Example #1
0
// initiate user takeoff - called when MAVLink TAKEOFF command is received
bool Copter::do_user_takeoff(float takeoff_alt_cm, bool must_navigate)
{
    if (motors->armed() && ap.land_complete && current_mode_has_user_takeoff(must_navigate) && takeoff_alt_cm > current_loc.alt) {

#if FRAME_CONFIG == HELI_FRAME
        // Helicopters should return false if MAVlink takeoff command is received while the rotor is not spinning
        if (!motors->rotor_runup_complete()) {
            return false;
        }
#endif

        switch(control_mode) {
            case GUIDED:
                if (mode_guided.takeoff_start(takeoff_alt_cm)) {
                    set_auto_armed(true);
                    return true;
                }
                return false;
            case LOITER:
            case POSHOLD:
            case ALT_HOLD:
            case SPORT:
                set_auto_armed(true);
                takeoff_timer_start(takeoff_alt_cm);
                return true;
            default:
                return false;
        }
    }
    return false;
}
Example #2
0
// initiate user takeoff - called when MAVLink TAKEOFF command is received
bool Copter::do_user_takeoff(float takeoff_alt_cm, bool must_navigate)
{
    if (motors.armed() && ap.land_complete && current_mode_has_user_takeoff(must_navigate) && takeoff_alt_cm > current_loc.alt) {
        switch(control_mode) {
            case GUIDED:
                set_auto_armed(true);
                guided_takeoff_start(takeoff_alt_cm);
                return true;
            case LOITER:
            case POSHOLD:
            case ALT_HOLD:
            case SPORT:
                set_auto_armed(true);
                takeoff_timer_start(takeoff_alt_cm);
                return true;
        }
    }
    return false;
}
Example #3
0
// loiter_run - runs the loiter controller
// should be called at 100hz or more
void Copter::loiter_run()
{
    LoiterModeState loiter_state;
    float target_yaw_rate = 0.0f;
    float target_climb_rate = 0.0f;
    float takeoff_climb_rate = 0.0f;

    // initialize vertical speed and acceleration
    pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    pos_control.set_accel_z(g.pilot_accel_z);

    // process pilot inputs unless we are in radio failsafe
    if (!failsafe.radio) {
        // apply SIMPLE mode transform to pilot inputs
        update_simple_mode();

        // process pilot's roll and pitch input
        wp_nav.set_pilot_desired_acceleration(channel_roll->control_in, channel_pitch->control_in);

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);

        // get pilot desired climb rate
        target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->control_in);
        target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    } else {
        // clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason
        wp_nav.clear_pilot_desired_acceleration();
    }

    // relax loiter target if we might be landed
    if (ap.land_complete_maybe) {
        wp_nav.loiter_soften_for_landing();
    }

    // Loiter State Machine Determination
    if (!motors.armed() || !motors.get_interlock()) {
        loiter_state = Loiter_MotorStopped;
    } else if (!ap.auto_armed) {
        loiter_state = Loiter_NotAutoArmed;
    } else if (takeoff_state.running || (ap.land_complete && (channel_throttle->control_in > get_takeoff_trigger_throttle()))){
        loiter_state = Loiter_Takeoff;
    } else if (ap.land_complete){
        loiter_state = Loiter_Landed;
    } else {
        loiter_state = Loiter_Flying;
    }

    // Loiter State Machine
    switch (loiter_state) {

    case Loiter_MotorStopped:

        motors.set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
#if FRAME_CONFIG == HELI_FRAME
        // helicopters are capable of flying even with the motor stopped, therefore we will attempt to keep flying
        // run loiter controller
        wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);

        // force descent rate and call position controller
        pos_control.set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false);
        pos_control.update_z_controller();
#else
        wp_nav.init_loiter_target();
        // multicopters do not stabilize roll/pitch/yaw when motors are stopped
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
#endif
        break;

    case Loiter_NotAutoArmed:

        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        wp_nav.init_loiter_target();
#if FRAME_CONFIG == HELI_FRAME
        // Helicopters always stabilize roll/pitch/yaw
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(0, 0, 0, get_smoothing_gain());
        attitude_control.set_throttle_out(0,false,g.throttle_filt);
#else
        // Multicopters do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        break;

    case Loiter_Takeoff:

        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i term when we're taking off
            set_throttle_takeoff();
        }

        // get takeoff adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // set motors to full range
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // run loiter controller
        wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);

        // update altitude target and call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        break;

    case Loiter_Landed:

        wp_nav.init_loiter_target();
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(0, 0, 0, get_smoothing_gain());
        // move throttle to between minimum and non-takeoff-throttle to keep us on the ground
        attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->control_in),false,g.throttle_filt);
        // if throttle zero reset attitude and exit immediately
        if (ap.throttle_zero) {
            motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        } else {
            motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        break;

    case Loiter_Flying:

        // set motors to full range
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // run loiter controller
        wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);

        // run altitude controller
        if (sonar_enabled && (sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) {
            // if sonar is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // update altitude target and call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.update_z_controller();
        break;
    }
}
Example #4
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Copter::althold_run()
{
    AltHoldModeState althold_state;
    float takeoff_climb_rate = 0.0f;

    // initialize vertical speeds and acceleration
    pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    pos_control.set_accel_z(g.pilot_accel_z);

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // get pilot desired lean angles
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // get pilot desired climb rate
    float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

