Example #1
0
/*
 * Draw vertex arrays, with optional indexing, optional instancing.
 */
static void
swr_draw_vbo(struct pipe_context *pipe, const struct pipe_draw_info *info)
{
   struct swr_context *ctx = swr_context(pipe);

   if (!swr_check_render_cond(pipe))
      return;

   if (info->indirect) {
      util_draw_indirect(pipe, info);
      return;
   }

   /* Update derived state, pass draw info to update function */
   if (ctx->dirty)
      swr_update_derived(pipe, info);

   swr_update_draw_context(ctx);

   if (ctx->vs->pipe.stream_output.num_outputs) {
      if (!ctx->vs->soFunc[info->mode]) {
         STREAMOUT_COMPILE_STATE state = {0};
         struct pipe_stream_output_info *so = &ctx->vs->pipe.stream_output;

         state.numVertsPerPrim = u_vertices_per_prim(info->mode);

         uint32_t offsets[MAX_SO_STREAMS] = {0};
         uint32_t num = 0;

         for (uint32_t i = 0; i < so->num_outputs; i++) {
            assert(so->output[i].stream == 0); // @todo
            uint32_t output_buffer = so->output[i].output_buffer;
            if (so->output[i].dst_offset != offsets[output_buffer]) {
               // hole - need to fill
               state.stream.decl[num].bufferIndex = output_buffer;
               state.stream.decl[num].hole = true;
               state.stream.decl[num].componentMask =
                  (1 << (so->output[i].dst_offset - offsets[output_buffer]))
                  - 1;
               num++;
               offsets[output_buffer] = so->output[i].dst_offset;
            }

            state.stream.decl[num].bufferIndex = output_buffer;
            state.stream.decl[num].attribSlot = so->output[i].register_index - 1;
            state.stream.decl[num].componentMask =
               ((1 << so->output[i].num_components) - 1)
               << so->output[i].start_component;
            state.stream.decl[num].hole = false;
            num++;

            offsets[output_buffer] += so->output[i].num_components;
         }

         state.stream.numDecls = num;

         HANDLE hJitMgr = swr_screen(pipe->screen)->hJitMgr;
         ctx->vs->soFunc[info->mode] = JitCompileStreamout(hJitMgr, state);
         debug_printf("so shader    %p\n", ctx->vs->soFunc[info->mode]);
         assert(ctx->vs->soFunc[info->mode] && "Error: SoShader = NULL");
      }

      SwrSetSoFunc(ctx->swrContext, ctx->vs->soFunc[info->mode], 0);
   }

   struct swr_vertex_element_state *velems = ctx->velems;
   if (!velems->fsFunc
       || (velems->fsState.cutIndex != info->restart_index)
       || (velems->fsState.bEnableCutIndex != info->primitive_restart)) {

      velems->fsState.cutIndex = info->restart_index;
      velems->fsState.bEnableCutIndex = info->primitive_restart;

      /* Create Fetch Shader */
      HANDLE hJitMgr = swr_screen(ctx->pipe.screen)->hJitMgr;
      velems->fsFunc = JitCompileFetch(hJitMgr, velems->fsState);

      debug_printf("fetch shader %p\n", velems->fsFunc);
      assert(velems->fsFunc && "Error: FetchShader = NULL");
   }

   SwrSetFetchFunc(ctx->swrContext, velems->fsFunc);

   /* Set up frontend state
    * XXX setup provokingVertex & topologyProvokingVertex */
   SWR_FRONTEND_STATE feState = {0};
   if (ctx->rasterizer->flatshade_first) {
      feState.provokingVertex = {1, 0, 0};
   } else {
      feState.provokingVertex = {2, 1, 2};
   }

   switch (info->mode) {
   case PIPE_PRIM_TRIANGLE_FAN:
      feState.topologyProvokingVertex = feState.provokingVertex.triFan;
      break;
   case PIPE_PRIM_TRIANGLE_STRIP:
   case PIPE_PRIM_TRIANGLES:
      feState.topologyProvokingVertex = feState.provokingVertex.triStripList;
      break;
   case PIPE_PRIM_QUAD_STRIP:
   case PIPE_PRIM_QUADS:
      if (ctx->rasterizer->flatshade_first)
         feState.topologyProvokingVertex = 0;
      else
         feState.topologyProvokingVertex = 3;
      break;
   case PIPE_PRIM_LINES:
   case PIPE_PRIM_LINE_LOOP:
   case PIPE_PRIM_LINE_STRIP:
      feState.topologyProvokingVertex = feState.provokingVertex.lineStripList;
      break;
   default:
      feState.topologyProvokingVertex = 0;
   }

