Example #1
0
void signing_init(uint32_t _inputs_count, uint32_t _outputs_count, const CoinType *_coin, const HDNode *_root)
{
	inputs_count = _inputs_count;
	outputs_count = _outputs_count;
	coin = _coin;
	root = _root;

	idx1 = 0;
	to_spend = 0;
	spending = 0;
	change_spend = 0;
	memset(&input, 0, sizeof(TxInputType));
	memset(&resp, 0, sizeof(TxRequest));

	signing = true;

	multisig_fp_set = false;
	multisig_fp_mismatch = false;

	tx_init(&to, inputs_count, outputs_count, version, lock_time, false);
	sha256_Init(&tc);
	sha256_Update(&tc, (const uint8_t *)&inputs_count, sizeof(inputs_count));
	sha256_Update(&tc, (const uint8_t *)&outputs_count, sizeof(outputs_count));
	sha256_Update(&tc, (const uint8_t *)&version, sizeof(version));
	sha256_Update(&tc, (const uint8_t *)&lock_time, sizeof(lock_time));

	raw_tx_status = NOT_PARSING;

	send_req_1_input();
}
Example #2
0
int inittx_ref(tx_ref_t *ref, tx_t *tx, char *name, char *hash, int type)
{
  shkey_t *tx_key;
  int err;

  memset(ref->ref.ref_name, 0, sizeof(ref->ref.ref_name));
  memset(ref->ref.ref_hash, 0, sizeof(ref->ref.ref_hash));

  /* attributes */
  if (name)
    strncpy(ref->ref.ref_name, name, sizeof(ref->ref.ref_name)-1); 
  if (hash)
    strncpy(ref->ref.ref_hash, hash, sizeof(ref->ref.ref_hash)-1); 
  ref->ref.ref_type = type;
  ref->ref.ref_level = tx->tx_op;

  /* origin peer */
  memcpy(&ref->ref.ref_peer, &tx->tx_peer, sizeof(ref->ref.ref_peer));

  /* populate unique key into 'external hash reference' if none specified. */
  if (!*ref->ref.ref_hash) {
    tx_key = get_tx_key(tx);
    if (tx_key)
      memcpy(&ref->ref.ref_hash, shkey_print(tx_key), sizeof(ref->ref.ref_hash));
  }

  /* generate new reference */
  err = tx_init(NULL, (tx_t *)ref, TX_REFERENCE);
  if (err)
    return (err);

  return (0);
}
Example #3
0
int create_bond_asset(shkey_t *id_key, tx_bond_t *bond, size_t bond_nr, tx_asset_t **asset_p)
{
  tx_asset_t *asset;
  shpeer_t *peer;
  size_t len;
  int err;

  peer = load_asset_peer(id_key);
  if (!peer)
    return (SHERR_INVAL);

  len = sizeof(tx_asset_t) + (sizeof(tx_bond_t) * bond_nr);
  asset = (tx_asset_t *)calloc(len, sizeof(char));
  if (!asset)
    return (SHERR_NOMEM);

  asset->ass.ass_birth = shtime();
  asset->ass_type = TX_BOND;

  /* asset content */
  asset->ass_size = (sizeof(tx_bond_t) * bond_nr);
  memcpy((unsigned char *)asset->ass_data, 
      (unsigned char *)bond, (sizeof(tx_bond_t) * bond_nr));

  /* generate signature based on identity's priveleged key */
  memcpy(&asset->ass.ass_id, id_key, sizeof(asset->ass.ass_id));
  generate_asset_signature(asset, peer);

  err = tx_init(NULL, (tx_t *)asset, TX_ASSET);
  if (err)
    return (err);

  return (0); 
}
Example #4
0
void open_channel(unsigned long long pci_mem_addr)
{
	int fd;
	void *ptr;

	if(!pci_mem_addr){
		if ((fd = shm_open("channel", O_CREAT|O_RDWR,
						S_IRWXU|S_IRWXG|S_IRWXO)) > 0) {
			if (ftruncate(fd, 1024) != 0)
				DIE("could not truncate shared file\n");
		}
		else
			DIE("Open channel");
		
		ptr = mmap(NULL,1024,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0);
		if(ptr == MAP_FAILED)
			DIE("mmap");
	}
	else{
		fprintf(stderr,"Using provide address cookie 0x%llx\n",pci_mem_addr);
		fd = open ( "/dev/mem", O_RDWR);
		ptr  = mmap(NULL, 1024, PROT_READ|PROT_WRITE, MAP_SHARED, fd, (off_t)pci_mem_addr);
		if (!ptr) {
			printf("Cannot map 0x%llx with size of %x\n",  pci_mem_addr, 1024);
			exit(0);
		}

	}
	spinlock = ptr; /* spinlock is the first object in the mmap */
	if(transmitter)
		tx_init();
	else
		rx_init();
	return;
}
Example #5
0
int inittx_ward(tx_ward_t *ward, tx_t *tx, tx_context_t *ctx)
{
  shkey_t *tx_key;
  int err;

  tx_key = get_tx_key(tx);
  if (!tx_key)
    return (SHERR_INVAL);

  memcpy(&ward->ward_ref, tx_key, sizeof(ward->ward_ref));

  txward_context_sign(ward, ctx);

  err = tx_init(NULL, (tx_t *)ward, TX_WARD);
  if (err)
    return (err);

  return (0);
}
Example #6
0
int inittx_contract(tx_contract_t *con, char *type, char *name, char *key)
{
  int err;

  if (!type || !name || !key)
    return (SHERR_INVAL);

  memset(con->con_cur, 0, sizeof(con->con_cur));
  memset(con->con_name, 0, sizeof(con->con_name));
  memset(con->con_key, 0, sizeof(con->con_key));

  strncpy(con->con_cur, type, sizeof(con->con_cur)-1); 
  strncpy(con->con_name, name, sizeof(con->con_name)-1); 
  strncpy(con->con_key, key, sizeof(con->con_key)-1); 

  err = tx_init(NULL, (tx_t *)con, TX_WALLET);
  if (err)
    return (err);

  return (0);
}
Example #7
0
int
main (void)
{
  SystemInit ();

  debug_init ();
#ifdef DEBUG_LEVEL
  debug_set_level (DEBUG_LEVEL);
#endif

  DBG_NEWLINE (DBG_LEVEL_INFO);
  DBG (DBG_LEVEL_INFO, "HAM relay firmware v" VERSION_STR " (" __GIT_SHA1__ ")");
  DBG (DBG_LEVEL_INFO, "Compiled " __DATE__ " at " __TIME__ " on " __BUILD_HOSTNAME__ " using GCC " __VERSION__ " (%d.%d-%d)", __CS_SOURCERYGXX_MAJ__, __CS_SOURCERYGXX_MIN__, __CS_SOURCERYGXX_REV__);
  DBG (DBG_LEVEL_INFO, "MCU running at %d MHz", SystemCoreClock / 1000000);

  inputs_init ();

  systick_init ();
  tx_init ();
  tone_init ();
  roger_beep_init ();
  call_init ();

  call_transmit_delay (5);

  while (1) {
    if (!tx_is_enabled ()) {
      roger_beep_transmit_if_needed ();

      call_transmit_if_needed ();
    }

    __WFI ();
  }

  return 0;
}
Example #8
0
int inittx_trust(tx_trust_t *trust, tx_t *ref_tx, shkey_t *context)
{
  shkey_t *tx_key;
  int err;

  if (!trust)
    return (SHERR_INVAL);

  tx_key = get_tx_key(ref_tx);
  if (!tx_key)
    return (SHERR_INVAL);

  if (!context)
    context = ashkey_blank();

  memcpy(&trust->trust_ref, tx_key, sizeof(shkey_t));
  memcpy(&trust->trust_ctx, context, sizeof(shkey_t));

  err = tx_init(NULL, trust, TX_TRUST);
  if (err)
    return (err);

  return (0);
}
Example #9
0
/**
 * Creates a new bond with the local shared as sender.
 * @note Set the bond state to confirm to initiate transaction.
 */
tx_bond_t *create_bond(shkey_t *bond_key, double duration, double fee, double basis)
{

  bond = (tx_bond_t *)calloc(1, sizeof(tx_bond_t));
  if (!bond)
    return (SHERR_NOMEM);

  local_transid_generate(TX_BOND, &bond->tx);

  bond->bond_stamp = shtime64();
  bond->bond_stamp = shtime_adj(bond->bond_stamp, duration);
  bond->bond_credit = (uint64_t)(fee / 0.00000001);
  bond->bond_basis = (uint32_t)(basis * 10000);
  bond->bond_state = TXBOND_PENDING;