#if FRAME_CONFIG == HELI_FRAME
    // helicopters are held on the ground until rotor speed runup has finished
    bool takeoff_triggered = (ap.land_complete && (channel_throttle->get_control_in() > get_takeoff_trigger_throttle()) && motors.rotor_runup_complete());
#else
    bool takeoff_triggered = (ap.land_complete && (channel_throttle->get_control_in() > get_takeoff_trigger_throttle()) && motors.spool_up_complete());
#endif

    // Alt Hold State Machine Determination
    if (!motors.armed() || !motors.get_interlock()) {
        althold_state = AltHold_MotorStopped;
    } else if (!ap.auto_armed){
        althold_state = AltHold_NotAutoArmed;
    } else if (takeoff_state.running || takeoff_triggered){
        althold_state = AltHold_Takeoff;
    } else if (ap.land_complete){
        althold_state = AltHold_Landed;
    } else {
        althold_state = AltHold_Flying;
    }

    // Alt Hold State Machine
    switch (althold_state) {

    case AltHold_MotorStopped:

        motors.set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
#if FRAME_CONFIG == HELI_FRAME    
        // helicopters are capable of flying even with the motor stopped, therefore we will attempt to keep flying
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // force descent rate and call position controller
        pos_control.set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false);
        pos_control.update_z_controller();
#else
        // Multicopters do not stabilize roll/pitch/yaw when motor are stopped
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
#endif
        break;

    case AltHold_NotAutoArmed:

        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
#if FRAME_CONFIG == HELI_FRAME
        // Helicopters always stabilize roll/pitch/yaw
        attitude_control.set_yaw_target_to_current_heading();
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        attitude_control.set_throttle_out(0,false,g.throttle_filt);
#else
        // Multicopters do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
        break;

    case AltHold_Takeoff:

        // initiate take-off
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i terms
            set_throttle_takeoff();
        }

        // get take-off adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // set motors to full range
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        break;

    case AltHold_Landed:

#if FRAME_CONFIG == HELI_FRAME
        attitude_control.set_yaw_target_to_current_heading();
#endif
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->get_control_in()),false,g.throttle_filt);
        // set motors to spin-when-armed if throttle at zero, otherwise full range
        if (ap.throttle_zero) {
            motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        } else {
            motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
        break;

    case AltHold_Flying:
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // adjust climb rate using rangefinder
        if (rangefinder_alt_ok()) {
            // if rangefinder is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.update_z_controller();
        break;
    }
}
Example #5
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Copter::althold_run()
{
    AltHoldModeState althold_state;
    float takeoff_climb_rate = 0.0f;

    // initialize vertical speeds and acceleration
    pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    pos_control.set_accel_z(g.pilot_accel_z);

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // get pilot desired lean angles
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // get pilot desired climb rate
    float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

#if FRAME_CONFIG == HELI_FRAME
    // helicopters are held on the ground until rotor speed runup has finished
    bool takeoff_triggered = (ap.land_complete && (target_climb_rate > 0.0f) && motors.rotor_runup_complete());
#else
    bool takeoff_triggered = ap.land_complete && (target_climb_rate > 0.0f);
#endif

    // Alt Hold State Machine Determination
    if (!motors.armed() || !motors.get_interlock()) {
        althold_state = AltHold_MotorStopped;
    } else if (takeoff_state.running || takeoff_triggered) {
        althold_state = AltHold_Takeoff;
    } else if (!ap.auto_armed || ap.land_complete) {
        althold_state = AltHold_Landed;
    } else {
        althold_state = AltHold_Flying;
    }

    // Alt Hold State Machine
    switch (althold_state) {

    case AltHold_MotorStopped:

        motors.set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
#if FRAME_CONFIG == HELI_FRAME    
        // force descent rate and call position controller
        pos_control.set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false);
#else
        attitude_control.reset_rate_controller_I_terms();
        attitude_control.set_yaw_target_to_current_heading();
        pos_control.relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
#endif
        pos_control.update_z_controller();
        break;

    case AltHold_Takeoff:
        // set motors to full range
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // initiate take-off
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i terms
            set_throttle_takeoff();
        }

        // get take-off adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        break;

    case AltHold_Landed:
        // set motors to spin-when-armed if throttle below deadzone, otherwise full range (but motors will only spin at min throttle)
        if (target_climb_rate < 0.0f) {
            motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        } else {
            motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }

        attitude_control.reset_rate_controller_I_terms();
        attitude_control.set_yaw_target_to_current_heading();
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        pos_control.relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
        pos_control.update_z_controller();
        break;

    case AltHold_Flying:
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // adjust climb rate using rangefinder
        if (rangefinder_alt_ok()) {
            // if rangefinder is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.update_z_controller();
        break;
    }
}
Example #6
0
// loiter_run - runs the loiter controller
// should be called at 100hz or more
void Copter::loiter_run()
{
    LoiterModeState loiter_state;
    float target_yaw_rate = 0.0f;
    float target_climb_rate = 0.0f;
    float takeoff_climb_rate = 0.0f;

    // process pilot inputs unless we are in radio failsafe
    if (!failsafe.radio) {
        // apply SIMPLE mode transform to pilot inputs
        update_simple_mode();

        // process pilot's roll and pitch input
        wp_nav.set_pilot_desired_acceleration(channel_roll->control_in, channel_pitch->control_in);

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);

