Example #1
0
int mca_pml_ucx_recv(void *buf, size_t count, ompi_datatype_t *datatype, int src,
                     int tag, struct ompi_communicator_t* comm,
                     ompi_status_public_t* mpi_status)
{
    ucp_tag_t ucp_tag, ucp_tag_mask;
    ompi_request_t *req;

    PML_UCX_TRACE_RECV("%s", buf, count, datatype, src, tag, comm, "recv");

    PML_UCX_MAKE_RECV_TAG(ucp_tag, ucp_tag_mask, tag, src, comm);
    req = (ompi_request_t*)ucp_tag_recv_nb(ompi_pml_ucx.ucp_worker, buf, count,
                                           mca_pml_ucx_get_datatype(datatype),
                                           ucp_tag, ucp_tag_mask,
                                           mca_pml_ucx_blocking_recv_completion);
    if (UCS_PTR_IS_ERR(req)) {
        PML_UCX_ERROR("ucx recv failed: %s", ucs_status_string(UCS_PTR_STATUS(req)));
        return OMPI_ERROR;
    }

    ucp_worker_progress(ompi_pml_ucx.ucp_worker);
    while ( !REQUEST_COMPLETE(req) ) {
        opal_progress();
    }

    if (mpi_status != MPI_STATUS_IGNORE) {
        *mpi_status = req->req_status;
    }

    req->req_complete = REQUEST_PENDING;
    ucp_request_release(req);
    return OMPI_SUCCESS;
}
Example #2
0
static void ucp_perf_test_destroy_eps(ucx_perf_context_t* perf,
                                      unsigned group_size)
{
    ucs_status_ptr_t    *reqs;
    ucp_tag_recv_info_t info;
    ucs_status_t        status;
    unsigned i;

    reqs = calloc(sizeof(*reqs), group_size);

    for (i = 0; i < group_size; ++i) {
        if (perf->ucp.peers[i].rkey != NULL) {
            ucp_rkey_destroy(perf->ucp.peers[i].rkey);
        }
        if (perf->ucp.peers[i].ep != NULL) {
            reqs[i] = ucp_disconnect_nb(perf->ucp.peers[i].ep);
        }
    }

    for (i = 0; i < group_size; ++i) {
        if (!UCS_PTR_IS_PTR(reqs[i])) {
            continue;
        }

        do {
            ucp_worker_progress(perf->ucp.worker);
            status = ucp_request_test(reqs[i], &info);
        } while (status == UCS_INPROGRESS);
        ucp_request_release(reqs[i]);
    }

    free(reqs);
    free(perf->ucp.peers);
}
void mlx_send_callback( void *request,
			ucs_status_t status)
{
	struct util_cq *cq;
	struct mlx_request *mlx_req = request;
	struct fi_cq_tagged_entry *t_entry;
	struct util_cq_err_entry *err;

	cq = mlx_req->cq;

	if (status == UCS_ERR_CANCELED) {
		ucp_request_release(request);
		return;
	}

	fastlock_acquire(&cq->cq_lock);

	t_entry = cirque_tail(cq->cirq);
	*t_entry = (mlx_req->completion.tagged);
	cirque_commit(cq->cirq);

	if (status != UCS_OK){
		t_entry->flags |= UTIL_FLAG_ERROR;
		err = calloc(1, sizeof(struct util_cq_err_entry));
		if (!err) {
			FI_WARN(&mlx_prov, FI_LOG_CQ,
				"out of memory, cannot report CQ error\n");
			return;
		}

		err->err_entry = (mlx_req->completion.error);
		err->err_entry.prov_errno = (int)status;
		err->err_entry.err = MLX_TRANSLATE_ERRCODE(status);
		err->err_entry.olen = 0;
		slist_insert_tail(&err->list_entry, &cq->err_list);
	}

	mlx_req->type = MLX_FI_REQ_UNINITIALIZED;

	fastlock_release(&cq->cq_lock);
	ucp_request_release(request);
}
Example #4
0
static int connect_client()
{
    ucp_tag_recv_info_t info_tag;
    ucp_tag_message_h msg_tag;
    ucs_status_t status;
    ucp_ep_params_t ep_params;
    struct msg *msg = 0;
    struct ucx_context *request = 0;
    size_t msg_len = 0;
    int ret = -1;
    int i;

