/* forward transform, sign = -1; transform length = 3 * 2^n */ int four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) { mpd_size_t R = 3; /* number of rows */ mpd_size_t C = n / 3; /* number of columns */ mpd_uint_t w3table[3]; mpd_uint_t kernel, w0, w1, wstep; mpd_uint_t *s, *p0, *p1, *p2; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_size_t i, k; assert(n >= 48); assert(n <= 3*MPD_MAXTRANSFORM_2N); SETMODULUS(modnum); _mpd_init_w3table(w3table, -1, modnum); /* size three ntt on the columns */ for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) { SIZE3_NTT(p0, p1, p2, w3table); } kernel = _mpd_getkernel(n, -1, modnum); for (i = 1; i < R; i++) { w0 = 1; w1 = POWMOD(kernel, i); wstep = MULMOD(w1, w1); for (k = 0; k < C-1; k += 2) { mpd_uint_t x0 = a[i*C+k]; mpd_uint_t x1 = a[i*C+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); a[i*C+k] = x0; a[i*C+k+1] = x1; } } /* transform rows */ for (s = a; s < a+n; s += C) { if (!six_step_fnt(s, C, modnum)) { return 0; } } #if 0 /* An unordered transform is sufficient for convolution. */ if (ordered) { transpose_3xpow2(a, R, C); } #endif return 1; }
/* backward transform, sign = 1; transform length = 3 * 2**n */ int inv_four_step_fnt(const mpd_context_t *ctx, mpd_uint_t *a, mpd_size_t n, int modnum) { mpd_size_t R = 3; /* number of rows */ mpd_size_t C = n / 3; /* number of columns */ mpd_uint_t w3table[3]; mpd_uint_t kernel, w0, w1, wstep; mpd_uint_t *s, *p0, *p1, *p2; mpd_uint_t umod; #ifdef PPRO double dmod; uint32_t dinvmod[3]; #endif mpd_size_t i, k; assert(n >= 48); assert(n <= 3*MPD_MAXTRANSFORM_2N); #if 0 /* An unordered transform is sufficient for convolution. */ /* Transpose the matrix, producing an R*C matrix. */ transpose_3xpow2(a, C, R); #endif /* Length C transform on the rows. */ for (s = a; s < a+n; s += C) { if (!inv_six_step_fnt(ctx, s, C, modnum)) { return 0; } } /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ SETMODULUS(modnum); kernel = _mpd_getkernel(n, 1, modnum); for (i = 1; i < R; i++) { w0 = 1; w1 = POWMOD(kernel, i); wstep = MULMOD(w1, w1); for (k = 0; k < C; k += 2) { mpd_uint_t x0 = a[i*C+k]; mpd_uint_t x1 = a[i*C+k+1]; MULMOD2(&x0, w0, &x1, w1); MULMOD2C(&w0, &w1, wstep); a[i*C+k] = x0; a[i*C+k+1] = x1; } } /* Length R transform on the columns. */ _mpd_init_w3table(w3table, 1, modnum); for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) { SIZE3_NTT(p0, p1, p2, w3table); } return 1; }