        // get pilot desired climb rate
        target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->control_in);
        target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    } else {
        // clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason
        wp_nav.clear_pilot_desired_acceleration();
    }

    // relax loiter target if we might be landed
    if (ap.land_complete_maybe) {
        wp_nav.loiter_soften_for_landing();
    }

    // Loiter State Machine Determination
    if(!ap.auto_armed || !motors.get_interlock()) {
        loiter_state = Loiter_Disarmed;
    } else if (takeoff_state.running || (ap.land_complete && (channel_throttle->control_in > get_takeoff_trigger_throttle()))) {
        loiter_state = Loiter_Takeoff;
    } else if (ap.land_complete) {
        loiter_state = Loiter_Landed;
    } else {
        loiter_state = Loiter_Flying;
    }

    // Loiter State Machine
    switch (loiter_state) {

    case Loiter_Disarmed:

        wp_nav.init_loiter_target();
#if FRAME_CONFIG == HELI_FRAME  // Helicopters always stabilize roll/pitch/yaw
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(0, 0, 0, get_smoothing_gain());
        attitude_control.set_throttle_out(0,false,g.throttle_filt);
#else   // multicopters do not stabilize roll/pitch/yaw when disarmed
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif  // HELI_FRAME
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        break;

    case Loiter_Takeoff:

        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i term when we're taking off
            set_throttle_takeoff();
        }

        // get takeoff adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // run loiter controller
        wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);

        // update altitude target and call position controller
        pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        break;

    case Loiter_Landed:

        wp_nav.init_loiter_target();
#if FRAME_CONFIG == HELI_FRAME  // Helicopters always stabilize roll/pitch/yaw
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(0, 0, 0, get_smoothing_gain());
        attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->control_in),false,g.throttle_filt);
#else   // multicopters do not stabilize roll/pitch/yaw when disarmed
        // move throttle to between minimum and non-takeoff-throttle to keep us on the ground
        attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(channel_throttle->control_in),true,g.throttle_filt);
#endif
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        break;

    case Loiter_Flying:

        // run loiter controller
        wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw(wp_nav.get_roll(), wp_nav.get_pitch(), target_yaw_rate);

        // run altitude controller
        if (sonar_enabled && (sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) {
            // if sonar is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // update altitude target and call position controller
        pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt, false);
        pos_control.update_z_controller();
        break;
    }
}
Example #7
0
// sport_run - runs the sport controller
// should be called at 100hz or more
void Copter::sport_run()
{
    float target_roll_rate, target_pitch_rate, target_yaw_rate;
    float target_climb_rate = 0;
    float takeoff_climb_rate = 0.0f;

    // initialize vertical speed and acceleration
    pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    pos_control.set_accel_z(g.pilot_accel_z);

    // if not armed or throttle at zero, set throttle to zero and exit immediately
    if (!motors.armed() || ap.throttle_zero || !motors.get_interlock()) {
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        return;
    }

    // apply SIMPLE mode transform
    update_simple_mode();

    // get pilot's desired roll and pitch rates

    // calculate rate requests
    target_roll_rate = channel_roll->control_in * g.acro_rp_p;
    target_pitch_rate = channel_pitch->control_in * g.acro_rp_p;

    int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor);
    target_roll_rate -= constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll;

    // Calculate trainer mode earth frame rate command for pitch
    int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor);
    target_pitch_rate -= constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch;

    if (roll_angle > aparm.angle_max){
        target_roll_rate -=  g.acro_rp_p*(roll_angle-aparm.angle_max);
    }else if (roll_angle < -aparm.angle_max) {
        target_roll_rate -=  g.acro_rp_p*(roll_angle+aparm.angle_max);
    }

    if (pitch_angle > aparm.angle_max){
        target_pitch_rate -=  g.acro_rp_p*(pitch_angle-aparm.angle_max);
    }else if (pitch_angle < -aparm.angle_max) {
        target_pitch_rate -=  g.acro_rp_p*(pitch_angle+aparm.angle_max);
    }

    // get pilot's desired yaw rate
    target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);

    // get pilot desired climb rate
    target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->control_in);
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

    // get takeoff adjusted pilot and takeoff climb rates
    takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

    // check for take-off
    if (ap.land_complete && (takeoff_state.running || (channel_throttle->control_in > get_takeoff_trigger_throttle()))) {
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
        }

        // indicate we are taking off
        set_land_complete(false);
        // clear i term when we're taking off
        set_throttle_takeoff();
    }

    // reset target lean angles and heading while landed
    if (ap.land_complete) {
        if (ap.throttle_zero) {
            motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        }else{
            motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }
        // move throttle to between minimum and non-takeoff-throttle to keep us on the ground
        attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->control_in),false,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
    }else{
        // set motors to full range
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // call attitude controller
        attitude_control.input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);

        // call throttle controller
        if (sonar_enabled && (sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) {
            // if sonar is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
    }
}
Example #8
0
// sport_run - runs the sport controller
// should be called at 100hz or more
void Copter::ModeSport::run()
{
    SportModeState sport_state;
    float takeoff_climb_rate = 0.0f;

    // initialize vertical speed and acceleration
    pos_control->set_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
    pos_control->set_accel_z(g.pilot_accel_z);

    // apply SIMPLE mode transform
    update_simple_mode();

    // get pilot's desired roll and pitch rates

    // calculate rate requests
    float target_roll_rate = channel_roll->get_control_in() * g.acro_rp_p;
    float target_pitch_rate = channel_pitch->get_control_in() * g.acro_rp_p;

