// ============================================================================
void VideoProcessor::get_robot_pos()
{
    // detect the markers
    this->m_markers = this->m_detector.detect(this->m_image_input, this->m_cam_param, this->m_marker_size);

    // no markers found
    if (this->m_markers.size() == 0) {
        this->m_flag_robot_found = false;
        return;
    }

    // if found, check if id match the robot marker id
//    cv::Mat t_output_image;
//    this->m_image_input.copyTo(t_output_image);
    this->m_flag_robot_found = false;
    for (int i = 0; i < this->m_markers.size(); i++) {
        if (this->m_markers[i].id == this->m_marker_id_robot) {
            // found robot
            this->m_flag_robot_found = true;

//            // draw cube
//            this->m_markers[i].draw(t_output_image, cv::Scalar(0, 0, 255), 1);
//            aruco::CvDrawingUtils::draw3dCube(t_output_image, this->m_markers[i], this->m_cam_param);
//            aruco::CvDrawingUtils::draw3dAxis(t_output_image, this->m_markers[i], this->m_cam_param);

            // obtain position information
            geometry_msgs::Pose2D t_pose;
            t_pose.x = this->m_markers[i].Tvec.at<float>(0, 0);
            t_pose.y = this->m_markers[i].Tvec.at<float>(1, 0);

            // calculate orientation using Euler angle
            Eigen::Vector3d t_angle_axis;
            t_angle_axis << this->m_markers[i].Rvec.at<float>(0, 0),
                            this->m_markers[i].Rvec.at<float>(1, 0),
                            this->m_markers[i].Rvec.at<float>(2, 0);

            Eigen::Matrix3d t_rot;
            t_rot = Eigen::AngleAxisd(t_angle_axis.norm(), t_angle_axis.normalized());

            // reverse the y and z axis
            for (int i = 0; i < 3; i++) {
                for (int j = 1; j < 3; j++) {
                    t_rot(i, j) = -t_rot(i, j);
                }
            }

            Eigen::Vector3d ea = t_rot.eulerAngles(0, 1, 2);
            t_pose.theta = ea[2];

            // convert to [0 2*pi]
            if (t_pose.theta < 0) {
                t_pose.theta += 2 * PI;
            } else if (t_pose.theta > 2 * PI) {
                t_pose.theta -= 2 * PI;
            }

            // write to file
            double t = (double) (this->m_frame_count - 1) / (double) this->m_frame_rate;
            this->m_robot_data << t << ",  " << t_pose.x << ",  " << t_pose.y << ",  " << t_pose.theta << std::endl;

            break;
        }
    }

//    cv::Mat t_display;
//    cv::resize(t_output_image, t_display, cv::Size(), 0.5, 0.5);
//    cv::imshow("test", t_display);
//    cv::waitKey(5);
}
Example #2
0
void Polyhedra::Initialize(){

	if (init) return;

	bool isRandom = false;
	
	//get vertices
	int N = (int) v.size();	
	if (N==0) {
		//generate randomly
		while ((int) v.size()<4) GenerateRandomGeometry();
		N = (int) v.size();
		isRandom = true;
	}

	//compute convex hull of vertices	
	std::vector<CGALpoint> points;
	points.resize(v.size());
	for(int i=0;i<N;i++) {
		points[i] = CGALpoint(v[i][0],v[i][1],v[i][2]);
	}

	CGAL::convex_hull_3(points.begin(), points.end(), P);
	
	//connect triagular facets if possible
	std::transform(P.facets_begin(), P.facets_end(), P.planes_begin(),Plane_equation());
	P = Simplify(P, 1E-9);

	//modify order of v according to CGAl polyhedron 
	int i = 0;
	v.clear();
	for (Polyhedron::Vertex_iterator vIter = P.vertices_begin(); vIter != P.vertices_end(); ++vIter, i++){
		v.push_back(Vector3r(vIter->point().x(),vIter->point().y(),vIter->point().z()));
	}	

	//list surface triangles for plotting
	faceTri.clear();
	std::transform(P.facets_begin(), P.facets_end(), P.planes_begin(),Plane_equation());
	for (Polyhedron::Facet_iterator fIter = P.facets_begin(); fIter != P.facets_end(); fIter++){
		Polyhedron::Halfedge_around_facet_circulator hfc0;
		int n = fIter->facet_degree();
		hfc0 = fIter->facet_begin();		
		int a = std::distance(P.vertices_begin(), hfc0->vertex());
		for (int i=2; i<n; i++){
			++hfc0;
			faceTri.push_back(a);
			faceTri.push_back(std::distance(P.vertices_begin(), hfc0->vertex()));
			faceTri.push_back(std::distance(P.vertices_begin(), hfc0->next()->vertex()));
		}
	}

	//compute centroid and volume
	P_volume_centroid(P, &volume, &centroid);
	//check vierd behavior of CGAL in tessalation
	if(isRandom && volume*1.75<4./3.*3.14*size[0]/2.*size[1]/2.*size[2]/2.) {
		v.clear();
		seed = rand();
		Initialize();
	}
        Vector3r translation((-1)*centroid);
	
