Example #1
0
struct maybe_point sphere_intersection_point(struct ray r, struct sphere s){
   struct maybe_point p;
   double A = dot_vector(r.dir,r.dir);
   double B = 2 * dot_vector(difference_point(r.p,s.center), r.dir);
   double C = dot_vector(difference_point(r.p,s.center),
              difference_point(r.p, s.center)) - s.radius*s.radius;

   double E = (-B+sqrt(B*B-4*A*C))/2/A;
   double F = (-B-sqrt(B*B-4*A*C))/2/A;

   if((E>0&& F>0)){
      p.isPoint = 1;
      if(E>F)
          p.p = translate_point(r.p, scale_vector(r.dir,F));
      else
          p.p = translate_point(r.p, scale_vector(r.dir,E));
    
   }else if((E>0||F>0)){
      p.isPoint = 1;
      if(E>0)
           p.p = translate_point(r.p, scale_vector(r.dir,E));
      else
           p.p = translate_point(r.p, scale_vector(r.dir,F));
     
   }else{
       p.isPoint =0;
       p.p = create_point(0,0,0);
   }

   return p;
}
Example #2
0
void Grenade::damage_blocks(int multiplier)
{
    #if DC_SERVER
    const TerrainModificationAction action = TMA_GRENADE;
    const int ir = GRENADE_BLOCK_DESTROY_RADIUS;

    Vec3 position = this->get_position();
    int mx = position.x;
    int my = position.y;
    int mz = position.z;

    for (int i=mx-ir; i<mx+ir; i++)
    for (int j=my-ir; j<my+ir; j++)
    for (int k=mz-ir; k<mz+ir; k++)
    {
        if (k <= 0 || k >= map_dim.z) continue;

        int x = translate_point(i);
        int y = translate_point(j);
        int z = k;

        int dmg = this->block_damage(abs(x-mx)+abs(y-my)+abs(z-mz));
        if (dmg <= 0) continue;

        t_map::apply_damage_broadcast(x,y,z, dmg*multiplier, action);
    }
    #endif
}
struct maybe_point sphere_intersection_point(struct ray r, struct sphere s)
{
    double a = dot_vector(r.dir, r.dir);
    double b = 2 * dot_vector(difference_point(r.p, s.center), r.dir);
    double c = dot_vector(difference_point(r.p, s.center),
                          difference_point(r.p, s.center)) - (s.radius * s.radius);
    double disc = discriminant(a, b, c);
    double pos_result = pos_quadratic(a, b, c);
    double neg_result = neg_quadratic(a, b, c);
    double result;

    if (disc < 0)
    {
        return create_maybe_point(0, create_point(0.0, 0.0, 0.0));
    }
    if (pos_result > 0 && neg_result > 0)
    {
        if (pos_result < neg_result)
        {
            result = pos_result;
        }
        else
        {
            result = neg_result;
        }
    }
    else if (pos_result > 0)
    {
        result = pos_result;
    }
    else if (neg_result > 0)
    {
        result = neg_result;
    }
    else
    {
        result = -1;
    }
    if (result > 0)
    {   /*point is valid*/
        return create_maybe_point(1, translate_point(r.p, scale_vector(r.dir, result)));
    }
    else
    {   /* point is invalid*/
        return create_maybe_point(0, translate_point(r.p, scale_vector(r.dir, result)));
    }
}
/*
 * Construct a fan around the midpoint using the vertices from pen between
 * inpt and outpt.
 */
static void
add_fan (struct stroker *stroker,
	 const cairo_slope_t *in_vector,
	 const cairo_slope_t *out_vector,
	 const cairo_point_t *midpt,
	 cairo_bool_t clockwise,
	 struct stroke_contour *c)
{
    cairo_pen_t *pen = &stroker->pen;
    int start, stop;

    if (stroker->has_bounds &&
	! _cairo_box_contains_point (&stroker->bounds, midpt))
	return;

    assert (stroker->pen.num_vertices);

    if (clockwise) {
	_cairo_pen_find_active_cw_vertices (pen,
					    in_vector, out_vector,
					    &start, &stop);
	while (start != stop) {
	    cairo_point_t p = *midpt;
	    translate_point (&p, &pen->vertices[start].point);
	    contour_add_point (stroker, c, &p);