  /* authenticate bond info */ 
  generate_bond_signature(bond);

  err = tx_init(NULL, (tx_t *)bond, TX_BOND);
  if (err)
    return (err);

  return (bond);
}
Example #10
0
int
main(void)
{
  wdt_disable();

  // un-reset ethernet
  ENC28J60_RESET_DDR  |= _BV( ENC28J60_RESET_BIT );
  ENC28J60_RESET_PORT |= _BV( ENC28J60_RESET_BIT );
  
  led_init();
  LED_ON();

  spi_init();

  eeprom_init();

  // if we had been restarted by watchdog check the REQ BootLoader byte in the
  // EEPROM ...
  if(bit_is_set(MCUSR,WDRF) && eeprom_read_byte(EE_REQBL)) {
    eeprom_write_byte( EE_REQBL, 0 ); // clear flag
// TBD: This is useless as button needs to be pressed - needs moving into bootloader directly
//    start_bootloader();
  }


// Setup OneWire and make a full search at the beginning (takes some time)
#ifdef HAS_ONEWIRE
  i2c_init();
  onewire_Init();
  onewire_FullSearch();
#endif

  // Setup the timers. Are needed for watchdog-reset

#if defined (HAS_IRRX) || defined (HAS_IRTX)
  ir_init();
  // IR uses highspeed TIMER0 for sampling 
  OCR0A  = 1;                              // Timer0: 0.008s = 8MHz/256/2   == 15625Hz
#else
  OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250 == 125Hz
#endif

  TCCR0B = _BV(CS02);
  TCCR0A = _BV(WGM01);
  TIMSK0 = _BV(OCIE0A);

  TCCR1A = 0;
  TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8

  clock_prescale_set(clock_div_1);

  MCUSR &= ~(1 << WDRF);                   // Enable the watchdog
  wdt_enable(WDTO_2S);

  uart_init( UART_BAUD_SELECT_DOUBLE_SPEED(UART_BAUD_RATE,F_CPU) );

  fht_init();
  tx_init();
  input_handle_func = analyze_ttydata;
#ifdef HAS_RF_ROUTER
  rf_router_init();
  display_channel = (DISPLAY_USB|DISPLAY_RFROUTER);
#else
  display_channel = DISPLAY_USB;
#endif

  ethernet_init();
    
  LED_OFF();

  sei();

  for(;;) {
    uart_task();
    RfAnalyze_Task();
    Minute_Task();
#ifdef HAS_FASTRF
    FastRF_Task();
#endif
#ifdef HAS_RF_ROUTER
    rf_router_task();
#endif
#ifdef HAS_ASKSIN
    rf_asksin_task();
#endif
#ifdef HAS_IRRX
    ir_task();
#endif
#ifdef HAS_ETHERNET
    Ethernet_Task();
#endif
  }

}
Example #11
0
int
main(void)
{
  wdt_disable();

#ifdef CSMV4

  LED_ON_DDR  |= _BV( LED_ON_PIN );
  LED_ON_PORT |= _BV( LED_ON_PIN );

#endif

  led_init();
  LED_ON();

  spi_init();

//  eeprom_factory_reset("xx");
  eeprom_init();

//  led_mode = 2;

  // if we had been restarted by watchdog check the REQ BootLoader byte in the
  // EEPROM ...
//  if(bit_is_set(MCUSR,WDRF) && eeprom_read_byte(EE_REQBL)) {
//    eeprom_write_byte( EE_REQBL, 0 ); // clear flag
//    start_bootloader();
//  }

  // Setup the timers. Are needed for watchdog-reset
#ifdef HAS_IRRX
  ir_init();
  // IR uses highspeed TIMER0 for sampling
  OCR0A  = 1;                              // Timer0: 0.008s = 8MHz/256/2   == 15625Hz
#else
  OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250 == 125Hz
#endif
  TCCR0B = _BV(CS02);
  TCCR0A = _BV(WGM01);
  TIMSK0 = _BV(OCIE0A);

  TCCR1A = 0;
  TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8

  clock_prescale_set(clock_div_1);

  MCUSR &= ~(1 << WDRF);                   // Enable the watchdog
  wdt_enable(WDTO_2S);

  uart_init( UART_BAUD_SELECT_DOUBLE_SPEED(UART_BAUD_RATE,F_CPU) );

#ifdef HAS_DOGM
  dogm_init();
#endif

  fht_init();
  tx_init();
  input_handle_func = analyze_ttydata;

  display_channel = DISPLAY_USB;

#ifdef HAS_RF_ROUTER
  rf_router_init();
  display_channel |= DISPLAY_RFROUTER;
#endif

#ifdef HAS_DOGM
  display_channel |= DISPLAY_DOGM;
#endif

  LED_OFF();

  sei();

  for(;;) {
    uart_task();
    RfAnalyze_Task();
    Minute_Task();
#ifdef HAS_FASTRF
    FastRF_Task();
#endif
#ifdef HAS_RF_ROUTER
    rf_router_task();
#endif
#ifdef HAS_ASKSIN
    rf_asksin_task();
#endif
#ifdef HAS_MORITZ
    rf_moritz_task();
#endif
#ifdef HAS_IRRX
    ir_task();
#endif
  }

}
Example #12
0
int
main(void)
{
  wdt_disable();
  clock_prescale_set(clock_div_1);

  LED_ON_DDR  |= _BV( LED_ON_PIN );
  LED_ON_PORT |= _BV( LED_ON_PIN );

  led_init();
  LED_ON();

  spi_init();

//  eeprom_factory_reset("xx");
  eeprom_init();

// Setup OneWire and make a full search at the beginning (takes some time)
#ifdef HAS_ONEWIRE
  i2c_init();
	onewire_Init();
	onewire_FullSearch();
#endif

  // Setup the timers. Are needed for watchdog-reset
#if defined (HAS_IRRX) || defined (HAS_IRTX)
  ir_init();
  // IR uses highspeed TIMER0 for sampling 
  OCR0A  = 1;                              // Timer0: 0.008s = 8MHz/256/2   == 15625Hz
#else
  OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250 == 125Hz
#endif
  TCCR0B = _BV(CS02);
  TCCR0A = _BV(WGM01);
  TIMSK0 = _BV(OCIE0A);

  TCCR1A = 0;
  TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8


  MCUSR &= ~(1 << WDRF);                   // Enable the watchdog
  wdt_enable(WDTO_2S);

  uart_init( UART_BAUD_SELECT_DOUBLE_SPEED(UART_BAUD_RATE,F_CPU) );

  fht_init();
  tx_init();
  input_handle_func = analyze_ttydata;

  display_channel = DISPLAY_USB;

#ifdef HAS_RF_ROUTER
  rf_router_init();
  display_channel |= DISPLAY_RFROUTER;
#endif

  checkFrequency(); 
  LED_OFF();

  sei();

  for(;;) {
    uart_task();
    RfAnalyze_Task();
    Minute_Task();
#ifdef HAS_FASTRF
    FastRF_Task();
#endif
#ifdef HAS_RF_ROUTER
    rf_router_task();
#endif
#ifdef HAS_ASKSIN
    rf_asksin_task();
#endif
#ifdef HAS_MORITZ
    rf_moritz_task();
#endif
#ifdef HAS_RWE
    rf_rwe_task();
#endif
#if defined(HAS_IRRX) || defined(HAS_IRTX)
    ir_task();
#endif
#ifdef HAS_MBUS
    rf_mbus_task();
#endif
  }