	//set centroid to be [0,0,0]
	for(int i=0;i<N;i++) {
		v[i] = v[i]-centroid;
	}
	if(isRandom) centroid = Vector3r::Zero();

	Vector3r origin(0,0,0);

	//move and rotate also the CGAL structure Polyhedron
	Transformation t_trans(1.,0.,0.,translation[0],0.,1.,0.,translation[1],0.,0.,1.,translation[2],1.);		
	std::transform( P.points_begin(), P.points_end(), P.points_begin(), t_trans);	

	//compute inertia	
	Real vtet;
	Vector3r ctet;
	Matrix3r Itet1, Itet2;
	Matrix3r inertia_tensor(Matrix3r::Zero());
	for(int i=0; i<(int) faceTri.size(); i+=3){
		vtet = std::abs((origin-v[faceTri[i+2]]).dot((v[faceTri[i]]-v[faceTri[i+2]]).cross(v[faceTri[i+1]]-v[faceTri[i+2]]))/6.);		
		ctet = (origin+v[faceTri[i]]+v[faceTri[i+1]]+v[faceTri[i+2]]) / 4.;
		Itet1 = TetraInertiaTensor(origin-ctet, v[faceTri[i]]-ctet, v[faceTri[i+1]]-ctet, v[faceTri[i+2]]-ctet);
		ctet = ctet-origin;
		Itet2<<
			ctet[1]*ctet[1]+ctet[2]*ctet[2], -ctet[0]*ctet[1], -ctet[0]*ctet[2],
			-ctet[0]*ctet[1], ctet[0]*ctet[0]+ctet[2]*ctet[2], -ctet[2]*ctet[1],
			-ctet[0]*ctet[2], -ctet[2]*ctet[1], ctet[1]*ctet[1]+ctet[0]*ctet[0];
		inertia_tensor = inertia_tensor + Itet1 + Itet2*vtet; 
	}	

	if(std::abs(inertia_tensor(0,1))+std::abs(inertia_tensor(0,2))+std::abs(inertia_tensor(1,2)) < 1E-13){
		// no need to rotate, inertia already diagonal
		orientation = Quaternionr::Identity();
		inertia = Vector3r(inertia_tensor(0,0),inertia_tensor(1,1),inertia_tensor(2,2));
	}else{
		// calculate eigenvectors of I
		Vector3r rot;
		Matrix3r I_rot(Matrix3r::Zero()), I_new(Matrix3r::Zero()); 
		matrixEigenDecomposition(inertia_tensor,I_rot,I_new);
		// I_rot = eigenvectors of inertia_tensors in columns
		// I_new = eigenvalues on diagonal
		// set positove direction of vectors - otherwise reloading does not work
		Matrix3r sign(Matrix3r::Zero()); 
		Real max_v_signed = I_rot(0,0);
		Real max_v = std::abs(I_rot(0,0));
		if (max_v < std::abs(I_rot(1,0))) {max_v_signed = I_rot(1,0); max_v = std::abs(I_rot(1,0));} 
		if (max_v < std::abs(I_rot(2,0))) {max_v_signed = I_rot(2,0); max_v = std::abs(I_rot(2,0));} 
		sign(0,0) = max_v_signed/max_v;
		max_v_signed = I_rot(0,1);
		max_v = std::abs(I_rot(0,1));
		if (max_v < std::abs(I_rot(1,1))) {max_v_signed = I_rot(1,1); max_v = std::abs(I_rot(1,1));} 
		if (max_v < std::abs(I_rot(2,1))) {max_v_signed = I_rot(2,1); max_v = std::abs(I_rot(2,1));} 
		sign(1,1) = max_v_signed/max_v;
		sign(2,2) = 1.;
		I_rot = I_rot*sign;
		// force the eigenvectors to be right-hand oriented
		Vector3r third = (I_rot.col(0)).cross(I_rot.col(1));
		I_rot(0,2) = third[0];
		I_rot(1,2) = third[1];
		I_rot(2,2) = third[2];	
		
					
		inertia = Vector3r(I_new(0,0),I_new(1,1),I_new(2,2));
		orientation = Quaternionr(I_rot); 
		//rotate the voronoi cell so that x - is maximal inertia axis and z - is minimal inertia axis
		//orientation.normalize();  //not needed
		for(int i=0; i< (int) v.size();i++) {
			v[i] =  orientation.conjugate()*v[i];
		}
			
		//rotate also the CGAL structure Polyhedron
		Matrix3r rot_mat = (orientation.conjugate()).toRotationMatrix();
		Transformation t_rot(rot_mat(0,0),rot_mat(0,1),rot_mat(0,2),rot_mat(1,0),rot_mat(1,1),rot_mat(1,2),rot_mat(2,0),rot_mat(2,1),rot_mat(2,2),1.);	
		std::transform( P.points_begin(), P.points_end(), P.points_begin(), t_rot);

