void convsample_50() { printf("\n\n==============================================\n" "Sample 50: C: ucnv_detectUnicodeSignature\n"); //! [ucnv_detectUnicodeSignature] UErrorCode err = U_ZERO_ERROR; UBool discardSignature = TRUE; /* set to TRUE to throw away the initial U+FEFF */ char input[] = { '\xEF','\xBB', '\xBF','\x41','\x42','\x43' }; int32_t signatureLength = 0; const char *encoding = ucnv_detectUnicodeSignature(input,sizeof(input),&signatureLength,&err); UConverter *conv = NULL; UChar output[100]; UChar *target = output, *out; const char *source = input; if(encoding!=NULL && U_SUCCESS(err)){ // should signature be discarded ? conv = ucnv_open(encoding, &err); // do the conversion ucnv_toUnicode(conv, &target, output + UPRV_LENGTHOF(output), &source, input + sizeof(input), NULL, TRUE, &err); out = output; if (discardSignature){ ++out; // ignore initial U+FEFF } while(out != target) { printf("%04x ", *out++); } puts(""); } //! [ucnv_detectUnicodeSignature] puts(""); }
int initTxt(struct doc_descriptor *desc) { UErrorCode err; char *encoding = NULL; int len, BOMlength = 0; char buf[BUFSIZE]; UChar outbuf[4*BUFSIZE]; lseek(desc->fd, 0, SEEK_SET); len = read(desc->fd, buf, BUFSIZE); /* detect BOM */ err = U_ZERO_ERROR; encoding = ucnv_detectUnicodeSignature(buf, BUFSIZE, &BOMlength, &err); if(encoding != NULL) { lseek(desc->fd, BOMlength, SEEK_SET); /* initialize converter to encoding */ err = U_ZERO_ERROR; desc->conv = ucnv_open(encoding, &err); if (U_FAILURE(err)) { fprintf(stderr, "unable to open ICU converter\n"); return ERR_ICU; } } else { /* initialize converter to UTF-8 */ err = U_ZERO_ERROR; desc->conv = ucnv_open("utf8", &err); if (U_FAILURE(err)) { fprintf(stderr, "unable to open ICU converter\n"); return ERR_ICU; } /* check the first 2048 bytes */ err = U_ZERO_ERROR; ucnv_setToUCallBack(desc->conv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &err); if (U_FAILURE(err)) { fprintf(stderr, "error setToUCallback\n"); return ERR_ICU; } err = U_ZERO_ERROR; ucnv_toUChars(desc->conv, outbuf, 4 * BUFSIZE, buf, len, &err); if (U_FAILURE(err)) { fprintf(stderr, "Unknown encoding\n"); return ERR_ICU; } lseek(desc->fd, 0, SEEK_SET); } return OK; }
U_CAPI UBool U_EXPORT2 ucbuf_autodetect_fs(FileStream* in, const char** cp, UConverter** conv, int32_t* signatureLength, UErrorCode* error){ char start[8]; int32_t numRead; UChar target[1]={ 0 }; UChar* pTarget; const char* pStart; /* read a few bytes */ numRead=T_FileStream_read(in, start, sizeof(start)); *cp = ucnv_detectUnicodeSignature(start, numRead, signatureLength, error); /* unread the bytes beyond what was consumed for U+FEFF */ T_FileStream_rewind(in); if (*signatureLength > 0) { numRead = T_FileStream_read(in, start, *signatureLength); } if(*cp==NULL){ *conv =NULL; return FALSE; } /* open the converter for the detected Unicode charset */ *conv = ucnv_open(*cp,error); /* convert and ignore initial U+FEFF, and the buffer overflow */ pTarget = target; pStart = start; ucnv_toUnicode(*conv, &pTarget, target+1, &pStart, start+*signatureLength, NULL, FALSE, error); *signatureLength = (int32_t)(pStart - start); if(*error==U_BUFFER_OVERFLOW_ERROR) { *error=U_ZERO_ERROR; } /* verify that we successfully read exactly U+FEFF */ if(U_SUCCESS(*error) && (pTarget!=(target+1) || target[0]!=0xfeff)) { *error=U_INTERNAL_PROGRAM_ERROR; } return TRUE; }