}
Example #13
0
int main(int argc,char* argv[]) {
    struct dspserver_config config;
    memset(&config, 0, sizeof(config));
    // Register signal and signal handler
    signal(SIGINT, signal_shutdown);    
    char directory[MAXPATHLEN];
    strcpy(config.soundCardName,"HPSDR");
    strcpy(config.server_address,"127.0.0.1"); // localhost
    strcpy(config.share_config_file, getenv("HOME"));
    strcat(config.share_config_file, "/dspserver.conf");
    processCommands(argc,argv,&config);
    fprintf(stderr, "Reading conf file %s\n", config.share_config_file);
    init_register(config.share_config_file); // we now read our conf always
	 // start web registration if set
    if  (toShareOrNotToShare) {
        fprintf(stderr, "Activating Web register\n");
    }
    fprintf(stderr,"gHPSDR rx %d (Version %s)\n",receiver,VERSION);
    printversion();
    setSoundcard(getSoundcardId(config.soundCardName));

    // initialize DttSP
    if(getcwd(directory, sizeof(directory))==NULL) {
        fprintf(stderr,"current working directory path is > MAXPATHLEN");
        exit(1);
    }
    Setup_SDR(directory);
    Release_Update();
    SetTRX(0,0); // thread 0 is for receive
    SetTRX(1,1);  // thread 1 is for transmit
    SetRingBufferOffset(0,config.offset);
    SetThreadProcessingMode(0,RUN_PLAY);
    SetThreadProcessingMode(1,RUN_PLAY);
    SetSubRXSt(0,1,1);
    SetRXOutputGain(0,0,0.20);
    SetRXOsc(0,0, -LO_offset);
    SetRXOsc(0,1, -LO_offset);
    reset_for_buflen(0,1024);
    reset_for_buflen(1,1024);

    client_init(receiver);
    audio_stream_init(receiver);
    audio_stream_reset();

    codec2 = codec2_create();
    G711A_init();
    ozy_init(config.server_address);

    SetMode(1, 0, USB);
    SetTXFilter(1, 150, 2850);
    SetTXOsc(1, LO_offset);
    SetTXAMCarrierLevel(1, 0.5);

    tx_init();	// starts the tx_thread

    while(1) {
        sleep(10000);
    }

 //   codec2_destroy(codec2);
    return 0;
}
Example #14
0
//------------------------------------------------------------------------------
/// Application entry point. Configures the DBGU, PIT, TC0, LEDs and buttons
/// and makes LED\#1 blink in its infinite loop, using the Wait function.
/// \return Unused (ANSI-C compatibility).
//------------------------------------------------------------------------------
int main(void)
{


  // DBGU configuration
  TRACE_CONFIGURE(DBGU_STANDARD, 115200, BOARD_MCK);
  TRACE_INFO_WP("\n\r");
  TRACE_INFO("Getting new Started Project --\n\r");
  TRACE_INFO("%s\n\r", BOARD_NAME);
  TRACE_INFO("Compiled: %s %s --\n\r", __DATE__, __TIME__);

  //Configure Reset Controller
  AT91C_BASE_RSTC->RSTC_RMR= 0xa5<<24;

  // Configure EMAC PINS
  PIO_Configure(emacRstPins, PIO_LISTSIZE(emacRstPins));

  // Execute reset
  RSTC_SetExtResetLength(0xd);
  RSTC_ExtReset();

  // Wait for end hardware reset
  while (!RSTC_GetNrstLevel());

  TRACE_INFO("init Flash\n\r");
  flash_init();

  TRACE_INFO("init Timer\n\r");
  // Configure timer 0
  ticks=0;
  extern void ISR_Timer0();
  AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
  AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
  AT91C_BASE_TC0->TC_IDR = 0xFFFFFFFF;
  AT91C_BASE_TC0->TC_SR;
  AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV5_CLOCK | AT91C_TC_CPCTRG;
  AT91C_BASE_TC0->TC_RC = 375;
  AT91C_BASE_TC0->TC_IER = AT91C_TC_CPCS;
  AIC_ConfigureIT(AT91C_ID_TC0, AT91C_AIC_PRIOR_LOWEST, ISR_Timer0);
  AIC_EnableIT(AT91C_ID_TC0);
  AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;

  // Configure timer 1
  extern void ISR_Timer1();
  AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
  AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;	//Stop clock
  AT91C_BASE_TC1->TC_IDR = 0xFFFFFFFF;		//Disable Interrupts
  AT91C_BASE_TC1->TC_SR;						//Read Status register
  AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV4_CLOCK | AT91C_TC_CPCTRG;  // Timer1: 2,666us = 48MHz/128
  AT91C_BASE_TC1->TC_RC = 0xffff;
  AT91C_BASE_TC1->TC_IER = AT91C_TC_CPCS;
  AIC_ConfigureIT(AT91C_ID_TC1, 1, ISR_Timer1);
  AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;

  led_init();

  TRACE_INFO("init EEprom\n\r");
  eeprom_init();

  rb_reset(&TTY_Rx_Buffer);
  rb_reset(&TTY_Tx_Buffer);

  input_handle_func = analyze_ttydata;

  LED_OFF();
  LED2_OFF();
  LED3_OFF();

  spi_init();
  fht_init();
  tx_init();

  #ifdef HAS_ETHERNET

  ethernet_init();

  #endif

  TRACE_INFO("init USB\n\r");
  CDCDSerialDriver_Initialize();
  USBD_Connect();

  wdt_enable(WDTO_2S);

  fastrf_on=0;

  display_channel = DISPLAY_USB;

  TRACE_INFO("init Complete\n\r");

  checkFrequency();

  // Main loop
  while (1) {

    CDC_Task();
    Minute_Task();
    RfAnalyze_Task();

    #ifdef HAS_FASTRF
      FastRF_Task();
    #endif
    #ifdef HAS_RF_ROUTER
      rf_router_task();
    #endif
    #ifdef HAS_ASKSIN
      rf_asksin_task();
    #endif
    #ifdef HAS_MORITZ
      rf_moritz_task();
    #endif
    #ifdef HAS_RWE
      rf_rwe_task();
    #endif
    #ifdef HAS_MBUS
      rf_mbus_task();
    #endif
    #ifdef HAS_MAICO
      rf_maico_task();
    #endif

    #ifdef HAS_ETHERNET
      Ethernet_Task();
    #endif

#ifdef DBGU_UNIT_IN
    if(DBGU_IsRxReady()){
      unsigned char volatile * const ram = (unsigned char *) AT91C_ISRAM;
      unsigned char x;

      x=DBGU_GetChar();
      switch(x) {

      case 'd':
        puts("USB disconnect\n\r");
        USBD_Disconnect();
        break;
      case 'c':
        USBD_Connect();
        puts("USB Connect\n\r");
        break;
      case 'r':
        //Configure Reset Controller
        AT91C_BASE_RSTC->RSTC_RMR=AT91C_RSTC_URSTEN | 0xa5<<24;
        break;
      case 'S':
        USBD_Disconnect();

        my_delay_ms(250);
        my_delay_ms(250);

        //Reset
        *ram = 0xaa;
        AT91C_BASE_RSTC->RSTC_RCR = AT91C_RSTC_PROCRST | AT91C_RSTC_PERRST | AT91C_RSTC_EXTRST   | 0xA5<<24;
        while (1);
        break;
      default:
        rb_put(&TTY_Tx_Buffer, x);
      }
    }
#endif

    if (USBD_GetState() == USBD_STATE_CONFIGURED) {
      if( USBState == STATE_IDLE ) {
        CDCDSerialDriver_Read(usbBuffer,
                              DATABUFFERSIZE,
                              (TransferCallback) UsbDataReceived,
                              0);
        LED3_ON();
        USBState=STATE_RX;
      }
    }
    if( USBState == STATE_SUSPEND ) {
      TRACE_INFO("suspend  !\n\r");
      USBState = STATE_IDLE;
    }
    if( USBState == STATE_RESUME ) {
      TRACE_INFO("resume !\n\r");
      USBState = STATE_IDLE;
    }