	    if (++start == pen->num_vertices)
		start = 0;
	}
    } else {
	_cairo_pen_find_active_ccw_vertices (pen,
					     in_vector, out_vector,
					     &start, &stop);
	while (start != stop) {
	    cairo_point_t p = *midpt;
	    translate_point (&p, &pen->vertices[start].point);
	    contour_add_point (stroker, c, &p);

	    if (start-- == 0)
		start += pen->num_vertices;
	}
    }
}
static void
compute_face (const cairo_point_t *point,
              const cairo_slope_t *dev_slope,
              struct stroker *stroker,
              cairo_stroke_face_t *face)
{
    double face_dx, face_dy;
    cairo_point_t offset_ccw, offset_cw;
    double slope_dx, slope_dy;

    slope_dx = _cairo_fixed_to_double (dev_slope->dx);
    slope_dy = _cairo_fixed_to_double (dev_slope->dy);
    face->length = normalize_slope (&slope_dx, &slope_dy);
    face->dev_slope.x = slope_dx;
    face->dev_slope.y = slope_dy;

    /*
     * rotate to get a line_width/2 vector along the face, note that
     * the vector must be rotated the right direction in device space,
     * but by 90° in user space. So, the rotation depends on
     * whether the ctm reflects or not, and that can be determined
     * by looking at the determinant of the matrix.
     */
    if (! _cairo_matrix_is_identity (stroker->ctm_inverse)) {
        /* Normalize the matrix! */
        cairo_matrix_transform_distance (stroker->ctm_inverse,
                                         &slope_dx, &slope_dy);
        normalize_slope (&slope_dx, &slope_dy);

        if (stroker->ctm_det_positive) {
            face_dx = - slope_dy * (stroker->style.line_width / 2.0);
            face_dy = slope_dx * (stroker->style.line_width / 2.0);
        } else {
            face_dx = slope_dy * (stroker->style.line_width / 2.0);
            face_dy = - slope_dx * (stroker->style.line_width / 2.0);
        }

        /* back to device space */
        cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy);
    } else {
        face_dx = - slope_dy * (stroker->style.line_width / 2.0);
        face_dy = slope_dx * (stroker->style.line_width / 2.0);
    }

    offset_ccw.x = _cairo_fixed_from_double (face_dx);
    offset_ccw.y = _cairo_fixed_from_double (face_dy);
    offset_cw.x = -offset_ccw.x;
    offset_cw.y = -offset_ccw.y;

    face->ccw = *point;
    translate_point (&face->ccw, &offset_ccw);

    face->point = *point;

    face->cw = *point;
    translate_point (&face->cw, &offset_cw);

    face->usr_vector.x = slope_dx;
    face->usr_vector.y = slope_dy;

    face->dev_vector = *dev_slope;
}
/*
 * Construct a fan around the midpoint using the vertices from pen between
 * inpt and outpt.
 */
static void
add_fan (struct stroker *stroker,
         const cairo_slope_t *in_vector,
         const cairo_slope_t *out_vector,
         const cairo_point_t *midpt,
         const cairo_point_t *inpt,
         const cairo_point_t *outpt,
         cairo_bool_t clockwise)
{
    int start, stop, step, i, npoints;

    if (clockwise) {
        step  = 1;

        start = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
                in_vector);
        if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_cw,
                                  in_vector) < 0)
            start = range_step (start, 1, stroker->pen.num_vertices);

        stop  = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
                out_vector);
        if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
                                  out_vector) > 0)
        {
            stop = range_step (stop, -1, stroker->pen.num_vertices);
            if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
                                      in_vector) < 0)
                return;
        }

        npoints = stop - start;
    } else {
        step  = -1;

        start = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
                in_vector);
        if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_ccw,
                                  in_vector) < 0)
            start = range_step (start, -1, stroker->pen.num_vertices);

        stop  = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
                out_vector);
        if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
                                  out_vector) > 0)
        {
            stop = range_step (stop, 1, stroker->pen.num_vertices);
            if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
                                      in_vector) < 0)
                return;
        }

        npoints = start - stop;
    }
    stop = range_step (stop, step, stroker->pen.num_vertices);
    if (npoints < 0)
        npoints += stroker->pen.num_vertices;
    if (npoints <= 1)
        return;