UBreakIterator* get_rules(const char *ruleFileName, UErrorCode status) { /* Read in the rule source file */ long result; long ruleFileSize; FILE *file; OFILE *ufile; UBreakIterator *return_me; file = fopen(ruleFileName, "rb"); if( file == 0 ) { fprintf(stderr, "Could not open file \"%s\"\n", ruleFileName); exit(-1); } fseek(file, 0, SEEK_END); ruleFileSize = ftell(file); fseek(file, 0, SEEK_SET); char *ruleBufferC = (char *) omalloc (ruleFileSize + 1); ruleBufferC[ruleFileSize] = '\0'; result = (long)fread(ruleBufferC, 1, ruleFileSize, file); if (result != ruleFileSize) { fprintf(stderr, "Error reading file \"%s\"\n", ruleFileName); exit (-1); } /* Look for a Unicode Signature (BOM) on the rule file */ int32_t signatureLength; const char * ruleSourceC = ruleBufferC; const char* encoding = ucnv_detectUnicodeSignature( ruleSourceC, ruleFileSize, &signatureLength, &status); /* fprintf(stderr, "DetectUnicodeSig: \"%s\"\n", encoding); */ if (U_FAILURE(status)) { fprintf(stderr, "\nCan not initialize ICU. status = %s\n", u_errorName(status)); exit(1); } if(encoding!=NULL ) { ruleSourceC += signatureLength; ruleFileSize -= signatureLength; } /* fprintf(stderr, "encoding: \"%s\"\n", encoding); */ /* Open a converter to take the rule file to UTF-16 */ UConverter* conv; conv = ucnv_open(encoding, &status); if (U_FAILURE(status)) { fprintf(stderr, "ucnv_open: ICU Error \"%s\"\n", u_errorName(status)); exit(1); } ufile = u_finit(file, NULL, NULL); u_frewind(ufile); UChar *ruleSourceU = (UChar *) omalloc ((ruleFileSize*sizeof(UChar))+1); long charsRead = u_file_read(ruleSourceU, ruleFileSize, ufile); /* u_fprintf(u_stderr, "Chars read: \"%i\", File size: \"%i\"\n", charsRead, ruleFileSize); */ ruleSourceU[charsRead] = 0; /* u_fprintf(u_stderr, "RulesourceU POST: \"%S\"\n", ruleSourceU); */ ucnv_close(conv); u_fclose(ufile); /* Create the break iterator from the rules */ /* This will compile the rules. */ UParseError parseError; parseError.line = 0; parseError.offset = 0; return_me = ubrk_openRules(ruleSourceU, ruleFileSize, NULL, 0, &parseError, &status); if (U_FAILURE(status)) { fprintf(stderr, "createRuleBasedBreakIterator: ICU Error \"%s\" at line %d, column %d\n", u_errorName(status), (int)parseError.line, (int)parseError.offset); exit(1); }; return return_me; }
//---------------------------------------------------------------------------- // // main for genctd // //---------------------------------------------------------------------------- int main(int argc, char **argv) { UErrorCode status = U_ZERO_ERROR; const char *wordFileName; const char *outFileName; const char *outDir = NULL; const char *copyright = NULL; // // Pick up and check the command line arguments, // using the standard ICU tool utils option handling. // U_MAIN_INIT_ARGS(argc, argv); progName = argv[0]; argc=u_parseArgs(argc, argv, sizeof(options)/sizeof(options[0]), options); if(argc<0) { // Unrecognized option fprintf(stderr, "error in command line argument \"%s\"\n", argv[-argc]); usageAndDie(U_ILLEGAL_ARGUMENT_ERROR); } if(options[0].doesOccur || options[1].doesOccur) { // -? or -h for help. usageAndDie(0); } if (!options[3].doesOccur || argc < 2) { fprintf(stderr, "input and output file must both be specified.\n"); usageAndDie(U_ILLEGAL_ARGUMENT_ERROR); } outFileName = options[3].value; wordFileName = argv[1]; if (options[4].doesOccur) { u_setDataDirectory(options[4].value); } status = U_ZERO_ERROR; /* Combine the directory with the file name */ if(options[5].doesOccur) { outDir = options[5].value; } if (options[6].doesOccur) { copyright = U_COPYRIGHT_STRING; } #if UCONFIG_NO_BREAK_ITERATION || UCONFIG_NO_FILE_IO UNewDataMemory *pData; char msg[1024]; /* write message with just the name */ sprintf(msg, "genctd writes dummy %s because of UCONFIG_NO_BREAK_ITERATION and/or UCONFIG_NO_FILE_IO, see uconfig.h", outFileName); fprintf(stderr, "%s\n", msg); /* write the dummy