  }
}
Example #15
0
int main(int argc,char* argv[]) {
    memset(&config, 0, sizeof(config));
    // Register signal and signal handler
    signal(SIGINT, signal_shutdown);    
    char directory[MAXPATHLEN];
    strcpy(config.soundCardName,"HPSDR");
    strcpy(config.server_address,"127.0.0.1"); // localhost
    strcpy(config.share_config_file, getenv("HOME"));
    strcat(config.share_config_file, "/dspserver.conf");
    processCommands(argc,argv,&config);

#ifdef THREAD_DEBUG
    sdr_threads_init();
#endif /* THREAD_DEBUG */

    fprintf(stderr, "Reading conf file %s\n", config.share_config_file);
    init_register(config.share_config_file); // we now read our conf always
	 // start web registration if set
    if  (toShareOrNotToShare) {
        fprintf(stderr, "Activating Web register\n");
    }
    fprintf(stderr,"gHPSDR rx %d (Version %s)\n",receiver,VERSION);
    printversion();
    setSoundcard(getSoundcardId(config.soundCardName));

    // initialize DttSP
    if(getcwd(directory, sizeof(directory))==NULL) {
        fprintf(stderr,"current working directory path is > MAXPATHLEN");
        exit(1);
    }
    Setup_SDR(directory);
    Release_Update();
    SetTRX(0,0); // thread 0 is for receive
    SetTRX(1,1);  // thread 1 is for transmit
    SetRingBufferOffset(0,config.offset);
    SetThreadProcessingMode(0,RUN_PLAY);
    SetThreadProcessingMode(1,RUN_PLAY);
    SetSubRXSt(0,1,1);
    SetRXOutputGain(0,0,0.20);
    SetRXOsc(0,0, -LO_offset);
    SetRXOsc(0,1, -LO_offset);
    reset_for_buflen(0,1024);
    reset_for_buflen(1,1024);

    client_init(receiver);        // create the main thread responsible for listen TCP socket
                                  // on the read callback:
                                  //    accept and interpret the commands from remote GUI  
                                  //    parse mic data from remote and enque them into Mic_audio_stream queue
                                  //    see client.c
                                  //
                                  // on the write callback:
                                  //    read the audio_stream_queue and send into the TCP socket
                                  //
    audio_stream_init(receiver);
    audio_stream_reset();

    codec2 = codec2_create(CODEC2_MODE_3200);
    G711A_init();
    ozy_init(config.server_address);   // create and starts iq_thread in ozy.c in order to
                                       // receive iq stream from hardware server
                                       // process it in DttSP
                                       // makes the sample rate adaption for resulting audio
                                       // puts audio stream in a queue (via calls to audio_stream_queue_add 
                                       // in audio_stream_put_samples() in audiostream.c)
                                       //
                                       // in case of HPSDR hardware (that is provided with a local D/A converter
                                       // sends via ozy_send() the audio back to the hardware server
    SetMode(1, 0, USB);
    SetTXFilter(1, 150, 2850);
    SetTXOsc(1, LO_offset);
    SetTXAMCarrierLevel(1, 0.5);

    tx_init();	// create and starts the tx_thread (see client.c)
                // the tx_thread reads the Mic_audio_stream queue, makes the sample rate adaption
                // process the data into DttSP in order to get the modulation process done,
                // and sends back to the hardware server process (via ozy_send() )

#ifdef THREAD_DEBUG
    /* Note that some thread interactions will be lost at startup due to
     * the fact that the subsystem threads are all started.  We can't
     * init this until late, though, or we'll catch initializations
     * performed at boot time as errors. */
    if (config.thread_debug) {
        sdr_threads_debug(TRUE);
    }
#endif /* THREAD_DEBUG */

    while(1) {
        sleep(10000);
    }

 //   codec2_destroy(codec2);
    return 0;
}
Example #16
0
int
main(void)
{
//  wdt_disable();

    clock_prescale_set(clock_div_1);

    MARK433_PORT |= _BV( MARK433_BIT ); // Pull 433MHz marker
    MARK915_PORT |= _BV( MARK915_BIT ); // Pull 915MHz marker

    led_init();

    spi_init();

    // Setup the timers. Are needed for watchdog-reset
    OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250 == 125Hz
    TCCR0B = _BV(CS02);
    TCCR0A = _BV(WGM01);
    TIMSK0 = _BV(OCIE0A);

    TCCR1A = 0;
    TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8

    //eeprom_factory_reset("xx");
    eeprom_init();

    MCUSR &= ~(1 << WDRF);                   // Enable the watchdog
    wdt_enable(WDTO_2S);

    //uart_init( UART_BAUD_SELECT_DOUBLE_SPEED(UART_BAUD_RATE,F_CPU) );
    uart_init( UART_BAUD_SELECT_DOUBLE_SPEED(UART_BAUD_RATE,F_CPU) );

    fht_init();
    tx_init();
    input_handle_func = analyze_ttydata;

    display_channel = DISPLAY_USB;

#ifdef HAS_RF_ROUTER
    rf_router_init();
    display_channel |= DISPLAY_RFROUTER;
#endif

    checkFrequency();
    sei();

    for(;;) {
        uart_task();
        RfAnalyze_Task();
        Minute_Task();
#ifdef HAS_FASTRF
        FastRF_Task();
#endif
#ifdef HAS_RF_ROUTER
        rf_router_task();
#endif
#ifdef HAS_ASKSIN
        rf_asksin_task();
#endif
#ifdef HAS_MORITZ
        rf_moritz_task();
#endif
#ifdef HAS_RWE
        rf_rwe_task();
#endif
#ifdef HAS_RFNATIVE
        native_task();
#endif
#ifdef HAS_KOPP_FC
        kopp_fc_task();
#endif
#ifdef HAS_MBUS
        rf_mbus_task();
#endif
#ifdef HAS_ZWAVE
        rf_zwave_task();
#endif
    }

}
Example #17
0
File: CUL.c Project: jknofe/a-culfw
int
main(void)
{
  wdt_enable(WDTO_2S);
#if defined(CUL_ARDUINO)
  clock_prescale_set(clock_div_1); 		// for 8MHz clock div schould be 1
#endif

  MARK433_PORT |= _BV( MARK433_BIT ); // Pull 433MHz marker
  MARK915_PORT |= _BV( MARK915_BIT ); // Pull 915MHz marker

  // if we had been restarted by watchdog check the REQ BootLoader byte in the
  // EEPROM ...
  if(bit_is_set(MCUSR,WDRF) && erb(EE_REQBL)) {
    ewb( EE_REQBL, 0 ); // clear flag
    start_bootloader();
  }


  // Setup the timers. Are needed for watchdog-reset
  OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250
  TCCR0B = _BV(CS02);
  TCCR0A = _BV(WGM01);
  TIMSK0 = _BV(OCIE0A);