    for (i = start;
            i != stop;
            i = range_step (i, step, stroker->pen.num_vertices))
    {
        cairo_point_t p = *midpt;
        translate_point (&p, &stroker->pen.vertices[i].point);
        //contour_add_point (stroker, c, &p);
    }
}
Example #7
0
struct maybe_point sphere_intersection_point(struct ray r, struct sphere s)
{
   double a = dot_vector(r.dir,r.dir);
 
   struct vector v=difference_point(r.p,s.center);
  
   double b = 2*dot_vector(v,r.dir);
 

   double c = dot_vector(v,v) - (s.radius*s.radius);
 

   if( (b*b-4*a*c)>0) //two real roots
   {
      double t1 = ( (-b+sqrt((b*b)-(4*a*c)))/(2*a));
    
      double t2 = ( (-b-sqrt((b*b)-(4*a*c)))/(2*a));
   
      if(t1>0 && t2>0) // ray hits sphere twice, need lower t value
      {  
         if(t1<=t2)
         {
            struct maybe_point mp5;
            mp5.isPoint=1;
            mp5.p=translate_point(r.p,scale_vector(r.dir,t1));
            return mp5;
         }   
         else
         {
            struct maybe_point mp6;
            mp6.isPoint=1;
            mp6.p=translate_point(r.p,scale_vector(r.dir,t2));
            return mp6;
         }
      }
      else if( (t1>0&&t2<0) || (t1<0&&t2>0) )  //t is positive and negative,need positive t value
      {
         if(t1>0)
         {
            struct maybe_point mp7;
            mp7.isPoint=1;
            mp7.p=translate_point(r.p,scale_vector(r.dir,t1));
            return mp7;
         }
         else
         {
            struct maybe_point mp8;
            mp8.isPoint=1;
            mp8.p=translate_point(r.p,scale_vector(r.dir,t2));
            return mp8;
         }
            
      }
      else  //no intersection, both t's negative
      {
         struct maybe_point mp1;
         mp1.isPoint=0;         
         mp1.p.x=0;
         mp1.p.y=0;
         mp1.p.z=0;
         return mp1;
      }
      
   }
   else if( (b*b-4*a*c)==0)//one real root
   {
      printf("oneroot!");
      double t3 = -b/2*a;
      if(t3>0)//t is positive, so the ray intersects sphere tangentially
      {
         struct maybe_point mp2;
         mp2.isPoint=1;
         mp2.p=translate_point(r.p,scale_vector(r.dir,t3));
    
         return mp2;
      }
      else //t is negative, so ray does not intersect sphere. 
           //also includes the case where t==0, where the ray starting
           //point is on the sphere. am going to treat like non-intersection
      {
         struct maybe_point mp3;
         mp3.isPoint=0;
         mp3.p.x=0;
         mp3.p.y=0;
         mp3.p.z=0;
         return mp3;
      }
   }
  
   else  // no real roots
   { 
      struct maybe_point mp;
      mp.isPoint=0;
      mp.p.x=0;
      mp.p.y=0;
      mp.p.z=0; 
      return mp;
   }   
}
Point translate_point_copy(const Point & point, const Vector3 & vec)
{
    Point ret(point);
    translate_point(ret, vec);
    return ret;
}
Example #9
0
/*
 * \brief Convert token list to outline.  Calls the line and curve evaluators.
 */
FT_Outline *ass_drawing_parse(ASS_Drawing *drawing, int raw_mode)
{
    int started = 0;
    ASS_DrawingToken *token;
    FT_Vector pen = {0, 0};

    drawing->tokens = drawing_tokenize(drawing->text);
    drawing_prepare(drawing);