    // get attitude targets
    const Vector3f att_target = attitude_control->get_att_target_euler_cd();

    // Calculate trainer mode earth frame rate command for roll
    int32_t roll_angle = wrap_180_cd(att_target.x);
    target_roll_rate -= constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll;

    // Calculate trainer mode earth frame rate command for pitch
    int32_t pitch_angle = wrap_180_cd(att_target.y);
    target_pitch_rate -= constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch;

    AP_Vehicle::MultiCopter &aparm = copter.aparm;
    if (roll_angle > aparm.angle_max){
        target_roll_rate -=  g.acro_rp_p*(roll_angle-aparm.angle_max);
    }else if (roll_angle < -aparm.angle_max) {
        target_roll_rate -=  g.acro_rp_p*(roll_angle+aparm.angle_max);
    }

    if (pitch_angle > aparm.angle_max){
        target_pitch_rate -=  g.acro_rp_p*(pitch_angle-aparm.angle_max);
    }else if (pitch_angle < -aparm.angle_max) {
        target_pitch_rate -=  g.acro_rp_p*(pitch_angle+aparm.angle_max);
    }

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // get pilot desired climb rate
    float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
    target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);

    // State Machine Determination
    if (!motors->armed() || !motors->get_interlock()) {
        sport_state = Sport_MotorStopped;
    } else if (takeoff_state.running || takeoff_triggered(target_climb_rate)) {
        sport_state = Sport_Takeoff;
    } else if (!ap.auto_armed || ap.land_complete) {
        sport_state = Sport_Landed;
    } else {
        sport_state = Sport_Flying;
    }

    // State Machine
    switch (sport_state) {

    case Sport_MotorStopped:

        motors->set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
        attitude_control->input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);
#if FRAME_CONFIG == HELI_FRAME
        // force descent rate and call position controller
        pos_control->set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false);
#else
        attitude_control->relax_attitude_controllers();
        attitude_control->reset_rate_controller_I_terms();
        attitude_control->set_yaw_target_to_current_heading();
        pos_control->relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
#endif
        pos_control->update_z_controller();
        break;

    case Sport_Takeoff:
        // set motors to full range
        motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // initiate take-off
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i terms
            set_throttle_takeoff();
        }

        // get take-off adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // get avoidance adjusted climb rate
        target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);

        // call attitude controller
        attitude_control->input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);

        // call position controller
        pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control->add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control->update_z_controller();
        break;

    case Sport_Landed:
        // set motors to spin-when-armed if throttle below deadzone, otherwise full range (but motors will only spin at min throttle)
        if (target_climb_rate < 0.0f) {
            motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        } else {
            motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }

        attitude_control->reset_rate_controller_I_terms();
        attitude_control->set_yaw_target_to_current_heading();
        attitude_control->input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);
        pos_control->relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
        pos_control->update_z_controller();
        break;

    case Sport_Flying:
        motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        // call attitude controller
        attitude_control->input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);

        // adjust climb rate using rangefinder
        target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control->get_alt_target(), G_Dt);

        // get avoidance adjusted climb rate
        target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);

        // call position controller
        pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control->update_z_controller();
        break;
    }
}
Example #9
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Copter::althold_run()
{
    float target_roll, target_pitch;
    float target_yaw_rate;
    float target_climb_rate;
    float takeoff_climb_rate = 0.0f;

    // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
    if(!ap.auto_armed || !motors.get_interlock()) {
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        return;
    }

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // get pilot desired lean angles
    // To-Do: convert get_pilot_desired_lean_angles to return angles as floats
    get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch);

    // get pilot's desired yaw rate
    target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);

    // get pilot desired climb rate
    target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->control_in);
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

    // get takeoff adjusted pilot and takeoff climb rates
    takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

    // check for take-off
    if (ap.land_complete && (takeoff_state.running || (channel_throttle->control_in > get_takeoff_trigger_throttle()))) {
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
        }

        // indicate we are taking off
        set_land_complete(false);
        // clear i term when we're taking off
        set_throttle_takeoff();
    }

    // reset target lean angles and heading while landed
    if (ap.land_complete) {
        attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(channel_throttle->control_in),true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
    }else{
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        // body-frame rate controller is run directly from 100hz loop

        // call throttle controller
        if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) {
            // if sonar is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // call position controller
        pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        
    }
}
Example #10
0
// loiter_run - runs the loiter controller
// should be called at 100hz or more
void Copter::ModeLoiter::run()
{
    LoiterModeState loiter_state;
    float target_yaw_rate = 0.0f;
    float target_climb_rate = 0.0f;
    float takeoff_climb_rate = 0.0f;

    // initialize vertical speed and acceleration
    pos_control->set_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
    pos_control->set_accel_z(g.pilot_accel_z);

    // process pilot inputs unless we are in radio failsafe
    if (!copter.failsafe.radio) {
        // apply SIMPLE mode transform to pilot inputs
        update_simple_mode();

        // process pilot's roll and pitch input
        wp_nav->set_pilot_desired_acceleration(channel_roll->get_control_in(), channel_pitch->get_control_in());

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

        // get pilot desired climb rate
        target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
        target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
    } else {
        // clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason
        wp_nav->clear_pilot_desired_acceleration();
    }