    /* Send client UCX address to server */
    ep_params.field_mask = UCP_EP_PARAM_FIELD_REMOTE_ADDRESS;
    ep_params.address    = peer_addr;

    status = ucp_ep_create(ucp_worker, &ep_params, &rem_ep);
    if (status != UCS_OK) {
        abort();
    }

    msg_len = sizeof(*msg) + local_addr_len;
    msg = calloc(1, msg_len);
    if (!msg) {
        abort();
    }

    msg->data_len = local_addr_len;
    memcpy(msg->data, local_addr, local_addr_len);

    request = ucp_tag_send_nb(rem_ep, msg, msg_len,
                              ucp_dt_make_contig(1), tag,
                              send_handle);
    if (UCS_PTR_IS_ERR(request)) {
        fprintf(stderr, "unable to send UCX address message\n");
        free(msg);
        abort();
    } else if (UCS_PTR_STATUS(request) != UCS_OK) {
        fprintf(stderr, "UCX address message was scheduled for send\n");
        wait(ucp_worker, request);
        request->completed = 0; /* Reset request state before recycling it */
        ucp_request_release(request);
    }

    free (msg);
    
    ret = 0;
err:
    return ret;
}
Example #5
0
int ompi_osc_ucx_compare_and_swap(const void *origin_addr, const void *compare_addr,
                                  void *result_addr, struct ompi_datatype_t *dt,
                                  int target, ptrdiff_t target_disp,
                                  struct ompi_win_t *win) {
    ompi_osc_ucx_module_t *module = (ompi_osc_ucx_module_t *)win->w_osc_module;
    ucp_ep_h ep = OSC_UCX_GET_EP(module->comm, target);
    uint64_t remote_addr = (module->win_info_array[target]).addr + target_disp * OSC_UCX_GET_DISP(module, target);
    ucp_rkey_h rkey;
    size_t dt_bytes;
    ompi_osc_ucx_internal_request_t *req = NULL;
    int ret = OMPI_SUCCESS;
    ucs_status_t status;

    ret = check_sync_state(module, target, false);
    if (ret != OMPI_SUCCESS) {
        return ret;
    }

    ret = start_atomicity(module, ep, target);
    if (ret != OMPI_SUCCESS) {
        return ret;
    }

    if (module->flavor == MPI_WIN_FLAVOR_DYNAMIC) {
        status = get_dynamic_win_info(remote_addr, module, ep, target);
        if (status != UCS_OK) {
            return OMPI_ERROR;
        }
    }

    rkey = (module->win_info_array[target]).rkey;

    ompi_datatype_type_size(dt, &dt_bytes);
    memcpy(result_addr, origin_addr, dt_bytes);
    req = ucp_atomic_fetch_nb(ep, UCP_ATOMIC_FETCH_OP_CSWAP, *(uint64_t *)compare_addr,
                              result_addr, dt_bytes, remote_addr, rkey, req_completion);
    if (UCS_PTR_IS_PTR(req)) {
        ucp_request_release(req);
    }

    ret = incr_and_check_ops_num(module, target, ep);
    if (ret != OMPI_SUCCESS) {
        return ret;
    }

    return end_atomicity(module, ep, target);
}
Example #6
0
File: ucp_ep.c Project: alex--m/ucx
void ucp_ep_destroy(ucp_ep_h ep)
{
    ucp_worker_h worker = ep->worker;
    ucs_status_ptr_t *request;
    ucs_status_t status;

    request = ucp_disconnect_nb(ep);
    if (request == NULL) {
        return;
    } else if (UCS_PTR_IS_ERR(request)) {
        ucs_warn("disconnect failed: %s",
                 ucs_status_string(UCS_PTR_STATUS(request)));
        return;
    } else {
        do {
            ucp_worker_progress(worker);
            status = ucp_request_test(request, NULL);
        } while (status == UCS_INPROGRESS);
        ucp_request_release(request);
    }
}
Example #7
0
static void mca_spml_ucx_waitall(void **reqs, size_t *count_p)
{
    ucs_status_t status;
    size_t i;

    SPML_VERBOSE(10, "waiting for %d disconnect requests", *count_p);
    for (i = 0; i < *count_p; ++i) {
        do {
            opal_progress();
            status = ucp_request_test(reqs[i], NULL);
        } while (status == UCS_INPROGRESS);
        if (status != UCS_OK) {
            SPML_ERROR("disconnect request failed: %s",
                       ucs_status_string(status));
        }
        ucp_request_release(reqs[i]);
        reqs[i] = NULL;
    }

