob.y);
// 	    free(prob.x);
// 	    free(x_space);
// 	    free(line);
	    return;
    }
Example #28
0
int main(int argc, char **argv)
{
	#ifdef WIN32
		// Send all reports to STDOUT
		_CrtSetReportMode( _CRT_WARN, _CRTDBG_MODE_FILE );
		_CrtSetReportFile( _CRT_WARN, _CRTDBG_FILE_STDOUT );
		_CrtSetReportMode( _CRT_ERROR, _CRTDBG_MODE_FILE );
		_CrtSetReportFile( _CRT_ERROR, _CRTDBG_FILE_STDOUT );
		_CrtSetReportMode( _CRT_ASSERT, _CRTDBG_MODE_FILE );
		_CrtSetReportFile( _CRT_ASSERT, _CRTDBG_FILE_STDOUT );

		// enable the options
		SET_CRT_DEBUG_FIELD( _CRTDBG_DELAY_FREE_MEM_DF );
		SET_CRT_DEBUG_FIELD( _CRTDBG_LEAK_CHECK_DF );
	#endif
		
	printf("int %d, short int %d, char %d, double %d, float %d, node %d\n",sizeof(int),sizeof(short int), sizeof(char), sizeof(double), sizeof(float), sizeof(svm_node));

	char input_file_name[FILENAME_LEN];    
	char model_file_name[FILENAME_LEN];
	const char *error_msg;

	parse_command_line(argc, argv, input_file_name, model_file_name);
    read_problem(input_file_name);
	param.modelFile = model_file_name;

	printf ("Finish reading input files!\n");

	error_msg = svm_check_parameter(&prob,&param);	

	#ifdef WIN32
		assert(_CrtCheckMemory());
	#endif

	if(error_msg)
	{
		fprintf(stderr,"Error: %s\n",error_msg);
		exit(1);
	}

    double duration;
	double start = getRunTime();
	if(cross_validation)
	{
		do_cross_validation();
	}
	else
	{
		printf("kernel: %d\n",param.kernel_type);
		model = svm_train(&prob,&param);
        double finish = getRunTime();	
        duration = (double)(finish - start);

    #ifdef WIN32
		assert(_CrtCheckMemory());
	#endif

		svm_save_model(model_file_name,model);
		svm_destroy_model(model);
	}
	
	printf("CPU Time = %f second\n", duration);
    FILE* fModel = fopen(model_file_name, "a+t");					// append mode
	fprintf(fModel, "CPU Time = %f second\n", duration);
	fclose(fModel);
	    
    svm_destroy_param(&param);
	free(prob.y);
	free(prob.x);
	free(x_space);

	#ifdef WIN32
		assert(_CrtCheckMemory());
	#endif

    return 0;
}
Example #29
0
/* @return 		   -> cross validation error
 * 				-1 -> could not open statistic_filename
 *
 */
int SVM::crossValidationParameters(char* pSampleFilename, char* pFixedTestFilename, char* pStatisticsFilename)
{
	struct svm_parameter strSvmParameters;
	struct svm_problem strSvmProblem;
	struct svm_model* pstrSvmModel;
	const char *error_msg;
	double dCrossValError = -1;
	double dFixTestSetError = -1;
	double dTrainError = -1;
	ofstream outputStatisticFile;
	char *pTempModelFilename = "tempSvmModel.tmp";
	double dGamma = -1;
	double dC = -1;
	char tempText[1000];

	//open statistic file
	outputStatisticFile.open(pStatisticsFilename, std::ios::trunc);

	if(!outputStatisticFile.is_open())
	{
		cout << "can not open statistic file " << pStatisticsFilename << std::endl;
		return -1;
	}