    token = drawing->tokens;
    while (token) {
        // Draw something according to current command
        switch (token->type) {
        case TOKEN_MOVE_NC:
            pen = token->point;
            translate_point(drawing, &pen);
            token = token->next;
            break;
        case TOKEN_MOVE:
            pen = token->point;
            translate_point(drawing, &pen);
            if (started) {
                drawing_close_shape(drawing);
                started = 0;
            }
            token = token->next;
            break;
        case TOKEN_LINE: {
            FT_Vector to;
            to = token->point;
            translate_point(drawing, &to);
            if (!started) drawing_add_point(drawing, &pen);
            drawing_add_point(drawing, &to);
            started = 1;
            token = token->next;
            break;
        }
        case TOKEN_CUBIC_BEZIER:
            if (token_check_values(token, 3, TOKEN_CUBIC_BEZIER) &&
                token->prev) {
                drawing_evaluate_curve(drawing, token->prev, 0, started);
                token = token->next;
                token = token->next;
                token = token->next;
                started = 1;
            } else
                token = token->next;
            break;
        case TOKEN_B_SPLINE:
            if (token_check_values(token, 3, TOKEN_B_SPLINE) &&
                token->prev) {
                drawing_evaluate_curve(drawing, token->prev, 1, started);
                token = token->next;
                started = 1;
            } else
                token = token->next;
            break;
        default:
            token = token->next;
            break;
        }
    }

    drawing_finish(drawing, raw_mode);
    drawing_free_tokens(drawing->tokens);
    return &drawing->outline;
}
Example #10
0
/*
 * \brief Evaluate a curve into lines
 * This curve evaluator is also used in VSFilter (RTS.cpp); it's a simple
 * implementation of the De Casteljau algorithm.
 */
static void drawing_evaluate_curve(ASS_Drawing *drawing,
                                   ASS_DrawingToken *token, char spline,
                                   int started)
{
    double cx3, cx2, cx1, cx0, cy3, cy2, cy1, cy0;
    double t, h, max_accel, max_accel1, max_accel2;
    FT_Vector cur = {0, 0};

    cur = token->point;
    translate_point(drawing, &cur);
    int x0 = cur.x;
    int y0 = cur.y;
    token = token->next;
    cur = token->point;
    translate_point(drawing, &cur);
    int x1 = cur.x;
    int y1 = cur.y;
    token = token->next;
    cur = token->point;
    translate_point(drawing, &cur);
    int x2 = cur.x;
    int y2 = cur.y;
    token = token->next;
    cur = token->point;
    translate_point(drawing, &cur);
    int x3 = cur.x;
    int y3 = cur.y;

    if (spline) {
        // 1   [-1 +3 -3 +1]
        // - * [+3 -6 +3  0]
        // 6   [-3  0 +3  0]
        //	   [+1 +4 +1  0]

        double div6 = 1.0/6.0;

        cx3 = div6*(-  x0+3*x1-3*x2+x3);
        cx2 = div6*( 3*x0-6*x1+3*x2);
        cx1 = div6*(-3*x0	   +3*x2);
        cx0 = div6*(   x0+4*x1+1*x2);

        cy3 = div6*(-  y0+3*y1-3*y2+y3);
        cy2 = div6*( 3*y0-6*y1+3*y2);
        cy1 = div6*(-3*y0     +3*y2);
        cy0 = div6*(   y0+4*y1+1*y2);
    } else {
        // [-1 +3 -3 +1]
        // [+3 -6 +3  0]
        // [-3 +3  0  0]
        // [+1  0  0  0]

        cx3 = -  x0+3*x1-3*x2+x3;
        cx2 =  3*x0-6*x1+3*x2;
        cx1 = -3*x0+3*x1;
        cx0 =    x0;

        cy3 = -  y0+3*y1-3*y2+y3;
        cy2 =  3*y0-6*y1+3*y2;
        cy1 = -3*y0+3*y1;
        cy0 =    y0;
    }

    max_accel1 = fabs(2 * cy2) + fabs(6 * cy3);
    max_accel2 = fabs(2 * cx2) + fabs(6 * cx3);

    max_accel = FFMAX(max_accel1, max_accel2);
    h = 1.0;

    if (max_accel > CURVE_ACCURACY)
        h = sqrt(CURVE_ACCURACY / max_accel);

    if (!started) {
        cur.x = cx0;
        cur.y = cy0;
        drawing_add_point(drawing, &cur);
    }

    for (t = 0; t < 1.0; t += h) {
        cur.x = cx0 + t * (cx1 + t * (cx2 + t * cx3));
        cur.y = cy0 + t * (cy1 + t * (cy2 + t * cy3));
        drawing_add_point(drawing, &cur);
    }

    cur.x = cx0 + cx1 + cx2 + cx3;
    cur.y = cy0 + cy1 + cy2 + cy3;
    drawing_add_point(drawing, &cur);
}