  TCCR1A = 0;
  TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8

  MCUSR &= ~(1 << WDRF);                   // Enable the watchdog

  led_init();
  spi_init();
  eeprom_init();
  USB_Init();
  fht_init();
  tx_init();
  input_handle_func = analyze_ttydata;
#ifdef HAS_RF_ROUTER
  rf_router_init();
  display_channel = (DISPLAY_USB|DISPLAY_RFROUTER);
#else
  display_channel = DISPLAY_USB;
#endif

  checkFrequency(); 
  LED_OFF();

  for(;;) {
    USB_USBTask();
    CDC_Task();
    RfAnalyze_Task();
    Minute_Task();
#ifdef HAS_FASTRF
    FastRF_Task();
#endif
#ifdef HAS_RF_ROUTER
    rf_router_task();
#endif
#ifdef HAS_ASKSIN
    rf_asksin_task();
#endif
#ifdef HAS_MORITZ
    rf_moritz_task();
#endif
#ifdef HAS_RWE
    rf_rwe_task();
#endif
#ifdef HAS_RFNATIVE
    native_task();
#endif
#ifdef HAS_KOPP_FC
    kopp_fc_task();
#endif
#ifdef HAS_MBUS
    rf_mbus_task();
#endif
#ifdef HAS_ZWAVE
    rf_zwave_task();
#endif

  }
}
Example #18
0
int
main(void)
{
  wdt_enable(WDTO_2S); 
  clock_prescale_set(clock_div_1);         // Disable Clock Division

  // if we had been restarted by watchdog check the REQ BootLoader byte in the
  // EEPROM ...
  if (bit_is_set(MCUSR,WDRF) && erb(EE_REQBL)) {
     ewb( EE_REQBL, 0 ); // clear flag
     start_bootloader();
  }

  // Setup the timers. Are needed for watchdog-reset
  OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250
  TCCR0B = _BV(CS02);       
  TCCR0A = _BV(WGM01);
  TIMSK0 = _BV(OCIE0A);

  TCCR1A = 0;
  TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8

#ifdef CURV3
  // Timer3 is used by the LCD backlight (PWM)
  TCCR3A =  _BV(COM3A1)| _BV(WGM30);       // Fast PWM, 8-bit, clear on match
  TCCR3B =  _BV(WGM32) | _BV(CS31);        // Prescaler 8MHz/8: 3.9KHz 
#endif

  MCUSR &= ~(1 << WDRF);                   // Enable the watchdog

  led_init();
  spi_init();
  eeprom_init();
  USB_Init();
  fht_init();
  tx_init();
  joy_init();                   // lcd init is done manually from menu_init
  bat_init();
  df_init(&df);
  fs_init(&fs, df, 0);          // needs df_init
  rtc_init();                   // does i2c_init too
  log_init();                   // needs fs_init & rtc_init
  menu_init();                  // needs fs_init
  input_handle_func = analyze_ttydata;
  log_enabled = erb(EE_LOGENABLED);
  display_channel = DISPLAY_USB|DISPLAY_LCD|DISPLAY_RFROUTER;
  rf_router_init();

  checkFrequency(); 
  LED_OFF();

  for(;;) {
    USB_USBTask();
    CDC_Task();
    RfAnalyze_Task();
    Minute_Task();
    FastRF_Task();
    rf_router_task();
    JOY_Task();
  }
}
Example #19
0
File: CUN.c Project: Talustus/culfw
int
main(void)
{
  //ewb((uint8_t*)0x80, erb((uint8_t*)0x80)+1);
  wdt_enable(WDTO_2S);                     // Avoid an early reboot
  clock_prescale_set(clock_div_1);         // Disable Clock Division:1->8MHz
#ifdef HAS_XRAM
  init_memory_mapped(); // First initialize the RAM
#endif

  // if we had been restarted by watchdog check the REQ BootLoader byte in the
  // EEPROM
  if(bit_is_set(MCUSR,WDRF) && erb(EE_REQBL)) {
    ewb( EE_REQBL, 0 ); // clear flag
    start_bootloader();
  }
  while(tx_report);                     // reboot if the bss is not initialized

  // Setup the timers. Are needed for watchdog-reset
  OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250
  TCCR0B = _BV(CS02);       
  TCCR0A = _BV(WGM01);
  TIMSK0 = _BV(OCIE0A);

  TCCR1A = 0;
  TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8

  MCUSR &= ~(1 << WDRF);                   // Enable the watchdog

  led_init();                              // So we can debug 
  spi_init();
  eeprom_init();
  USB_Init();
  fht_init();
  tx_init();
  ethernet_init();
#ifdef HAS_FS
  df_init(&df);
  fs_init(&fs, df, 0);          // needs df_init
  log_init();                   // needs fs_init & rtc_init
  log_enabled = erb(EE_LOGENABLED);
#endif
  input_handle_func = analyze_ttydata;
  display_channel = DISPLAY_USB;

  LED_OFF();

  for(;;) {
    USB_USBTask();
    CDC_Task();
    RfAnalyze_Task();
    Minute_Task();
    FastRF_Task();
    rf_router_task();
#ifdef HAS_ASKSIN
    rf_asksin_task();
#endif
#ifdef HAS_ETHERNET
    Ethernet_Task();
#endif
  }
}
Example #20
0
void parse_raw_txack(uint8_t *msg, uint32_t msg_size){
	static int32_t state_pos = 0;
	static uint8_t *ptr;
	static uint8_t var_int_buffer[VAR_INT_BUFFER];
	static uint8_t var_int_buffer_index;
	static uint32_t seen, script_len;
	static uint64_t current_output_val;

	for(uint32_t i = 0; i < msg_size; ++i) {

		state_pos--;

		switch(raw_tx_status) {
			case NOT_PARSING:
				tx_init(&tp, 0, 0, 0, 0, false);
				state_pos = sizeof(uint32_t);
				raw_tx_status = PARSING_VERSION;
				ptr = (uint8_t *)&tp.version;
			case PARSING_VERSION:
				*ptr++ = msg[i];

				if(state_pos == 1)
				{
					raw_tx_status = PARSING_INPUT_COUNT;
					reset_parsing_buffer(var_int_buffer, &var_int_buffer_index);
				}
				break;
			case PARSING_INPUT_COUNT:
				var_int_buffer[var_int_buffer_index++] = msg[i];

				if(var_int_buffer_index >= deser_length(var_int_buffer, &tp.inputs_len))
				{
					raw_tx_status = PARSING_INPUTS;
					state_pos = 36;
					seen = 0;
					reset_parsing_buffer(var_int_buffer, &var_int_buffer_index);
				}

				break;
			case PARSING_INPUTS:
				if(state_pos < 0 && seen < tp.inputs_len)
				{
					var_int_buffer[var_int_buffer_index++] = msg[i];

					if(var_int_buffer_index >= deser_length(var_int_buffer, &script_len))
					{
						seen++;

						if(seen < tp.inputs_len)
						{
							state_pos = script_len + 4 + 36;
						}
						else
						{
							state_pos = script_len + 3;	
						}

						script_len = 0;
						reset_parsing_buffer(var_int_buffer, &var_int_buffer_index);
					}
				}
				else if(state_pos < 0)
				{
					raw_tx_status = PARSING_OUTPUT_COUNT;
				}
				break;
			case PARSING_OUTPUT_COUNT:
				var_int_buffer[var_int_buffer_index++] = msg[i];

				if(var_int_buffer_index >= deser_length(var_int_buffer, &tp.outputs_len))
				{
					raw_tx_status = PARSING_OUTPUTS_VALUE;
					state_pos = 8;
					seen = 0;
					current_output_val = 0;
					ptr = (uint8_t *)&current_output_val;
					reset_parsing_buffer(var_int_buffer, &var_int_buffer_index);
				}
				break;
			case PARSING_OUTPUTS_VALUE:
				if(state_pos < 8)
				{
					*ptr++ = msg[i];

					if(state_pos < 1)
					{
						if (seen == input.prev_index) {
							to_spend += current_output_val;
						}

						raw_tx_status = PARSING_OUTPUTS;
						script_len = 0;
						reset_parsing_buffer(var_int_buffer, &var_int_buffer_index);
					}
				}
				break;
			case PARSING_OUTPUTS:
				if(state_pos < 0 && seen < tp.outputs_len)
				{
					var_int_buffer[var_int_buffer_index++] = msg[i];

					if(var_int_buffer_index >= deser_length(var_int_buffer, &script_len))
					{
						seen++;