	//initial parameters
	this->setParameters(strSvmParameters);

	this->read_problem(pSampleFilename, strSvmProblem, strSvmParameters);
	error_msg = svm_check_parameter(&strSvmProblem, &strSvmParameters);

	outputStatisticFile << "\% " << pSampleFilename << std::endl;
	outputStatisticFile << "\% Gamma \t C \t TrainError \t CrossValError \t FixedTestError" << std::endl;
	cout 				<< "\% Gamma \t C \t TrainError \t CrossValError \t FixedTestError" << std::endl;


	for(int iExponentGamma = -25; iExponentGamma <= -2; ++iExponentGamma)
	{
		dGamma = pow(2.0, iExponentGamma);
		strSvmParameters.gamma = dGamma;

		for(int iExponentC = -1; iExponentC <= 15; ++iExponentC)
		{
			dC = pow(2.0, iExponentC);
			strSvmParameters.C = dC;

			//train
			pstrSvmModel = svm_train(&strSvmProblem, &strSvmParameters);
			svm_save_model(pTempModelFilename, pstrSvmModel);
			svm_destroy_model(pstrSvmModel);

			//test with train-set
			this->test(pSampleFilename, pTempModelFilename, dTrainError);

			//crossval
			dCrossValError = this->crossValidationSamples(strSvmProblem, strSvmParameters, 5);

			//test with fixed test-set
			this->test(pFixedTestFilename, pTempModelFilename, dFixTestSetError);

			remove(pTempModelFilename);

			sprintf(tempText, "%.15lf\t%10lf\t%10lf\t%10lf\t%10lf", dGamma, dC, dTrainError, dCrossValError, dFixTestSetError);

			outputStatisticFile << tempText << std::endl;
			cout 				<< "\n#######################################################################" << std::endl;
			cout				<< tempText << std::endl;
			cout 				<< "#######################################################################\n" << std::endl;
		}
	}

	//clean up
	outputStatisticFile.close();
	svm_destroy_param(&strSvmParameters);
	free(strSvmProblem.y);
	free(strSvmProblem.x);
	//free(pTempModelFilename);

	return 0;
}
Example #30
0
double im_svm_train(IMbdd& bdd,
		    const std::vector<std::string>& trainingPeople,
		    MatrixC& trainMC,
		    const std::vector<std::string>& testingPeople,
		    MatrixC& testMC){
  std::string path2bdd(bdd.getFolder());
  int k = bdd.getK();
  
  // Computing Bag Of Words for each people
  std::cout << "Computing BOWs..." << std::endl;
  std::map<std::string, struct svm_problem> peopleBOW;
  std::map<std::string, int> activitiesLabel;
  std::cout << "Computing the SVM problem (ie. BOW) of all the people..." << std::endl;
  im_compute_bdd_bow(bdd,peopleBOW); // all the BOW are saved in peopleBOW
  // Normalization: do not forget to change the normalization before this step
  //bdd.changeNormalizationSettings(normalization,
  //				      "means.txt",
  //"stand_devia.txt");
  for(std::vector<std::string>::const_iterator trainingPerson = trainingPeople.begin();
      trainingPerson != trainingPeople.end();
      ++ trainingPerson){
    for(int i=0 ; i<peopleBOW[*trainingPerson].l ; i++)
      std::cout << peopleBOW[*trainingPerson].y[i] << std::endl;
  }
  
  std::cout << "Normalizing the BOW..." << std::endl; 
  bdd.changeNormalizationSettings("simple",
				  "means.txt",
				  "stand_devia.txt");
  im_normalize_bdd_bow(bdd,trainingPeople,peopleBOW); 
  
  std::cout << "Not exporting the problem..." << std::endl;
  // Export ?? OR NOT export ???????? THAT IS THE QUESTION
  // Exporting problem
  //exportProblem(svmTrainProblem, path2bdd + "/concatenate.bow.train");
  //if(testingPeople != {""}) 
  //exportProblem(svmTestProblem, path2bdd + "/concatenate.bow.test");
  