    *count_p = 0;
}
Example #8
0
int ompi_osc_ucx_fetch_and_op(const void *origin_addr, void *result_addr,
                              struct ompi_datatype_t *dt, int target,
                              ptrdiff_t target_disp, struct ompi_op_t *op,
                              struct ompi_win_t *win) {
    ompi_osc_ucx_module_t *module = (ompi_osc_ucx_module_t*) win->w_osc_module;
    int ret = OMPI_SUCCESS;

    ret = check_sync_state(module, target, false);
    if (ret != OMPI_SUCCESS) {
        return ret;
    }

    if (op == &ompi_mpi_op_no_op.op || op == &ompi_mpi_op_replace.op ||
        op == &ompi_mpi_op_sum.op) {
        ucp_ep_h ep = OSC_UCX_GET_EP(module->comm, target);
        uint64_t remote_addr = (module->win_info_array[target]).addr + target_disp * OSC_UCX_GET_DISP(module, target);
        ucp_rkey_h rkey;
        uint64_t value = *(uint64_t *)origin_addr;
        ucp_atomic_fetch_op_t opcode;
        size_t dt_bytes;
        ompi_osc_ucx_internal_request_t *req = NULL;
        ucs_status_t status;

        ret = start_atomicity(module, ep, target);
        if (ret != OMPI_SUCCESS) {
            return ret;
        }

        if (module->flavor == MPI_WIN_FLAVOR_DYNAMIC) {
            status = get_dynamic_win_info(remote_addr, module, ep, target);
            if (status != UCS_OK) {
                return OMPI_ERROR;
            }
        }

        rkey = (module->win_info_array[target]).rkey;

        ompi_datatype_type_size(dt, &dt_bytes);

        if (op == &ompi_mpi_op_replace.op) {
            opcode = UCP_ATOMIC_FETCH_OP_SWAP;
        } else {
            opcode = UCP_ATOMIC_FETCH_OP_FADD;
            if (op == &ompi_mpi_op_no_op.op) {
                value = 0;
            }
        }

        req = ucp_atomic_fetch_nb(ep, opcode, value, result_addr,
                                  dt_bytes, remote_addr, rkey, req_completion);
        if (UCS_PTR_IS_PTR(req)) {
            ucp_request_release(req);
        }

        ret = incr_and_check_ops_num(module, target, ep);
        if (ret != OMPI_SUCCESS) {
            return ret;
        }

        return end_atomicity(module, ep, target);
    } else {
        return ompi_osc_ucx_get_accumulate(origin_addr, 1, dt, result_addr, 1, dt,
                                           target, target_disp, 1, dt, op, win);
    }
}
Example #9
0
static int run_ucx_server(ucp_worker_h ucp_worker)
{
    ucp_tag_recv_info_t info_tag;
    ucp_tag_message_h msg_tag;
    ucs_status_t status;
    ucp_ep_h client_ep;
    struct msg *msg = 0;
    struct ucx_context *request = 0;
    size_t msg_len = 0;
    int ret = -1;

    /* Receive client UCX address */
    do {
        /* Following blocked methods used to polling internal file descriptor
         * to make CPU idle and don't spin loop
         */
        if (ucp_test_mode == TEST_MODE_WAIT) {
            status = ucp_worker_wait(ucp_worker);
            if (status != UCS_OK) {
                goto err;
            }
        } else if (ucp_test_mode == TEST_MODE_EVENTFD) {
            status = test_poll_wait(ucp_worker);
            if (status != UCS_OK) {
                goto err;
            }
        }

        /* Progressing before probe to update the state */
        ucp_worker_progress(ucp_worker);

        /* Probing incoming events in non-block mode */
        msg_tag = ucp_tag_probe_nb(ucp_worker, tag, tag_mask, 1, &info_tag);
    } while (msg_tag == NULL);

    msg = malloc(info_tag.length);
    if (!msg) {
        fprintf(stderr, "unable to allocate memory\n");
        goto err;
    }
    request = ucp_tag_msg_recv_nb(ucp_worker, msg, info_tag.length,
                                  ucp_dt_make_contig(1), msg_tag, recv_handle);

    if (UCS_PTR_IS_ERR(request)) {
        fprintf(stderr, "unable to receive UCX address message (%s)\n",
                ucs_status_string(UCS_PTR_STATUS(request)));
        free(msg);
        goto err;
    } else {
        wait(ucp_worker, request);
        ucp_request_release(request);
        printf("UCX address message was received\n");
    }

    peer_addr = malloc(msg->data_len);
    if (!peer_addr) {
        fprintf(stderr, "unable to allocate memory for peer address\n");
        free(msg);
        goto err;
    }

    peer_addr_len = msg->data_len;
    memcpy(peer_addr, msg->data, peer_addr_len);

    free(msg);