						if(seen < tp.outputs_len)
						{
							current_output_val = 0;
							ptr = (uint8_t *)&current_output_val;
							raw_tx_status = PARSING_OUTPUTS_VALUE;
							state_pos = script_len + 8;
						}
						else
						{
							state_pos = script_len - 1;
						}
					}
				}
				else if(state_pos < 0)
				{
					raw_tx_status = PARSING_LOCKTIME;
					state_pos = 4;
					ptr = (uint8_t *)&tp.lock_time;
					reset_parsing_buffer(var_int_buffer, &var_int_buffer_index);
				}
				break;
			case PARSING_LOCKTIME:
            	if(state_pos >= 0)
				{
					*ptr++ = msg[i];
				}
				if(state_pos < 1)
				{
					raw_tx_status = NOT_PARSING;
					memset(&resp, 0, sizeof(TxRequest));

					sha256_Update(&(tp.ctx), (const uint8_t*)msg+i, 1);
					tx_hash_final(&tp, hash, true);
					if (memcmp(hash, input.prev_hash.bytes, 32) != 0) {
						fsm_sendFailure(FailureType_Failure_Other, "Encountered invalid prevhash");
						signing_abort();
						return;
					}
            		
            		if (idx1 < inputs_count - 1) {
						idx1++;
						send_req_1_input();
					} else {
						idx1 = 0;
						send_req_3_output();
					}

					return;
				}
				break;
		}

		sha256_Update(&(tp.ctx), (const uint8_t*)msg+i, 1);
	}
}
Example #21
0
void signing_txack(TransactionType *tx)
{
	if (!signing) {
		fsm_sendFailure(FailureType_Failure_UnexpectedMessage, "Not in Signing mode");
		go_home();
		return;
	}

	int co;
	memset(&resp, 0, sizeof(TxRequest));

	switch (signing_stage) {
		case STAGE_REQUEST_1_INPUT:
			/* compute multisig fingerprint */
			/* (if all input share the same fingerprint, outputs having the same fingerprint will be considered as change outputs) */
			if (tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG) {
				if (tx->inputs[0].has_multisig && !multisig_fp_mismatch) {
					if (multisig_fp_set) {
						uint8_t h[32];
						if (cryptoMultisigFingerprint(&(tx->inputs[0].multisig), h) == 0) {
							fsm_sendFailure(FailureType_Failure_Other, "Error computing multisig fingeprint");
							signing_abort();
							return;
						}
						if (memcmp(multisig_fp, h, 32) != 0) {
							multisig_fp_mismatch = true;
						}
					} else {
						if (cryptoMultisigFingerprint(&(tx->inputs[0].multisig), multisig_fp) == 0) {
							fsm_sendFailure(FailureType_Failure_Other, "Error computing multisig fingeprint");
							signing_abort();
							return;
						}
						multisig_fp_set = true;
					}
				}
			} else { // InputScriptType_SPENDADDRESS
				multisig_fp_mismatch = true;
			}
			sha256_Update(&tc, (const uint8_t *)tx->inputs, sizeof(TxInputType));
			memcpy(&input, tx->inputs, sizeof(TxInputType));
			send_req_2_prev_meta();
			return;
		case STAGE_REQUEST_2_PREV_META:
			tx_init(&tp, tx->inputs_cnt, tx->outputs_cnt, tx->version, tx->lock_time, false);
			idx2 = 0;
			send_req_2_prev_input();
			return;
		case STAGE_REQUEST_2_PREV_INPUT:
			if (!tx_serialize_input_hash(&tp, tx->inputs)) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize input");
				signing_abort();
				return;
			}
			if (idx2 < tp.inputs_len - 1) {
				idx2++;
				send_req_2_prev_input();
			} else {
				idx2 = 0;
				send_req_2_prev_output();
			}
			return;
		case STAGE_REQUEST_2_PREV_OUTPUT:
			if (!tx_serialize_output_hash(&tp, tx->bin_outputs)) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize output");
				signing_abort();
				return;
			}
			if (idx2 == input.prev_index) {
				to_spend += tx->bin_outputs[0].amount;
			}
			if (idx2 < tp.outputs_len - 1) {
				/* Check prevtx of next input */
				idx2++;
				send_req_2_prev_output();
			} else {
				/* Check next output */
				tx_hash_final(&tp, hash, true);
				if (memcmp(hash, input.prev_hash.bytes, 32) != 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Encountered invalid prevhash");
					signing_abort();
					return;
				}
				if (idx1 < inputs_count - 1) {
					idx1++;
					send_req_1_input();
				} else {
					idx1 = 0;
					send_req_3_output();
				}
			}
			return;
		case STAGE_REQUEST_3_OUTPUT:
		{
			/* Downloaded output idx1 the first time.
			 *  Add it to transaction check
			 *  Ask for permission.
			 */
			bool is_change = false;

			if (tx->outputs[0].script_type == OutputScriptType_PAYTOMULTISIG &&
			    tx->outputs[0].has_multisig &&
			    multisig_fp_set && !multisig_fp_mismatch) {
				uint8_t h[32];
				if (cryptoMultisigFingerprint(&(tx->outputs[0].multisig), h) == 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Error computing multisig fingeprint");
					signing_abort();
					return;
				}
				if (memcmp(multisig_fp, h, 32) == 0) {
					is_change = true;
				}
                        } else {
                            if(tx->outputs[0].has_address_type) {
                                if(check_valid_output_address(tx->outputs) == false) {
                                    fsm_sendFailure(FailureType_Failure_Other, "Invalid output address type");
                                    signing_abort();
                                    return;
                                }

                                if(tx->outputs[0].script_type == OutputScriptType_PAYTOADDRESS &&
                                        tx->outputs[0].address_n_count > 0 &&
                                        tx->outputs[0].address_type == OutputAddressType_CHANGE) {
                                    is_change = true;
                                }
                            }
                            else if(tx->outputs[0].script_type == OutputScriptType_PAYTOADDRESS &&
                                    tx->outputs[0].address_n_count > 0) {
                                is_change = true;
                            }
                        }

			if (is_change) {
				if (change_spend == 0) { // not set
					change_spend = tx->outputs[0].amount;
				} else {
					fsm_sendFailure(FailureType_Failure_Other, "Only one change output allowed");
					signing_abort();
					return;
			    }
			}

			spending += tx->outputs[0].amount;
			co = compile_output(coin, root, tx->outputs, &bin_output, !is_change);

			if (co < 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Signing cancelled by user");
				signing_abort();
				return;
			} else if (co == 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to compile output");
				signing_abort();
				return;
			}
			sha256_Update(&tc, (const uint8_t *)&bin_output, sizeof(TxOutputBinType));
			if (idx1 < outputs_count - 1) {
				idx1++;
				send_req_3_output();
			} else {
                            sha256_Final(hash_check, &tc);
                            // check fees
                            if (spending > to_spend) {
                                fsm_sendFailure(FailureType_Failure_NotEnoughFunds, "Not enough funds");
		                        signing_abort();
                                return;
                            }
                            uint64_t fee = to_spend - spending;
                            uint32_t tx_est_size = transactionEstimateSizeKb(inputs_count, outputs_count);
                            char total_amount_str[32];
		            char fee_str[32];

		            coin_amnt_to_str(coin, fee, fee_str, sizeof(fee_str));

                            if(fee > (uint64_t)tx_est_size * coin->maxfee_kb) {
			        if (!confirm(ButtonRequestType_ButtonRequest_FeeOverThreshold,
		                        "Confirm Fee", "%s", fee_str)) {
		                    fsm_sendFailure(FailureType_Failure_ActionCancelled, "Fee over threshold. Signing cancelled.");
		                    signing_abort();
		                    return;
		                }

