Example #1
0
/* forward transform, sign = -1; transform length = 3 * 2^n */
int
four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
	mpd_size_t R = 3; /* number of rows */
	mpd_size_t C = n / 3; /* number of columns */
	mpd_uint_t w3table[3];
	mpd_uint_t kernel, w0, w1, wstep;
	mpd_uint_t *s, *p0, *p1, *p2;
	mpd_uint_t umod;
#ifdef PPRO
	double dmod;
	uint32_t dinvmod[3];
#endif
	mpd_size_t i, k;


	assert(n >= 48);
	assert(n <= 3*MPD_MAXTRANSFORM_2N);


	SETMODULUS(modnum);
	_mpd_init_w3table(w3table, -1, modnum);
	/* size three ntt on the columns */
	for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {

		SIZE3_NTT(p0, p1, p2, w3table);
	}


	kernel = _mpd_getkernel(n, -1, modnum);
	for (i = 1; i < R; i++) {
		w0 = 1;
		w1 = POWMOD(kernel, i);
		wstep = MULMOD(w1, w1);
		for (k = 0; k < C-1; k += 2) {
			mpd_uint_t x0 = a[i*C+k];
			mpd_uint_t x1 = a[i*C+k+1];
			MULMOD2(&x0, w0, &x1, w1);
			MULMOD2C(&w0, &w1, wstep);
			a[i*C+k] = x0;
			a[i*C+k+1] = x1;
		}
	}

	/* transform rows */
	for (s = a; s < a+n; s += C) {
		if (!six_step_fnt(s, C, modnum)) {
			return 0;
		}
	}

#if 0
	/* An unordered transform is sufficient for convolution. */
	if (ordered) {
		transpose_3xpow2(a, R, C);
	}
#endif

	return 1;
}
Example #2
0
/* backward transform, sign = 1; transform length = 3 * 2**n */
int
inv_four_step_fnt(const mpd_context_t *ctx, mpd_uint_t *a, mpd_size_t n, int modnum)
{
    mpd_size_t R = 3; /* number of rows */
    mpd_size_t C = n / 3; /* number of columns */
    mpd_uint_t w3table[3];
    mpd_uint_t kernel, w0, w1, wstep;
    mpd_uint_t *s, *p0, *p1, *p2;
    mpd_uint_t umod;
#ifdef PPRO
    double dmod;
    uint32_t dinvmod[3];
#endif
    mpd_size_t i, k;


    assert(n >= 48);
    assert(n <= 3*MPD_MAXTRANSFORM_2N);


#if 0
    /* An unordered transform is sufficient for convolution. */
    /* Transpose the matrix, producing an R*C matrix. */
    transpose_3xpow2(a, C, R);
#endif

    /* Length C transform on the rows. */
    for (s = a; s < a+n; s += C) {
        if (!inv_six_step_fnt(ctx, s, C, modnum)) {
            return 0;
        }
    }

    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
    SETMODULUS(modnum);
    kernel = _mpd_getkernel(n, 1, modnum);
    for (i = 1; i < R; i++) {
        w0 = 1;
        w1 = POWMOD(kernel, i);
        wstep = MULMOD(w1, w1);
        for (k = 0; k < C; k += 2) {
            mpd_uint_t x0 = a[i*C+k];
            mpd_uint_t x1 = a[i*C+k+1];
            MULMOD2(&x0, w0, &x1, w1);
            MULMOD2C(&w0, &w1, wstep);
            a[i*C+k] = x0;
            a[i*C+k+1] = x1;
        }
    }

    /* Length R transform on the columns. */
    _mpd_init_w3table(w3table, 1, modnum);
    for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {

        SIZE3_NTT(p0, p1, p2, w3table);
    }

    return 1;
}