data file */ pData = udata_create(outDir, NULL, outFileName, &dummyDataInfo, NULL, &status); udata_writeBlock(pData, msg, strlen(msg)); udata_finish(pData, &status); return (int)status; #else /* Initialize ICU */ u_init(&status); if (U_FAILURE(status)) { fprintf(stderr, "%s: can not initialize ICU. status = %s\n", argv[0], u_errorName(status)); exit(1); } status = U_ZERO_ERROR; // // Read in the dictionary source file // long result; long wordFileSize; FILE *file; char *wordBufferC; MutableTrieDictionary *mtd = NULL; file = fopen(wordFileName, "rb"); if( file == 0 ) { //cannot find file //create 1-line dummy file: ie 1 char, 1 value UNewDataMemory *pData; char msg[1024]; /* write message with just the name */ sprintf(msg, "%s not found, genctd writes dummy %s", wordFileName, outFileName); fprintf(stderr, "%s\n", msg); UChar c = 0x0020; mtd = new MutableTrieDictionary(c, status, TRUE); mtd->addWord(&c, 1, status, 1); } else { //read words in from input file fseek(file, 0, SEEK_END); wordFileSize = ftell(file); fseek(file, 0, SEEK_SET); wordBufferC = new char[wordFileSize+10]; result = (long)fread(wordBufferC, 1, wordFileSize, file); if (result != wordFileSize) { fprintf(stderr, "Error reading file \"%s\"\n", wordFileName); exit (-1); } wordBufferC[wordFileSize]=0; fclose(file); // // Look for a Unicode Signature (BOM) on the word file // int32_t signatureLength; const char * wordSourceC = wordBufferC; const char* encoding = ucnv_detectUnicodeSignature( wordSourceC, wordFileSize, &signatureLength, &status); if (U_FAILURE(status)) { exit(status); } if(encoding!=NULL ){ wordSourceC += signatureLength; wordFileSize -= signatureLength; } // // Open a converter to take the rule file to UTF-16 // UConverter* conv; conv = ucnv_open(encoding, &status); if (U_FAILURE(status)) { fprintf(stderr, "ucnv_open: ICU Error \"%s\"\n", u_errorName(status)); exit(status); } // // Convert the words to UChar. // Preflight first to determine required buffer size. // uint32_t destCap = ucnv_toUChars(conv, NULL, // dest, 0, // destCapacity, wordSourceC, wordFileSize, &status); if (status != U_BUFFER_OVERFLOW_ERROR) { fprintf(stderr, "ucnv_toUChars: ICU Error \"%s\"\n", u_errorName(status)); exit(status); }; status = U_ZERO_ERROR; UChar *wordSourceU = new UChar[destCap+1]; ucnv_toUChars(conv, wordSourceU, // dest, destCap+1, wordSourceC, wordFileSize, &status); if (U_FAILURE(status)) { fprintf(stderr, "ucnv_toUChars: ICU Error \"%s\"\n", u_errorName(status)); exit(status); }; ucnv_close(conv); // Get rid of the original file buffer delete[] wordBufferC; // Create a MutableTrieDictionary, and loop through all the lines, inserting // words. // First, pick a median character. UChar *current = wordSourceU + (destCap/2); UChar uc = *current++; UnicodeSet breaks; breaks.add(0x000A); // Line Feed breaks.add(0x000D); // Carriage Return breaks.add(0x2028); // Line Separator breaks.add(0x2029); // Paragraph Separator do { // Look for line break while (uc && !breaks.contains(uc)) { uc = *current++; } // Now skip to first non-line-break while (uc && breaks.contains(uc)) { uc = *current++; } } while (uc && (breaks.contains(uc) || u_isspace(uc))); mtd = new MutableTrieDictionary(uc, status); if (U_FAILURE(status)) { fprintf(stderr, "new MutableTrieDictionary: ICU Error \"%s\"\n", u_errorName(status)); exit(status); } // Now add the words. Words are non-space characters at the beginning of // lines, and must be at least one UChar. If a word has an associated value, // the value should follow the word on the same line after a tab character. current = wordSourceU; UChar *candidate = current; uc = *current++; int32_t length = 0; int count = 0; while (uc) { while (uc && !u_isspace(uc)) { ++length; uc = *current++; } UnicodeString valueString; UChar candidateValue; if(uc == 0x0009){ //separator is a tab char, read in number after space while (uc && u_isspace(uc)) { uc = *current++; } while (uc && !u_isspace(uc)) { valueString.append(uc); uc = *current++; } } if (length > 0) { count++; if(valueString.length() > 0){ mtd->setValued(TRUE); uint32_t value = 0; char* s = new char[valueString.length()]; valueString.extract(0,valueString.length(), s, valueString.length()); int n = sscanf(s, "%ud", &value); U_ASSERT(n == 1); U_ASSERT(value >= 0); mtd->addWord(candidate, length, status, (uint16_t)value); delete[] s; } else { mtd->addWord(candidate, length, status); } if (U_FAILURE(status)) { fprintf(stderr, "MutableTrieDictionary::addWord: ICU Error \"%s\" at line %d in input file\n", u_errorName(status), count); exit(status); } } // Find beginning of next line while (uc && !breaks.contains(uc)) { uc = *current++; } // Find next non-line-breaking character while (uc && breaks.contains(uc)) { uc = *current++; } candidate = current-1; length = 0; } // Get rid of the Unicode text buffer delete[] wordSourceU; } // Now, create a CompactTrieDictionary from the mutable dictionary CompactTrieDictionary *ctd = new CompactTrieDictionary(*mtd, status); if (U_FAILURE(status)) { fprintf(stderr, "new CompactTrieDictionary: ICU Error \"%s\"\n", u_errorName(status)); exit(status); } // Get rid of the MutableTrieDictionary delete mtd; // // Get the binary data from the dictionary. // uint32_t outDataSize = ctd->dataSize(); const uint8_t *outData = (const uint8_t *)ctd->data(); // // Create the output file // size_t bytesWritten; UNewDataMemory *pData; pData = udata_create(outDir, NULL, outFileName, &(dh.info), copyright, &status); if(U_FAILURE(status)) { fprintf(stderr, "genctd: Could not open output file \"%s\", \"%s\"\n", outFileName, u_errorName(status)); exit(status); } // Write the data itself. udata_writeBlock(pData, outData, outDataSize); // finish up bytesWritten = udata_finish(pData, &status); if(U_FAILURE(status)) { fprintf(stderr, "genctd: error \"%s\" writing the output file\n", u_errorName(status)); exit(status); } if (bytesWritten != outDataSize) { fprintf(stderr, "Error writing to output file \"%s\"\n", outFileName); exit(-1); } // Get rid of the CompactTrieDictionary delete ctd; u_cleanup(); printf("genctd: tool completed successfully.\n"); return 0; #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ }
//------------------------------------------------------------------------------------------ // // readFile Read a file into memory, and convert it to Unicode. // // Since this is just a demo program, take the simple minded approach // of always reading the whole file at once. No intelligent buffering // is done. // //------------------------------------------------------------------------------------------ void readFile(const char *name) { // // Initialize global file variables // fileName = name; fileLen = 0; // zero length prevents processing in case of errors. // // Open the file and determine its size. // FILE *file = fopen(name, "rb"); if (file == 0 ) { fprintf(stderr, "ugrep: Could not open file \"%s\"\n", fileName); return; } fseek(file, 0, SEEK_END); int rawFileLen = ftell(file); fseek(file, 0, SEEK_SET); // // Read in the file // charBuf = (char *)realloc(charBuf, rawFileLen+1); // Need error checking... int t = fread(charBuf, 1, rawFileLen, file); if (t != rawFileLen) { fprintf(stderr, "Error reading file \"%s\"\n", fileName); fclose(file); return; } charBuf[rawFileLen]=0; fclose(file); // // Look for a Unicode Signature (BOM) in the data // int32_t signatureLength; const char * charDataStart = charBuf; UErrorCode status = U_ZERO_ERROR; const char* encoding = ucnv_detectUnicodeSignature( charDataStart, rawFileLen, &signatureLength, &status); if (U_FAILURE(status)) { fprintf(stderr, "ugrep: ICU Error \"%s\" from ucnv_detectUnicodeSignature()\n", u_errorName(status)); return; } if(encoding!