   feState.bEnableCutIndex = info->primitive_restart;
   SwrSetFrontendState(ctx->swrContext, &feState);

   if (info->indexed)
      SwrDrawIndexedInstanced(ctx->swrContext,
                              swr_convert_prim_topology(info->mode),
                              info->count,
                              info->instance_count,
                              info->start,
                              info->index_bias,
                              info->start_instance);
   else
      SwrDrawInstanced(ctx->swrContext,
                       swr_convert_prim_topology(info->mode),
                       info->count,
                       info->instance_count,
                       info->start,
                       info->start_instance);
}
Example #2
0
/*
 * Draw vertex arrays, with optional indexing, optional instancing.
 */
static void
swr_draw_vbo(struct pipe_context *pipe, const struct pipe_draw_info *info)
{
   struct swr_context *ctx = swr_context(pipe);

   if (!info->count_from_stream_output && !info->indirect &&
       !info->primitive_restart &&
       !u_trim_pipe_prim(info->mode, (unsigned*)&info->count))
      return;

   if (!swr_check_render_cond(pipe))
      return;

   if (info->indirect) {
      util_draw_indirect(pipe, info);
      return;
   }

   /* If indexed draw, force vertex validation since index buffer comes
    * from draw info. */
   if (info->index_size)
      ctx->dirty |= SWR_NEW_VERTEX;

   /* Update derived state, pass draw info to update function. */
   swr_update_derived(pipe, info);

   swr_update_draw_context(ctx);

   if (ctx->vs->pipe.stream_output.num_outputs) {
      if (!ctx->vs->soFunc[info->mode]) {
         STREAMOUT_COMPILE_STATE state = {0};
         struct pipe_stream_output_info *so = &ctx->vs->pipe.stream_output;

         state.numVertsPerPrim = u_vertices_per_prim(info->mode);

         uint32_t offsets[MAX_SO_STREAMS] = {0};
         uint32_t num = 0;

         for (uint32_t i = 0; i < so->num_outputs; i++) {
            assert(so->output[i].stream == 0); // @todo
            uint32_t output_buffer = so->output[i].output_buffer;
            if (so->output[i].dst_offset != offsets[output_buffer]) {
               // hole - need to fill
               state.stream.decl[num].bufferIndex = output_buffer;
               state.stream.decl[num].hole = true;
               state.stream.decl[num].componentMask =
                  (1 << (so->output[i].dst_offset - offsets[output_buffer]))
                  - 1;
               num++;
               offsets[output_buffer] = so->output[i].dst_offset;
            }

            unsigned attrib_slot = so->output[i].register_index;
            attrib_slot = swr_so_adjust_attrib(attrib_slot, ctx->vs);

            state.stream.decl[num].bufferIndex = output_buffer;
            state.stream.decl[num].attribSlot = attrib_slot;
            state.stream.decl[num].componentMask =
               ((1 << so->output[i].num_components) - 1)
               << so->output[i].start_component;
            state.stream.decl[num].hole = false;
            num++;

            offsets[output_buffer] += so->output[i].num_components;
         }

         state.stream.numDecls = num;

         HANDLE hJitMgr = swr_screen(pipe->screen)->hJitMgr;
         ctx->vs->soFunc[info->mode] = JitCompileStreamout(hJitMgr, state);
         debug_printf("so shader    %p\n", ctx->vs->soFunc[info->mode]);
         assert(ctx->vs->soFunc[info->mode] && "Error: SoShader = NULL");
      }

      ctx->api.pfnSwrSetSoFunc(ctx->swrContext, ctx->vs->soFunc[info->mode], 0);
   }

   struct swr_vertex_element_state *velems = ctx->velems;
   if (info->primitive_restart)
      velems->fsState.cutIndex = info->restart_index;
   else
      velems->fsState.cutIndex = 0;
   velems->fsState.bEnableCutIndex = info->primitive_restart;
   velems->fsState.bPartialVertexBuffer = (info->min_index > 0);

   swr_jit_fetch_key key;
   swr_generate_fetch_key(key, velems);
   auto search = velems->map.find(key);
   if (search != velems->map.end()) {
      velems->fsFunc = search->second;
   } else {
      HANDLE hJitMgr = swr_screen(ctx->pipe.screen)->hJitMgr;
      velems->fsFunc = JitCompileFetch(hJitMgr, velems->fsState);

      debug_printf("fetch shader %p\n", velems->fsFunc);
      assert(velems->fsFunc && "Error: FetchShader = NULL");

      velems->map.insert(std::make_pair(key, velems->fsFunc));
   }

   ctx->api.pfnSwrSetFetchFunc(ctx->swrContext, velems->fsFunc);