                            }
                            // last confirmation
                            coin_amnt_to_str(coin, to_spend - change_spend, total_amount_str, sizeof(total_amount_str));

		            if(!confirm_transaction(total_amount_str, fee_str))
		            {
		                fsm_sendFailure(FailureType_Failure_ActionCancelled, "Signing cancelled by user");
		                signing_abort();
		                return;
		            }
		            // Everything was checked, now phase 2 begins and the transaction is signed.
		            layout_simple_message("Signing Transaction...");

			    idx1 = 0;
			    idx2 = 0;
			    send_req_4_input();
			}
			return;
		}
		case STAGE_REQUEST_4_INPUT:
			if (idx2 == 0) {
				tx_init(&ti, inputs_count, outputs_count, version, lock_time, true);
				sha256_Init(&tc);
				sha256_Update(&tc, (const uint8_t *)&inputs_count, sizeof(inputs_count));
				sha256_Update(&tc, (const uint8_t *)&outputs_count, sizeof(outputs_count));
				sha256_Update(&tc, (const uint8_t *)&version, sizeof(version));
				sha256_Update(&tc, (const uint8_t *)&lock_time, sizeof(lock_time));
				memset(privkey, 0, 32);
				memset(pubkey, 0, 33);
			}
			sha256_Update(&tc, (const uint8_t *)tx->inputs, sizeof(TxInputType));
			if (idx2 == idx1) {
				memcpy(&input, tx->inputs, sizeof(TxInputType));
				memcpy(&node, root, sizeof(HDNode));
				if (hdnode_private_ckd_cached(&node, tx->inputs[0].address_n, tx->inputs[0].address_n_count) == 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Failed to derive private key");
					signing_abort();
					return;
				}
				if (tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG) {
					if (!tx->inputs[0].has_multisig) {
						fsm_sendFailure(FailureType_Failure_Other, "Multisig info not provided");
						signing_abort();
						return;
					}
					tx->inputs[0].script_sig.size = compile_script_multisig(&(tx->inputs[0].multisig), tx->inputs[0].script_sig.bytes);
				} else { // SPENDADDRESS
					ecdsa_get_pubkeyhash(node.public_key, hash);
					tx->inputs[0].script_sig.size = compile_script_sig(coin->address_type, hash, tx->inputs[0].script_sig.bytes);
				}
				if (tx->inputs[0].script_sig.size == 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Failed to compile input");
					signing_abort();
					return;
				}
				memcpy(privkey, node.private_key, 32);
				memcpy(pubkey, node.public_key, 33);
			} else {
				tx->inputs[0].script_sig.size = 0;
			}
			if (!tx_serialize_input_hash(&ti, tx->inputs)) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize input");
				signing_abort();
				return;
			}
			if (idx2 < inputs_count - 1) {
				idx2++;
				send_req_4_input();
			} else {
				idx2 = 0;
				send_req_4_output();
			}
			return;
		case STAGE_REQUEST_4_OUTPUT:
			co = compile_output(coin, root, tx->outputs, &bin_output, false);
			if (co < 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Signing cancelled by user");
				signing_abort();
				return;
			} else if (co == 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to compile output");
				signing_abort();
				return;
			}
			sha256_Update(&tc, (const uint8_t *)&bin_output, sizeof(TxOutputBinType));
			if (!tx_serialize_output_hash(&ti, &bin_output)) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize output");
				signing_abort();
				return;
			}
			if (idx2 < outputs_count - 1) {
				idx2++;
				send_req_4_output();
			} else {
				sha256_Final(hash, &tc);
				if (memcmp(hash, hash_check, 32) != 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Transaction has changed during signing");
					signing_abort();
					return;
				}
				tx_hash_final(&ti, hash, false);
				resp.has_serialized = true;
				resp.serialized.has_signature_index = true;
				resp.serialized.signature_index = idx1;
				resp.serialized.has_signature = true;
				resp.serialized.has_serialized_tx = true;
				ecdsa_sign_digest(&secp256k1, privkey, hash, sig, 0);
				resp.serialized.signature.size = ecdsa_sig_to_der(sig, resp.serialized.signature.bytes);
				if (input.script_type == InputScriptType_SPENDMULTISIG) {
					if (!input.has_multisig) {
						fsm_sendFailure(FailureType_Failure_Other, "Multisig info not provided");
						signing_abort();
						return;
					}
					// fill in the signature
					int pubkey_idx = cryptoMultisigPubkeyIndex(&(input.multisig), pubkey);
					if (pubkey_idx < 0) {
						fsm_sendFailure(FailureType_Failure_Other, "Pubkey not found in multisig script");
						signing_abort();
						return;
					}
					memcpy(input.multisig.signatures[pubkey_idx].bytes, resp.serialized.signature.bytes, resp.serialized.signature.size);
					input.multisig.signatures[pubkey_idx].size = resp.serialized.signature.size;
					input.script_sig.size = serialize_script_multisig(&(input.multisig), input.script_sig.bytes);
					if (input.script_sig.size == 0) {
						fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize multisig script");
						signing_abort();
						return;
					}
				} else { // SPENDADDRESS
					input.script_sig.size = serialize_script_sig(resp.serialized.signature.bytes, resp.serialized.signature.size, pubkey, 33, input.script_sig.bytes);
				}
				resp.serialized.serialized_tx.size = tx_serialize_input(&to, &input, resp.serialized.serialized_tx.bytes);

				if (idx1 < inputs_count - 1) {
					idx1++;
					idx2 = 0;
					send_req_4_input();
				} else {
					idx1 = 0;
					send_req_5_output();
				}
			}
			return;
		case STAGE_REQUEST_5_OUTPUT:
			if (compile_output(coin, root, tx->outputs, &bin_output,false) <= 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to compile output");
				signing_abort();
				return;
			}
			resp.has_serialized = true;
			resp.serialized.has_serialized_tx = true;
			resp.serialized.serialized_tx.size = tx_serialize_output(&to, &bin_output, resp.serialized.serialized_tx.bytes);
			if (idx1 < outputs_count - 1) {
				idx1++;
				send_req_5_output();
			} else {
				send_req_finished();
				signing_abort();
			}
			return;
	}

	fsm_sendFailure(FailureType_Failure_Other, "Signing error");
	signing_abort();
}
Example #22
0
int
main(void)
{
  wdt_disable();

  led_init();
  LED_ON();

  MARK433_PORT |= _BV( MARK433_BIT );
  MARK915_PORT |= _BV( MARK915_BIT );

  spi_init();

//  eeprom_factory_reset("xx");
  eeprom_init();

//  led_mode = 2;

  // if we had been restarted by watchdog check the REQ BootLoader byte in the
  // EEPROM ...
//  if(bit_is_set(MCUSR,WDRF) && eeprom_read_byte(EE_REQBL)) {
//    eeprom_write_byte( EE_REQBL, 0 ); // clear flag
//    start_bootloader();
//  }

  // Setup the timers. Are needed for watchdog-reset
  OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250 == 125Hz
  TCCR0B = _BV(CS02);
  TCCR0A = _BV(WGM01);
  TIMSK0 = _BV(OCIE0A);

  TCCR1A = 0;
  TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8

  clock_prescale_set(clock_div_1);

  MCUSR &= ~(1 << WDRF);                   // Enable the watchdog
  wdt_enable(WDTO_2S);

  uart_init( UART_BAUD_SELECT_DOUBLE_SPEED(UART_BAUD_RATE,F_CPU) );

#ifdef HAS_STACKING
  stacking_initialize();

  // make sure i2c is inactive
  DDRC  &= 0xfc;
  PORTC &= 0xfc;

#endif

  fht_init();
  tx_init();
  input_handle_func = analyze_ttydata;

  display_channel = DISPLAY_USB;

#ifdef HAS_RF_ROUTER
  rf_router_init();
  display_channel |= DISPLAY_RFROUTER;
#endif