=NULL ){ charDataStart += signatureLength; rawFileLen -= signatureLength; } // // Open a converter to take the file to UTF-16 // UConverter* conv; conv = ucnv_open(encoding, &status); if (U_FAILURE(status)) { fprintf(stderr, "ugrep: ICU Error \"%s\" from ucnv_open()\n", u_errorName(status)); return; } // // Convert the file data to UChar. // Preflight first to determine required buffer size. // uint32_t destCap = ucnv_toUChars(conv, NULL, // dest, 0, // destCapacity, charDataStart, rawFileLen, &status); if (status != U_BUFFER_OVERFLOW_ERROR) { fprintf(stderr, "ugrep: ucnv_toUChars: ICU Error \"%s\"\n", u_errorName(status)); return; }; status = U_ZERO_ERROR; ucharBuf = (UChar *)realloc(ucharBuf, (destCap+1) * sizeof(UChar)); ucnv_toUChars(conv, ucharBuf, // dest, destCap+1, charDataStart, rawFileLen, &status); if (U_FAILURE(status)) { fprintf(stderr, "ugrep: ucnv_toUChars: ICU Error \"%s\"\n", u_errorName(status)); return; }; ucnv_close(conv); // // Successful conversion. Set the global size variables so that // the rest of the processing will proceed for this file. // fileLen = destCap; }
UXMLElement * UXMLParser::parseFile(const char *filename, UErrorCode &errorCode) { char bytes[4096], charsetBuffer[100]; FileStream *f; const char *charset, *pb; UnicodeString src; UConverter *cnv; UChar *buffer, *pu; int32_t fileLength, bytesLength, length, capacity; UBool flush; if(U_FAILURE(errorCode)) { return NULL; } f=T_FileStream_open(filename, "rb"); if(f==NULL) { errorCode=U_FILE_ACCESS_ERROR; return NULL; } bytesLength=T_FileStream_read(f, bytes, (int32_t)sizeof(bytes)); if(bytesLength<(int32_t)sizeof(bytes)) { // we have already read the entire file fileLength=bytesLength; } else { // get the file length fileLength=T_FileStream_size(f); } /* * get the charset: * 1. Unicode signature * 2. treat as ISO-8859-1 and read XML encoding="charser" * 3. default to UTF-8 */ charset=ucnv_detectUnicodeSignature(bytes, bytesLength, NULL, &errorCode); if(U_SUCCESS(errorCode) && charset!=NULL) { // open converter according to Unicode signature cnv=ucnv_open(charset, &errorCode); } else { // read as Latin-1 and parse the XML declaration and encoding cnv=ucnv_open("ISO-8859-1", &errorCode); if(U_FAILURE(errorCode)) { // unexpected error opening Latin-1 converter goto exit; } buffer=src.getBuffer(bytesLength); if(buffer==NULL) { // unexpected failure to reserve some string capacity errorCode=U_MEMORY_ALLOCATION_ERROR; goto exit; } pb=bytes; pu=buffer; ucnv_toUnicode( cnv, &pu, buffer+src.getCapacity(), &pb, bytes+bytesLength, NULL, TRUE, &errorCode); src.releaseBuffer(U_SUCCESS(errorCode) ? (int32_t)(pu-buffer) : 0); ucnv_close(cnv); cnv=NULL; if(U_FAILURE(errorCode)) { // unexpected error in conversion from Latin-1 src.remove(); goto exit; } // parse XML declaration if(mXMLDecl.reset(src).lookingAt(0, errorCode)) { int32_t declEnd=mXMLDecl.end(errorCode); // go beyond <?xml int32_t pos=src.indexOf((UChar)x_l)+1; mAttrValue.reset(src); while(pos<declEnd && mAttrValue.lookingAt(pos, errorCode)) { // loop runs once per attribute on this element. UnicodeString attName = mAttrValue.group(1, errorCode); UnicodeString attValue = mAttrValue.group(2, errorCode); // Trim