   /* Set up frontend state
    * XXX setup provokingVertex & topologyProvokingVertex */
   SWR_FRONTEND_STATE feState = {0};

   // feState.vsVertexSize seeds the PA size that is used as an interface
   // between all the shader stages, so it has to be large enough to
   // incorporate all interfaces between stages

   // max of gs and vs num_outputs
   feState.vsVertexSize = ctx->vs->info.base.num_outputs;
   if (ctx->gs &&
       ctx->gs->info.base.num_outputs > feState.vsVertexSize) {
      feState.vsVertexSize = ctx->gs->info.base.num_outputs;
   }

   if (ctx->vs->info.base.num_outputs) {
      // gs does not adjust for position in SGV slot at input from vs
      if (!ctx->gs)
         feState.vsVertexSize--;
   }

   // other (non-SGV) slots start at VERTEX_ATTRIB_START_SLOT
   feState.vsVertexSize += VERTEX_ATTRIB_START_SLOT;

   // The PA in the clipper does not handle BE vertex sizes
   // different from FE. Increase vertexsize only for the cases that needed it

   // primid needs a slot
   if (ctx->fs->info.base.uses_primid)
      feState.vsVertexSize++;
   // sprite coord enable
   if (ctx->rasterizer->sprite_coord_enable)
      feState.vsVertexSize++;


   if (ctx->rasterizer->flatshade_first) {
      feState.provokingVertex = {1, 0, 0};
   } else {
      feState.provokingVertex = {2, 1, 2};
   }

   enum pipe_prim_type topology;
   if (ctx->gs)
      topology = (pipe_prim_type)ctx->gs->info.base.properties[TGSI_PROPERTY_GS_OUTPUT_PRIM];
   else
      topology = info->mode;

   switch (topology) {
   case PIPE_PRIM_TRIANGLE_FAN:
      feState.topologyProvokingVertex = feState.provokingVertex.triFan;
      break;
   case PIPE_PRIM_TRIANGLE_STRIP:
   case PIPE_PRIM_TRIANGLES:
      feState.topologyProvokingVertex = feState.provokingVertex.triStripList;
      break;
   case PIPE_PRIM_QUAD_STRIP:
   case PIPE_PRIM_QUADS:
      if (ctx->rasterizer->flatshade_first)
         feState.topologyProvokingVertex = 0;
      else
         feState.topologyProvokingVertex = 3;
      break;
   case PIPE_PRIM_LINES:
   case PIPE_PRIM_LINE_LOOP:
   case PIPE_PRIM_LINE_STRIP:
      feState.topologyProvokingVertex = feState.provokingVertex.lineStripList;
      break;
   default:
      feState.topologyProvokingVertex = 0;
   }

   feState.bEnableCutIndex = info->primitive_restart;
   ctx->api.pfnSwrSetFrontendState(ctx->swrContext, &feState);

   if (info->index_size)
      ctx->api.pfnSwrDrawIndexedInstanced(ctx->swrContext,
                                          swr_convert_prim_topology(info->mode),
                                          info->count,
                                          info->instance_count,
                                          info->start,
                                          info->index_bias,
                                          info->start_instance);
   else
      ctx->api.pfnSwrDrawInstanced(ctx->swrContext,
                                   swr_convert_prim_topology(info->mode),
                                   info->count,
                                   info->instance_count,
                                   info->start,
                                   info->start_instance);

   /* On large client-buffer draw, we used client buffer directly, without
    * copy.  Block until draw is finished.
    * VMD is an example application that benefits from this. */
   if (ctx->dirty & SWR_LARGE_CLIENT_DRAW) {
      struct swr_screen *screen = swr_screen(pipe->screen);
      swr_fence_submit(ctx, screen->flush_fence);
      swr_fence_finish(pipe->screen, NULL, screen->flush_fence, 0);
   }
}