  // * SVM *
  // (One Versus the Rest (OVR))
  // SVM parameters
  struct svm_parameter svmParameter;
  get_svm_parameter(k,svmParameter);
  std::cout << "Searching the best C and the best Gamma..." << std::endl;
  // We have to do a leave one out with the training data
  // For the moment we use the same training centers to find Gamma and C
  int minC = -5, maxC = 5;
  int minG = -10, maxG = 3;
  double crossValidationAccuracy =
    im_training_leave_one_out(bdd,
			      trainingPeople, peopleBOW,
			      minC, maxC, // ln(min/max C)
			      minG, maxG, // ln(min/max G)
			      svmParameter);
  // N.B: when we export the model to the robot, peopleBOW index = trainingPeople
  
  // Generating the SVM model
  std::cout << "Generating the SVM model..." << std::endl;
  struct svm_problem trainingProblem;
  trainingProblem.l = 0;
  trainingProblem.x = NULL;
  trainingProblem.y = NULL;
  for(std::vector<std::string>::const_iterator trainingPerson = trainingPeople.begin();
      trainingPerson != trainingPeople.end();
      ++ trainingPerson){
    for(int i=0 ; i < peopleBOW.at(*trainingPerson).l ; i++){
      struct svm_node* bow = peopleBOW.at(*trainingPerson).x[i];
      addBOW(bow, peopleBOW.at(*trainingPerson).y[i],trainingProblem);
    }
  }
  
  struct svm_model** svmModels = svm_train_ovr(&trainingProblem,&svmParameter);
  
  // Exporting models
  std::cout << "Saving the SVM model..." << std::endl;
  std::vector <std::string> modelFiles;
  int nrActivities = bdd.getActivities().size();
  for(int i=0 ; i< nrActivities ; i++){
    std::string fileToSaveModel = path2bdd;
    std::stringstream ss;
    ss << i;
    fileToSaveModel = fileToSaveModel + "/svm_ovr_" + ss.str() + ".model";
    svm_save_model(fileToSaveModel.c_str(),svmModels[i]);
    modelFiles.push_back(fileToSaveModel);
  }
  bdd.changeSVMSettings(nrActivities,
			modelFiles);
  
  // Calculate the confusion matrix and the probability estimation
  std::cout << "Filling the training confusion matrix..." << std::endl;
  im_fill_confusion_matrix(bdd,trainingProblem,svmModels, trainMC);
  destroy_svm_problem(trainingProblem);
  
  if(testingPeople.size() > 0){
    std::cerr << "Entering in Hell..." << std::endl;
    struct svm_problem testingProblem;
    trainingProblem.l = 0;
    trainingProblem.x = NULL;
    trainingProblem.y = NULL;
    for(std::vector<std::string>::const_iterator testingPerson = testingPeople.begin();
	testingPerson != testingPeople.end();
	++ testingPerson){
      for(int i=0 ; i < peopleBOW.at(*testingPerson).l ; i++){
	std::cerr << "HELlllll" << std::endl;
	struct svm_node* bow = peopleBOW.at(*testingPerson).x[i];
	std::cerr << peopleBOW.at(*testingPerson).y[i] << std::endl;
	std::cerr << "YOOOO man" << std::endl;
	addBOW(bow, peopleBOW.at(*testingPerson).y[i],testingProblem);
	std::cerr << "Why ?!!!" << std::endl;
      }
    }
    std::cout << "Filling the testing confusion matrix..." << std::endl;
    im_fill_confusion_matrix(bdd,testingProblem,svmModels, testMC);
    destroy_svm_problem(testingProblem);
  }
  
  std::cout << "Releasing peopleBOW" << std::endl;
  // Releasing peopleBOW
  std::vector<std::string> people = bdd.getPeople();
  for(std::vector<std::string>::iterator person = people.begin();
      person != people.end();
      ++ person){
    destroy_svm_problem(peopleBOW[*person]);
  }
  
  // Releasing OVR models
  for(int i=0;i<nrActivities;i++){
    svm_free_and_destroy_model(&svmModels[i]);}
  delete [] svmModels;
  svmModels = NULL;
  
  return crossValidationAccuracy;
}