  LED_OFF();
  checkFrequency(); 

  sei();

  for(;;) {
    uart_task();
    RfAnalyze_Task();
    Minute_Task();
#ifdef HAS_FASTRF
    FastRF_Task();
#endif
#ifdef HAS_RF_ROUTER
    rf_router_task();
#endif
#ifdef HAS_ASKSIN
    rf_asksin_task();
#endif
#ifdef HAS_MORITZ
    rf_moritz_task();
#endif
#ifdef HAS_STACKING
  stacking_task();
#endif
#ifdef HAS_MBUS
    rf_mbus_task();
#endif

  }

}
Example #23
0
int
main(void)
{
  wdt_disable();

  // un-reset ethernet
  ENC28J60_RESET_DDR  |= _BV( ENC28J60_RESET_BIT );
  ENC28J60_RESET_PORT |= _BV( ENC28J60_RESET_BIT );

  MARK433_PORT |= _BV( MARK433_BIT ); // Pull 433MHz marker
  MARK915_PORT |= _BV( MARK915_BIT ); // Pull 915MHz marker
  
  led_init();
  LED_ON();

  spi_init();

  eeprom_init();
  
  // Reset the "Request Bootloader" flag in EEPROM, to avoid a permanent loop
  eeprom_update_byte( EE_REQBL, 0);

// Setup OneWire and make a full search at the beginning (takes some time)
#ifdef HAS_ONEWIRE
  i2c_init();
  onewire_Init();
  onewire_FullSearch();
#endif

  // Setup the timers. Are needed for watchdog-reset

#if defined (HAS_IRRX) || defined (HAS_IRTX)
  ir_init();
  // IR uses highspeed TIMER0 for sampling 
  OCR0A  = 1;                              // Timer0: 0.008s = 8MHz/256/2   == 15625Hz Fac: 125
#else
  OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250 == 125Hz
#endif

  TCCR0B = _BV(CS02);
  TCCR0A = _BV(WGM01);
  TIMSK0 = _BV(OCIE0A);

  TCCR1A = 0;
  TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8

  clock_prescale_set(clock_div_1);

  MCUSR &= ~(1 << WDRF);                   // Enable the watchdog
  wdt_enable(WDTO_2S);

  uart_init( UART_BAUD_SELECT_DOUBLE_SPEED(UART_BAUD_RATE,F_CPU) );

  fht_init();
  tx_init();
  input_handle_func = analyze_ttydata;
#ifdef HAS_RF_ROUTER
  rf_router_init();
  display_channel = (DISPLAY_USB|DISPLAY_RFROUTER);
#else
  display_channel = DISPLAY_USB;
#endif

#ifdef HAS_VZ
  vz_init();
#endif

  ethernet_init();
    
  LED_OFF();

#ifdef HAS_DMX
#ifdef DMX_CHANNELS
  dmx_initialize(DMX_CHANNELS);
#else
  dmx_initialize(16);
#endif
#endif

#ifdef HAS_HM485
  hm485_initialize();
#endif

#ifdef HAS_HELIOS
  helios_initialize();
#endif

#ifdef HAS_CUNOTTY
rf_cunotty_init();
#endif

  sei();

#ifdef HAS_DMX
  dmx_start();
#endif

  for(;;) {
    uart_task();
    RfAnalyze_Task();
    Minute_Task();
#ifdef HAS_FASTRF
    FastRF_Task();
#endif
#ifdef HAS_RF_ROUTER
    rf_router_task();
#endif
#ifdef HAS_CUNOTTY
	rf_cunotty_task();
#endif
#ifdef HAS_ASKSIN
    rf_asksin_task();
#endif
#ifdef HAS_IRRX
    ir_task();
#endif
#ifdef HAS_ETHERNET
    Ethernet_Task();
#endif
#ifdef HAS_VZ
    vz_task();
#endif
#ifdef HAS_MORITZ
    rf_moritz_task();
#endif
#ifdef HAS_HM485
    hm485_task();
#endif    
#ifdef HAS_HELIOS
    helios_task();
#endif    
  }

}
Example #24
0
int
main(void)
{
  wdt_disable();
#ifdef HAS_16MHZ_CLOCK
  /* set clock to 16MHz/2 = 8Mhz */
  clock_prescale_set(clock_div_2);
#endif

//  LED_ON_DDR  |= _BV( LED_ON_PIN );
//  LED_ON_PORT |= _BV( LED_ON_PIN );

  led_init();
  LED_ON();

  spi_init();
 // init_adcw();

  //eeprom_factory_reset("xx");
  eeprom_init();

  // Setup the timers. Are needed for watchdog-reset
  OCR0A  = 249;                            // Timer0: 0.008s = 8MHz/256/250 == 125Hz
  TCCR0B = _BV(CS02);
  TCCR0A = _BV(WGM01);
  TIMSK0 = _BV(OCIE0A);

  TCCR1A = 0;
  TCCR1B = _BV(CS11) | _BV(WGM12);         // Timer1: 1us = 8MHz/8


  MCUSR &= ~(1 << WDRF);                   // Enable the watchdog
  wdt_enable(WDTO_2S);

#ifdef HAS_16MHZ_CLOCK
  uart_init( UART_BAUD_SELECT(UART_BAUD_RATE,F_CPU) );
#else
  uart_init( UART_BAUD_SELECT_DOUBLE_SPEED(UART_BAUD_RATE,F_CPU) );
#endif
  fht_init();
  tx_init();
  input_handle_func = analyze_ttydata;

  display_channel = DISPLAY_USB;

#ifdef HAS_RF_ROUTER
  rf_router_init();
  display_channel |= DISPLAY_RFROUTER;
#endif

  LED_OFF();

  sei();

  for(;;) {
    uart_task();
    RfAnalyze_Task();
    Minute_Task();
#ifdef HAS_FASTRF
    FastRF_Task();
#endif
#ifdef HAS_RF_ROUTER
    rf_router_task();
#endif
#ifdef HAS_ASKSIN
    rf_asksin_task();
#endif
#ifdef HAS_MORITZ
    rf_moritz_task();
#endif
#ifdef HAS_RWE
    rf_rwe_task();
#endif
#ifdef HAS_MBUS
    rf_mbus_task();
#endif
  }

}
Example #25
0
int tx_recv(shpeer_t *cli_peer, tx_t *tx)
{
  tx_ledger_t *l;
  tx_t *rec_tx;
  txop_t *op;
  int err;

  if (!tx)
    return (SHERR_INVAL);

#if 0
  if (ledger_tx_load(shpeer_kpriv(cli_peer), tx->hash, tx->tx_stamp)) {
fprintf(stderr, "DEBUG: tx_recv: skipping duplicate tx '%s'\n", tx->hash); 
    return (SHERR_NOTUNIQ);
}
#endif

  op = get_tx_op(tx->tx_op);
  if (!op)
    return (SHERR_INVAL);

  if (tx->tx_flag & TXF_WARD) {
    err = txward_confirm(tx); 
    if (err)
      return (err);
  }


/* check for dup in ledger (?) */

  rec_tx = (tx_t *)tx_load(tx->tx_op, get_tx_key(tx));
  if (!rec_tx) {
    rec_tx = (tx_t *)calloc(1, op->op_size);
    if (!rec_tx)
      return (SHERR_NOMEM);

    memcpy(rec_tx, tx, op->op_size);
#if 0 
    err = tx_init(cli_peer, rec_tx);
    if (err) {
      pstore_free(rec_tx);
      return (err);
    }
#endif

    err = tx_save(rec_tx);
    if (err) {
      pstore_free(rec_tx);
      return (err);
    }
  }

  if (op->op_recv) {
    err = op->op_recv(cli_peer, tx);
    if (err) {
      pstore_free(rec_tx);
      return (err);
    }
  }

  pstore_free(rec_tx);

  if (is_tx_stored(tx->tx_op)) {
    l = ledger_load(shpeer_kpriv(cli_peer), shtime());
    if (l) {
      ledger_tx_add(l, tx);
      ledger_close(l);
    }
  }

  return (0);
}