	}
	//initialization done
	init = 1;
}
Example #3
0
//**********************************************************************************
//generate "packing" of non-overlapping balls
vector<Vector3r> fillBoxByBalls_cpp(Vector3r minCoord, Vector3r maxCoord, Vector3r sizemin, Vector3r sizemax, Vector3r ratio, int seed, shared_ptr<Material> mat, int NumPoints){	
	vector<Vector3r> v;
	Polyhedra trialP;
	Polyhedron trial, trial_moved;
	srand(seed);
	int it = 0;
	vector<Polyhedron> polyhedrons;
	vector<vector<Vector3r> > vv;
	Vector3r position;
	bool intersection;
	int count = 0;
	Vector3r radii;

	
	bool fixed_ratio = 0;
	if (ratio[0] > 0 && ratio[1] > 0 && ratio[2]>0){
		fixed_ratio = 1;
		sizemax[0] = min(min(sizemax[0]/ratio[0],  sizemax[1]/ratio[1]),  sizemax[2]/ratio[2]);
		sizemin[0] = max(max(sizemin[0]/ratio[0],  sizemin[1]/ratio[1]),  sizemin[2]/ratio[2]);
	}

	fixed_ratio = 1; //force spherical

	//it - number of trials to make packing possibly more/less dense
	Vector3r random_size;
	while (it<1000){
		it = it+1;
		if (it == 1){	
			if (fixed_ratio) {
				double rrr = (rand()*(sizemax[0]-sizemin[0])/RAND_MAX + sizemin[0])/2.;
				radii = Vector3r(rrr,rrr,rrr);
			}else  {
				radii = Vector3r(rand()*(sizemax[0]-sizemin[0])/2.,rand()*(sizemax[1]-sizemin[1])/2.,rand()*(sizemax[2]-sizemin[2])/2.)/RAND_MAX + sizemin/2.;
			}				
			trialP.v = BallPoints(radii,NumPoints,rand());
			trialP.Initialize();
			trial = trialP.GetPolyhedron();	
			Matrix3r rot_mat = (trialP.GetOri()).toRotationMatrix();
			Transformation t_rot(rot_mat(0,0),rot_mat(0,1),rot_mat(0,2),rot_mat(1,0),rot_mat(1,1),rot_mat(1,2),rot_mat(2,0),rot_mat(2,1),rot_mat(2,2),1.);	
			std::transform( trial.points_begin(), trial.points_end(), trial.points_begin(), t_rot);			
		}		
		position = Vector3r(rand()*(maxCoord[0]-minCoord[0]),rand()*(maxCoord[1]-minCoord[1]),rand()*(maxCoord[2]-minCoord[2]))/RAND_MAX + minCoord;

		//move CGAL structure Polyhedron
		Transformation transl(CGAL::TRANSLATION, ToCGALVector(position));
		trial_moved = trial;		
		std::transform( trial_moved.points_begin(), trial_moved.points_end(), trial_moved.points_begin(), transl);
		//calculate plane equations
		std::transform( trial_moved.facets_begin(), trial_moved.facets_end(), trial_moved.planes_begin(),Plane_equation());	

		intersection = false;	
		//call test with boundary
		for(Polyhedron::Vertex_iterator vi = trial_moved.vertices_begin(); (vi !=  trial_moved.vertices_end()) && (!intersection); vi++){
			intersection = (vi->point().x()<minCoord[0]) || (vi->point().x()>maxCoord[0]) || (vi->point().y()<minCoord[1]) || (vi->point().y()>maxCoord[1]) || (vi->point().z()<minCoord[2]) || (vi->point().z()>maxCoord[2]);
		}
		//call test with other polyhedrons	
		for(vector<Polyhedron>::iterator a = polyhedrons.begin(); (a != polyhedrons.end()) && (!intersection); a++){	
			intersection = do_intersect(*a,trial_moved);
		        if (intersection) break;
		}
		if (!intersection){
			polyhedrons.push_back(trial_moved);
			v.clear();
			for(Polyhedron::Vertex_iterator vi = trial_moved.vertices_begin(); vi !=  trial_moved.vertices_end(); vi++){
				v.push_back(FromCGALPoint(vi->point()));
			}
			vv.push_back(v);
			it = 0;
			count ++;

		}
	}
	cout << "generated " << count << " polyhedrons"<< endl;

	//can't be used - no information about material
	Scene* scene=Omega::instance().getScene().get();
	for(vector<vector<Vector3r> >::iterator p=vv.begin(); p!=vv.end(); ++p){
		shared_ptr<Body> BP = NewPolyhedra(*p, mat);
		BP->shape->color = Vector3r(double(rand())/RAND_MAX,double(rand())/RAND_MAX,double(rand())/RAND_MAX);
		scene->bodies->insert(BP);
	}
	return v;
}