    // relax loiter target if we might be landed
    if (ap.land_complete_maybe) {
        wp_nav->loiter_soften_for_landing();
    }

    // Loiter State Machine Determination
    if (!motors->armed() || !motors->get_interlock()) {
        loiter_state = Loiter_MotorStopped;
    } else if (takeoff_state.running || takeoff_triggered(target_climb_rate)) {
        loiter_state = Loiter_Takeoff;
    } else if (!ap.auto_armed || ap.land_complete) {
        loiter_state = Loiter_Landed;
    } else {
        loiter_state = Loiter_Flying;
    }

    // Loiter State Machine
    switch (loiter_state) {

    case Loiter_MotorStopped:

        motors->set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
#if FRAME_CONFIG == HELI_FRAME
        // force descent rate and call position controller
        pos_control->set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false);
#else
        wp_nav->init_loiter_target();
        attitude_control->reset_rate_controller_I_terms();
        attitude_control->set_yaw_target_to_current_heading();
        pos_control->relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
#endif
        wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
        attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
        pos_control->update_z_controller();
        break;

    case Loiter_Takeoff:
        // set motors to full range
        motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // initiate take-off
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i term when we're taking off
            set_throttle_takeoff();
        }

        // get takeoff adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // get avoidance adjusted climb rate
        target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);

        // run loiter controller
        wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

        // call attitude controller
        attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());

        // update altitude target and call position controller
        pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control->add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control->update_z_controller();
        break;

    case Loiter_Landed:
        // set motors to spin-when-armed if throttle below deadzone, otherwise full range (but motors will only spin at min throttle)
        if (target_climb_rate < 0.0f) {
            motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        } else {
            motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }
        wp_nav->init_loiter_target();
        attitude_control->reset_rate_controller_I_terms();
        attitude_control->set_yaw_target_to_current_heading();
        attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
        pos_control->relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
        pos_control->update_z_controller();
        break;

    case Loiter_Flying:

        // set motors to full range
        motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

#if PRECISION_LANDING == ENABLED
        if (do_precision_loiter()) {
            precision_loiter_xy();
        }
#endif

        // run loiter controller
        wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

        // call attitude controller
        attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());

        // adjust climb rate using rangefinder
        if (copter.rangefinder_alt_ok()) {
            // if rangefinder is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control->get_alt_target(), G_Dt);
        }

        // get avoidance adjusted climb rate
        target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);

        // update altitude target and call position controller
        pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control->update_z_controller();
        break;
    }
}
Example #11
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Copter::althold_run()
{
    AltHoldModeState althold_state;
    float takeoff_climb_rate = 0.0f;

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // get pilot desired lean angles
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);

    // get pilot desired climb rate
    float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->control_in);
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

#if FRAME_CONFIG == HELI_FRAME
    // helicopters are held on the ground until rotor speed runup has finished
    bool takeoff_triggered = (ap.land_complete && (channel_throttle->control_in > get_takeoff_trigger_throttle()) && motors.rotor_runup_complete());
#else
    bool takeoff_triggered = (ap.land_complete && (channel_throttle->control_in > get_takeoff_trigger_throttle()));
#endif

    // Alt Hold State Machine Determination
    if(!ap.auto_armed || !motors.get_interlock()) {
        althold_state = AltHold_Disarmed;
    } else if (takeoff_state.running || takeoff_triggered){
        althold_state = AltHold_Takeoff;
    } else if (ap.land_complete){
        althold_state = AltHold_Landed;
    } else {
        althold_state = AltHold_Flying;
    }

    // Alt Hold State Machine
    switch (althold_state) {

    case AltHold_Disarmed:

#if FRAME_CONFIG == HELI_FRAME  // Helicopters always stabilize roll/pitch/yaw
        attitude_control.set_yaw_target_to_current_heading();
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        attitude_control.set_throttle_out(0,false,g.throttle_filt);
#else   // Multicopter do not stabilize roll/pitch/yaw when disarmed
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif  // HELI_FRAME
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        break;

    case AltHold_Takeoff:

        // initiate take-off
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i terms
            set_throttle_takeoff();
        }

        // get take-off adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        break;

    case AltHold_Landed:

#if FRAME_CONFIG == HELI_FRAME  // Helicopters always stabilize roll/pitch/yaw
        attitude_control.set_yaw_target_to_current_heading();
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->control_in),false,g.throttle_filt);
#else   // Multicopter do not stabilize roll/pitch/yaw when disarmed
        attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(channel_throttle->control_in),true,g.throttle_filt);
#endif
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        break;

    case AltHold_Flying:
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // call throttle controller
        if (sonar_enabled && (sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) {
            // if sonar is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.update_z_controller();
        break;
    }
}
Example #12
0
// poshold_run - runs the PosHold controller
// should be called at 100hz or more
void Copter::poshold_run()
{
    float target_roll, target_pitch;  // pilot's roll and pitch angle inputs
    float target_yaw_rate = 0;          // pilot desired yaw rate in centi-degrees/sec
    float target_climb_rate = 0;      // pilot desired climb rate in centimeters/sec
    float takeoff_climb_rate = 0.0f;    // takeoff induced climb rate
    float brake_to_loiter_mix;          // mix of brake and loiter controls.  0 = fully brake controls, 1 = fully loiter controls
    float controller_to_pilot_roll_mix; // mix of controller and pilot controls.  0 = fully last controller controls, 1 = fully pilot controls
    float controller_to_pilot_pitch_mix;    // mix of controller and pilot controls.  0 = fully last controller controls, 1 = fully pilot controls
    float vel_fw, vel_right;            // vehicle's current velocity in body-frame forward and right directions
    const Vector3f& vel = inertial_nav.get_velocity();

    // initialize vertical speeds and acceleration
    pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    pos_control.set_accel_z(g.pilot_accel_z);

    // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
    if (!motors.armed() || !ap.auto_armed || !motors.get_interlock()) {
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        wp_nav.init_loiter_target();
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
        return;
    }

    // process pilot inputs
    if (!failsafe.radio) {
        // apply SIMPLE mode transform to pilot inputs
        update_simple_mode();

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

        // get pilot desired climb rate (for alt-hold mode and take-off)
        target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
        target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

        // get takeoff adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // check for take-off
        if (ap.land_complete && (takeoff_state.running || channel_throttle->get_control_in() > get_takeoff_trigger_throttle())) {
            if (!takeoff_state.running) {
                takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            }

            // indicate we are taking off
            set_land_complete(false);
            // clear i term when we're taking off
            set_throttle_takeoff();
        }
    }

    // relax loiter target if we might be landed
    if (ap.land_complete_maybe) {
        wp_nav.loiter_soften_for_landing();
    }

    // if landed initialise loiter targets, set throttle to zero and exit
    if (ap.land_complete) {
        // if throttle zero reset attitude and exit immediately
        if (ap.throttle_zero) {
            motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        }else{
            motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }
        wp_nav.init_loiter_target();
        // move throttle to between minimum and non-takeoff-throttle to keep us on the ground
        attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->get_control_in()),false,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
        return;
    }else{
        // convert pilot input to lean angles
        get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);

        // convert inertial nav earth-frame velocities to body-frame
        // To-Do: move this to AP_Math (or perhaps we already have a function to do this)
        vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw();
        vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw();
        
        // If not in LOITER, retrieve latest wind compensation lean angles related to current yaw
        if (poshold.roll_mode != POSHOLD_LOITER || poshold.pitch_mode != POSHOLD_LOITER)
        poshold_get_wind_comp_lean_angles(poshold.wind_comp_roll, poshold.wind_comp_pitch);

        // Roll state machine
        //  Each state (aka mode) is responsible for:
        //      1. dealing with pilot input
        //      2. calculating the final roll output to the attitude controller
        //      3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
        switch (poshold.roll_mode) {

            case POSHOLD_PILOT_OVERRIDE:
                // update pilot desired roll angle using latest radio input
                //  this filters the input so that it returns to zero no faster than the brake-rate
                poshold_update_pilot_lean_angle(poshold.pilot_roll, target_roll);

                // switch to BRAKE mode for next iteration if no pilot input
                if (is_zero(target_roll) && (fabsf(poshold.pilot_roll) < 2 * g.poshold_brake_rate)) {
                    // initialise BRAKE mode
                    poshold.roll_mode = POSHOLD_BRAKE;        // Set brake roll mode
                    poshold.brake_roll = 0;                  // initialise braking angle to zero
                    poshold.brake_angle_max_roll = 0;        // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
                    poshold.brake_timeout_roll = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
                    poshold.braking_time_updated_roll = false;   // flag the braking time can be re-estimated
                }

                // final lean angle should be pilot input plus wind compensation
                poshold.roll = poshold.pilot_roll + poshold.wind_comp_roll;
                break;

            case POSHOLD_BRAKE:
            case POSHOLD_BRAKE_READY_TO_LOITER:
                // calculate brake_roll angle to counter-act velocity
                poshold_update_brake_angle_from_velocity(poshold.brake_roll, vel_right);

                // update braking time estimate
                if (!poshold.braking_time_updated_roll) {
                    // check if brake angle is increasing
                    if (abs(poshold.brake_roll) >= poshold.brake_angle_max_roll) {
                        poshold.brake_angle_max_roll = abs(poshold.brake_roll);
                    } else {
                        // braking angle has started decreasing so re-estimate braking time
                        poshold.brake_timeout_roll = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(poshold.brake_roll))/(10L*(int32_t)g.poshold_brake_rate));  // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
                        poshold.braking_time_updated_roll = true;
                    }
                }

                // if velocity is very low reduce braking time to 0.5seconds
                if ((fabsf(vel_right) <= POSHOLD_SPEED_0) && (poshold.brake_timeout_roll > 50*LOOP_RATE_FACTOR)) {
                    poshold.brake_timeout_roll = 50*LOOP_RATE_FACTOR;
                }

                // reduce braking timer
                if (poshold.brake_timeout_roll > 0) {
                    poshold.brake_timeout_roll--;
                } else {
                    // indicate that we are ready to move to Loiter.
                    // Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to POSHOLD_BRAKE_READY_TO_LOITER
                    //  logic for engaging loiter is handled below the roll and pitch mode switch statements
                    poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                }

                // final lean angle is braking angle + wind compensation angle
                poshold.roll = poshold.brake_roll + poshold.wind_comp_roll;

                // check for pilot input
                if (!is_zero(target_roll)) {
                    // init transition to pilot override
                    poshold_roll_controller_to_pilot_override();
                }
                break;

            case POSHOLD_BRAKE_TO_LOITER:
            case POSHOLD_LOITER:
                // these modes are combined roll-pitch modes and are handled below
                break;

            case POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE:
                // update pilot desired roll angle using latest radio input
                //  this filters the input so that it returns to zero no faster than the brake-rate
                poshold_update_pilot_lean_angle(poshold.pilot_roll, target_roll);

                // count-down loiter to pilot timer
                if (poshold.controller_to_pilot_timer_roll > 0) {
                    poshold.controller_to_pilot_timer_roll--;
                } else {
                    // when timer runs out switch to full pilot override for next iteration
                    poshold.roll_mode = POSHOLD_PILOT_OVERRIDE;
                }

                // calculate controller_to_pilot mix ratio
                controller_to_pilot_roll_mix = (float)poshold.controller_to_pilot_timer_roll / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;

                // mix final loiter lean angle and pilot desired lean angles
                poshold.roll = poshold_mix_controls(controller_to_pilot_roll_mix, poshold.controller_final_roll, poshold.pilot_roll + poshold.wind_comp_roll);
                break;
        }

        // Pitch state machine
        //  Each state (aka mode) is responsible for:
        //      1. dealing with pilot input
        //      2. calculating the final pitch output to the attitude contpitcher
        //      3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
        switch (poshold.pitch_mode) {

            case POSHOLD_PILOT_OVERRIDE:
                // update pilot desired pitch angle using latest radio input
                //  this filters the input so that it returns to zero no faster than the brake-rate
                poshold_update_pilot_lean_angle(poshold.pilot_pitch, target_pitch);

                // switch to BRAKE mode for next iteration if no pilot input
                if (is_zero(target_pitch) && (fabsf(poshold.pilot_pitch) < 2 * g.poshold_brake_rate)) {
                    // initialise BRAKE mode
                    poshold.pitch_mode = POSHOLD_BRAKE;       // set brake pitch mode
                    poshold.brake_pitch = 0;                 // initialise braking angle to zero
                    poshold.brake_angle_max_pitch = 0;       // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
                    poshold.brake_timeout_pitch = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
                    poshold.braking_time_updated_pitch = false;   // flag the braking time can be re-estimated
                }

                // final lean angle should be pilot input plus wind compensation
                poshold.pitch = poshold.pilot_pitch + poshold.wind_comp_pitch;
                break;

            case POSHOLD_BRAKE:
            case POSHOLD_BRAKE_READY_TO_LOITER:
                // calculate brake_pitch angle to counter-act velocity
                poshold_update_brake_angle_from_velocity(poshold.brake_pitch, -vel_fw);

                // update braking time estimate
                if (!poshold.braking_time_updated_pitch) {
                    // check if brake angle is increasing
                    if (abs(poshold.brake_pitch) >= poshold.brake_angle_max_pitch) {
                        poshold.brake_angle_max_pitch = abs(poshold.brake_pitch);
                    } else {
                        // braking angle has started decreasing so re-estimate braking time
                        poshold.brake_timeout_pitch = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(poshold.brake_pitch))/(10L*(int32_t)g.poshold_brake_rate));  // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
                        poshold.braking_time_updated_pitch = true;
                    }
                }

                // if velocity is very low reduce braking time to 0.5seconds
                if ((fabsf(vel_fw) <= POSHOLD_SPEED_0) && (poshold.brake_timeout_pitch > 50*LOOP_RATE_FACTOR)) {
                    poshold.brake_timeout_pitch = 50*LOOP_RATE_FACTOR;
                }

                // reduce braking timer
                if (poshold.brake_timeout_pitch > 0) {
                    poshold.brake_timeout_pitch--;
                } else {
                    // indicate that we are ready to move to Loiter.
                    // Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to POSHOLD_BRAKE_READY_TO_LOITER
                    //  logic for engaging loiter is handled below the pitch and pitch mode switch statements
                    poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                }

                // final lean angle is braking angle + wind compensation angle
                poshold.pitch = poshold.brake_pitch + poshold.wind_comp_pitch;

                // check for pilot input
                if (!is_zero(target_pitch)) {
                    // init transition to pilot override
                    poshold_pitch_controller_to_pilot_override();
                }
                break;

            case POSHOLD_BRAKE_TO_LOITER:
            case POSHOLD_LOITER:
                // these modes are combined pitch-pitch modes and are handled below
                break;

            case POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE:
                // update pilot desired pitch angle using latest radio input
                //  this filters the input so that it returns to zero no faster than the brake-rate
                poshold_update_pilot_lean_angle(poshold.pilot_pitch, target_pitch);

                // count-down loiter to pilot timer
                if (poshold.controller_to_pilot_timer_pitch > 0) {
                    poshold.controller_to_pilot_timer_pitch--;
                } else {
                    // when timer runs out switch to full pilot override for next iteration
                    poshold.pitch_mode = POSHOLD_PILOT_OVERRIDE;
                }

                // calculate controller_to_pilot mix ratio
                controller_to_pilot_pitch_mix = (float)poshold.controller_to_pilot_timer_pitch / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;

                // mix final loiter lean angle and pilot desired lean angles
                poshold.pitch = poshold_mix_controls(controller_to_pilot_pitch_mix, poshold.controller_final_pitch, poshold.pilot_pitch + poshold.wind_comp_pitch);
                break;
        }

        // set motors to full range
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        //
        // Shared roll & pitch states (POSHOLD_BRAKE_TO_LOITER and POSHOLD_LOITER)
        //