the quotes from the att value. These are left over from the original regex // that parsed the attribue, which couldn't conveniently strip them. attValue.remove(0,1); // one char from the beginning attValue.truncate(attValue.length()-1); // and one from the end. if(attName==UNICODE_STRING("encoding", 8)) { length=attValue.extract(0, 0x7fffffff, charsetBuffer, (int32_t)sizeof(charsetBuffer)); charset=charsetBuffer; break; } pos = mAttrValue.end(2, errorCode); } if(charset==NULL) { // default to UTF-8 charset="UTF-8"; } cnv=ucnv_open(charset, &errorCode); } } if(U_FAILURE(errorCode)) { // unable to open the converter goto exit; } // convert the file contents capacity=fileLength; // estimated capacity src.getBuffer(capacity); src.releaseBuffer(0); // zero length flush=FALSE; for(;;) { // convert contents of bytes[bytesLength] pb=bytes; for(;;) { length=src.length(); buffer=src.getBuffer(capacity); if(buffer==NULL) { // unexpected failure to reserve some string capacity errorCode=U_MEMORY_ALLOCATION_ERROR; goto exit; } pu=buffer+length; ucnv_toUnicode( cnv, &pu, buffer+src.getCapacity(), &pb, bytes+bytesLength, NULL, FALSE, &errorCode); src.releaseBuffer(U_SUCCESS(errorCode) ? (int32_t)(pu-buffer) : 0); if(errorCode==U_BUFFER_OVERFLOW_ERROR) { errorCode=U_ZERO_ERROR; capacity=(3*src.getCapacity())/2; // increase capacity by 50% } else { break; } } if(U_FAILURE(errorCode)) { break; // conversion error } if(flush) { break; // completely converted the file } // read next block bytesLength=T_FileStream_read(f, bytes, (int32_t)sizeof(bytes)); if(bytesLength==0) { // reached end of file, convert once more to flush the converter flush=TRUE; } }; exit: ucnv_close(cnv); T_FileStream_close(f); if(U_SUCCESS(errorCode)) { return parse(src, errorCode); } else { return NULL; } }
//---------------------------------------------------------------------------- // // main for genbrk // //---------------------------------------------------------------------------- int main(int argc, char **argv) { UErrorCode status = U_ZERO_ERROR; const char *ruleFileName; const char *outFileName; const char *outDir = NULL; const char *copyright = NULL; // // Pick up and check the command line arguments, // using the standard ICU tool utils option handling. // U_MAIN_INIT_ARGS(argc, argv); progName = argv[0]; argc=u_parseArgs(argc, argv, sizeof(options)/sizeof(options[0]), options); if(argc<0) { // Unrecognized option fprintf(stderr, "error in command line argument \"%s\"\n", argv[-argc]); usageAndDie(U_ILLEGAL_ARGUMENT_ERROR); } if(options[0].doesOccur || options[1].doesOccur) { // -? or -h for help. usageAndDie(0); } if (!(options[3].doesOccur && options[4].doesOccur)) { fprintf(stderr, "rule file and output file must both be specified.\n"); usageAndDie(U_ILLEGAL_ARGUMENT_ERROR); } ruleFileName = options[3].value; outFileName = options[4].value; if (options[5].doesOccur) { u_setDataDirectory(options[5].value); } /* Initialize ICU */ u_init(&status); if (U_FAILURE(status)) { fprintf(stderr, "%s: can not initialize ICU. status = %s\n", argv[0], u_errorName(status)); exit(1); } status = U_ZERO_ERROR; /* Combine the directory with the file name */ if(options[6].doesOccur) { outDir = options[6].value; } if (options[7].doesOccur) { copyright = U_COPYRIGHT_STRING; } #if UCONFIG_NO_BREAK_ITERATION UNewDataMemory *pData; char msg[1024]; /* write message with just the name */ sprintf(msg, "genbrk writes dummy %s because of UCONFIG_NO_BREAK_ITERATION, see uconfig.h", outFileName); fprintf(stderr, "%s\n", msg); /* write the dummy data file */ pData = udata_create(outDir, NULL, outFileName, &dummyDataInfo, NULL, &status); udata_writeBlock(pData, msg, strlen(msg)); udata_finish(pData, &status); return (int)status; #else // // Read in the rule source file // long result; long ruleFileSize; FILE *file; char *ruleBufferC; file = fopen(ruleFileName, "rb"); if( file == 0 ) { fprintf(stderr, "Could not open file \"%s\"\n", ruleFileName); exit(-1); } fseek(file, 0, SEEK_END); ruleFileSize = ftell(file); fseek(file, 0, SEEK_SET); ruleBufferC = new char[ruleFileSize+10]; result = (long)fread(ruleBufferC, 1, ruleFileSize, file); if (result != ruleFileSize) { fprintf(stderr, "Error reading file \"%s\"\n", ruleFileName); exit (-1); } ruleBufferC[ruleFileSize]=0; fclose(file); // // Look for a Unicode Signature (BOM) on the rule file // int32_t signatureLength; const char * ruleSourceC = ruleBufferC; const char* encoding = ucnv_detectUnicodeSignature( ruleSourceC, ruleFileSize, &signatureLength, &status); if (U_FAILURE(status)) { exit(status); } if(encoding!=NULL ){ ruleSourceC += signatureLength; ruleFileSize -= signatureLength; } // // Open a converter to take the rule file to UTF-16 // UConverter* conv; conv = ucnv_open(encoding, &status); if (U_FAILURE(status)) { fprintf(stderr, "ucnv_open: ICU Error \"%s\"\n", u_errorName(status)); exit(status); } // // Convert the rules to UChar. // Preflight first to determine required buffer size. // uint32_t destCap = ucnv_toUChars(conv, NULL, // dest, 0, // destCapacity, ruleSourceC, ruleFileSize, &status); if (status != U_BUFFER_OVERFLOW_ERROR) { fprintf(stderr, "ucnv_toUChars: ICU Error \"%s\"\n", u_errorName(status)); exit(status); }; status = U_ZERO_ERROR; UChar *ruleSourceU = new UChar[destCap+1]; ucnv_toUChars(conv, ruleSourceU, // dest, destCap+1, ruleSourceC, ruleFileSize, &status); if (U_FAILURE(status)) { fprintf(stderr, "ucnv_toUChars: ICU Error \"%s\"\n", u_errorName(status)); exit(status); }; ucnv_close(conv); // // Put the source rules into a UnicodeString // UnicodeString ruleSourceS(FALSE, ruleSourceU, destCap); // // Create the break iterator from the rules // This will compile the rules. // UParseError parseError; parseError.line = 0; parseError.offset = 0; RuleBasedBreakIterator *bi = new RuleBasedBreakIterator(ruleSourceS, parseError, status); if (U_FAILURE(status)) { fprintf(stderr, "createRuleBasedBreakIterator: ICU Error \"%s\" at line %d, column %d\n", u_errorName(status), (int)parseError.line, (int)parseError.offset); exit(status); }; // // Get the compiled rule data from the break iterator. // uint32_t outDataSize; const uint8_t *outData; outData = bi->getBinaryRules(outDataSize); // Copy the data format version numbers from the RBBI data header into the UDataMemory header. uprv_memcpy(dh.info.formatVersion, ((RBBIDataHeader *)outData)->fFormatVersion, sizeof(dh.info.formatVersion)); // // Create the output file // size_t bytesWritten; UNewDataMemory *pData; pData = udata_create(outDir, NULL, outFileName, &(dh.info), copyright, &status); if(U_FAILURE(status)) { fprintf(stderr, "genbrk: Could not open output file \"%s\", \"%s\"\n", outFileName, u_errorName(status)); exit(status); } // Write the data itself. udata_writeBlock(pData, outData, outDataSize); // finish up bytesWritten = udata_finish(pData, &status); if(U_FAILURE(status)) { fprintf(stderr, "genbrk: error %d writing the output file\n", status); exit(status); } if (bytesWritten != outDataSize) { fprintf(stderr, "Error writing to output file \"%s\"\n", outFileName); exit(-1); } delete bi; delete[] ruleSourceU; delete[] ruleBufferC; u_cleanup(); printf("genbrk: tool completed successfully.\n"); return 0; #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ }