void run_classifier(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); int ngpus; int *gpus = read_intlist(gpu_list, &ngpus, gpu_index); int cam_index = find_int_arg(argc, argv, "-c", 0); int top = find_int_arg(argc, argv, "-t", 0); int clear = find_arg(argc, argv, "-clear"); char *data = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; char *layer_s = (argc > 7) ? argv[7]: 0; int layer = layer_s ? atoi(layer_s) : -1; if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear); else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename); else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights); else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights); else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights); }
void run_classifier(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *data = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; char *layer_s = (argc > 7) ? argv[7]: 0; int layer = layer_s ? atoi(layer_s) : -1; if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename); else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights); else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights); else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); }
int main(int argc, char **argv[]) { string name; vector<Mat>Images(100), TestImages(50); vector<Mat> Descriptor(100), TestDescriptor(50), TestPcafeature(50); vector<vector<KeyPoint>>Keypoints(100), TestKeypoint(50); Mat histogram = Mat::zeros(100, Cluster, CV_32F); Mat Testhistogram = Mat::zeros(50, Cluster, CV_32F); Mat Keyword = Mat::zeros(Cluster, 20, CV_32F); Mat full_Descriptor, Pcafeature, Pcaduplicate, clusteridx, trainlabels(100, 1, CV_32F); vector<vector<DMatch>> matches(50); Mat predicted(Testhistogram.rows, 1, CV_32F); // Read Training Images. read_train(Images, name); //Calculate SIFT features for the Training Images. calculate_SIFT(Images,Keypoints,Descriptor); merge_descriptor(full_Descriptor,Descriptor); //Compute PCA for all the features across all Images. PCA pca; perform_PCA(full_Descriptor, Pcafeature, pca); //Perform K-Means on all the PCA reduced features. Pcafeature.convertTo(Pcaduplicate, CV_32F); calculate_Kmeans(Pcaduplicate, clusteridx); //Calculate the Keywords in the Feature Space. make_dictionary(clusteridx, Pcaduplicate, Keyword); //Get the Histogram for each Training Image. hist(Descriptor, clusteridx, histogram); //Read Test Image read_test(TestImages, name); //Calculate the SIFT feature for all the test Images. calculate_SIFT(TestImages, TestKeypoint, TestDescriptor); //Project the SIFT feature of each feature on the lower dimensional PCA plane calculated above. pca_testProject(TestDescriptor, TestPcafeature, pca); //Find the Label by searching for keywords closest to current feature. get_matches(TestPcafeature,Keyword,matches); //Calculate Histogram for each test Image. hist_test(TestDescriptor, matches, Testhistogram); //Perform classification through Knn Classifier. train_labels(trainlabels); KNearest knn; train_classifier(histogram, trainlabels, knn); test_classify(Testhistogram,predicted,knn); //Calculate Accuracy for each class. calculate_accuracy(predicted); getchar(); return 0; }