        // switch into LOITER mode when both roll and pitch are ready
        if (poshold.roll_mode == POSHOLD_BRAKE_READY_TO_LOITER && poshold.pitch_mode == POSHOLD_BRAKE_READY_TO_LOITER) {
            poshold.roll_mode = POSHOLD_BRAKE_TO_LOITER;
            poshold.pitch_mode = POSHOLD_BRAKE_TO_LOITER;
            poshold.brake_to_loiter_timer = POSHOLD_BRAKE_TO_LOITER_TIMER;
            // init loiter controller
            wp_nav.init_loiter_target(inertial_nav.get_position(), poshold.loiter_reset_I); // (false) to avoid I_term reset. In original code, velocity(0,0,0) was used instead of current velocity: wp_nav.init_loiter_target(inertial_nav.get_position(), Vector3f(0,0,0));
            // at this stage, we are going to run update_loiter that will reset I_term once. From now, we ensure next time that we will enter loiter and update it, I_term won't be reset anymore
            poshold.loiter_reset_I = false;
            // set delay to start of wind compensation estimate updates
            poshold.wind_comp_start_timer = POSHOLD_WIND_COMP_START_TIMER;
        }

        // roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes
        if (poshold.roll_mode == POSHOLD_BRAKE_TO_LOITER || poshold.roll_mode == POSHOLD_LOITER) {

            // force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states)
            poshold.pitch_mode = poshold.roll_mode;

            // handle combined roll+pitch mode
            switch (poshold.roll_mode) {
                case POSHOLD_BRAKE_TO_LOITER:
                    // reduce brake_to_loiter timer
                    if (poshold.brake_to_loiter_timer > 0) {
                        poshold.brake_to_loiter_timer--;
                    } else {
                        // progress to full loiter on next iteration
                        poshold.roll_mode = POSHOLD_LOITER;
                        poshold.pitch_mode = POSHOLD_LOITER;
                    }

                    // calculate percentage mix of loiter and brake control
                    brake_to_loiter_mix = (float)poshold.brake_to_loiter_timer / (float)POSHOLD_BRAKE_TO_LOITER_TIMER;

                    // calculate brake_roll and pitch angles to counter-act velocity
                    poshold_update_brake_angle_from_velocity(poshold.brake_roll, vel_right);
                    poshold_update_brake_angle_from_velocity(poshold.brake_pitch, -vel_fw);

                    // run loiter controller
                    wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

                    // calculate final roll and pitch output by mixing loiter and brake controls
                    poshold.roll = poshold_mix_controls(brake_to_loiter_mix, poshold.brake_roll + poshold.wind_comp_roll, wp_nav.get_roll());
                    poshold.pitch = poshold_mix_controls(brake_to_loiter_mix, poshold.brake_pitch + poshold.wind_comp_pitch, wp_nav.get_pitch());

                    // check for pilot input
                    if (!is_zero(target_roll) || !is_zero(target_pitch)) {
                        // if roll input switch to pilot override for roll
                        if (!is_zero(target_roll)) {
                            // init transition to pilot override
                            poshold_roll_controller_to_pilot_override();
                            // switch pitch-mode to brake (but ready to go back to loiter anytime)
                            // no need to reset poshold.brake_pitch here as wind comp has not been updated since last brake_pitch computation
                            poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                        }
                        // if pitch input switch to pilot override for pitch
                        if (!is_zero(target_pitch)) {
                            // init transition to pilot override
                            poshold_pitch_controller_to_pilot_override();
                            if (is_zero(target_roll)) {
                                // switch roll-mode to brake (but ready to go back to loiter anytime)
                                // no need to reset poshold.brake_roll here as wind comp has not been updated since last brake_roll computation
                                poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                            }
                        }
                    }
                    break;

                case POSHOLD_LOITER:
                    // run loiter controller
                    wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

                    // set roll angle based on loiter controller outputs
                    poshold.roll = wp_nav.get_roll();
                    poshold.pitch = wp_nav.get_pitch();

                    // update wind compensation estimate
                    poshold_update_wind_comp_estimate();

                    // check for pilot input
                    if (!is_zero(target_roll) || !is_zero(target_pitch)) {
                        // if roll input switch to pilot override for roll
                        if (!is_zero(target_roll)) {
                            // init transition to pilot override
                            poshold_roll_controller_to_pilot_override();
                            // switch pitch-mode to brake (but ready to go back to loiter anytime)
                            poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                            // reset brake_pitch because wind_comp is now different and should give the compensation of the whole previous loiter angle
                            poshold.brake_pitch = 0;
                        }
                        // if pitch input switch to pilot override for pitch
                        if (!is_zero(target_pitch)) {
                            // init transition to pilot override
                            poshold_pitch_controller_to_pilot_override();
                            // if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time)
                            if (is_zero(target_roll)) {
                                poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                                poshold.brake_roll = 0;
                            }
                        }
                    }
                    break;

                default:
                    // do nothing for uncombined roll and pitch modes
                    break;
            }
        }
        
        // constrain target pitch/roll angles
        poshold.roll = constrain_int16(poshold.roll, -aparm.angle_max, aparm.angle_max);
        poshold.pitch = constrain_int16(poshold.pitch, -aparm.angle_max, aparm.angle_max);

        // update attitude controller targets
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(poshold.roll, poshold.pitch, target_yaw_rate);

        // adjust climb rate using rangefinder
        if (rangefinder_alt_ok()) {
            // if rangefinder is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }
        // update altitude target and call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
    }
}