    /* Send test string to client */
    status = ucp_ep_create(ucp_worker, peer_addr, &client_ep);
    if (status != UCS_OK) {
        goto err;
    }

    msg_len = sizeof(*msg) + strlen(test_str) + 1;
    msg = calloc(1, msg_len);
    if (!msg) {
        printf("unable to allocate memory\n");
        goto err_ep;
    }

    msg->data_len = msg_len - sizeof(*msg);
    snprintf((char *)msg->data, msg->data_len, "%s", test_str);

    request = ucp_tag_send_nb(client_ep, msg, msg_len,
                              ucp_dt_make_contig(1), tag,
                              send_handle);
    if (UCS_PTR_IS_ERR(request)) {
        fprintf(stderr, "unable to send UCX data message\n");
        free(msg);
        goto err_ep;
    } else if (UCS_PTR_STATUS(request) != UCS_OK) {
        printf("UCX data message was scheduled for send\n");
        wait(ucp_worker, request);
        ucp_request_release(request);
    }

    ret = 0;
    free(msg);

err_ep:
    ucp_ep_destroy(client_ep);

err:
    return ret;
}
void mlx_recv_callback (
			void *request,
			ucs_status_t status,
			ucp_tag_recv_info_t *info)
{
	struct util_cq *cq;
	struct mlx_request *mlx_req;

	mlx_req = (struct mlx_request*)request;
	if (status == UCS_ERR_CANCELED) {
		ucp_request_release(request);
		return;
	}

	cq = mlx_req->cq;

	mlx_req->completion.tagged.tag = info->sender_tag;
	mlx_req->completion.tagged.len = info->length;

	if (status != UCS_OK) {
		mlx_req->completion.error.prov_errno = (int)status;
		mlx_req->completion.error.err = MLX_TRANSLATE_ERRCODE(status);
	}

	if (mlx_req->type == MLX_FI_REQ_UNINITIALIZED) {
		if (status != UCS_OK) {
			mlx_req->completion.error.olen = info->length;
			mlx_req->type = MLX_FI_REQ_UNEXPECTED_ERR;
		} else {
			mlx_req->type = MLX_FI_REQ_UNEXPECTED;
		}
	} else {
		if (status != UCS_OK) {
			mlx_req->completion.error.olen = info->length -
						mlx_req->completion.error.len;
		}

		struct fi_cq_tagged_entry *t_entry;
		t_entry = cirque_tail(cq->cirq);
		*t_entry = (mlx_req->completion.tagged);

		if (status != UCS_OK) {
			struct util_cq_err_entry* err;
			t_entry->flags |= UTIL_FLAG_ERROR;

			err = calloc(1, sizeof(struct util_cq_err_entry));
			if (!err) {
				FI_WARN(&mlx_prov, FI_LOG_CQ,
					"out of memory, cannot report CQ error\n");
				return;
			}

			err->err_entry = (mlx_req->completion.error);
			slist_insert_tail(&err->list_entry, &cq->err_list);
		}

		if (cq->src){
			cq->src[cirque_windex((struct mlx_comp_cirq*)(cq->cirq))] =
					FI_ADDR_NOTAVAIL;
		}

		if (cq->wait) {
			cq->wait->signal(cq->wait);
		}

		mlx_req->type = MLX_FI_REQ_UNINITIALIZED;
		cirque_commit(cq->cirq);
		ucp_request_release(request);
	}
	fastlock_release(&cq->cq_lock);
}
/*Using for selective completions scenario*/
void mlx_send_callback_no_compl( void *request, ucs_status_t status)
{
	ucp_request_release(request);
}
Example #12
0
void print_ucp_info(int print_opts, ucs_config_print_flags_t print_flags,
                    uint64_t ctx_features, const ucp_ep_params_t *base_ep_params,
                    size_t estimated_num_eps, unsigned dev_type_bitmap,
                    const char *mem_size)
{
    ucp_config_t *config;
    ucs_status_t status;
    ucs_status_ptr_t status_ptr;
    ucp_context_h context;
    ucp_worker_h worker;
    ucp_params_t params;
    ucp_worker_params_t worker_params;
    ucp_ep_params_t ep_params;
    ucp_address_t *address;
    size_t address_length;
    resource_usage_t usage;
    ucp_ep_h ep;

    status = ucp_config_read(NULL, NULL, &config);
    if (status != UCS_OK) {
        return;
    }

    memset(&params, 0, sizeof(params));
    params.field_mask        = UCP_PARAM_FIELD_FEATURES |
                               UCP_PARAM_FIELD_ESTIMATED_NUM_EPS;
    params.features          = ctx_features;
    params.estimated_num_eps = estimated_num_eps;

    get_resource_usage(&usage);

    if (!(dev_type_bitmap & UCS_BIT(UCT_DEVICE_TYPE_SELF))) {
        ucp_config_modify(config, "SELF_DEVICES", "");
    }
    if (!(dev_type_bitmap & UCS_BIT(UCT_DEVICE_TYPE_SHM))) {
        ucp_config_modify(config, "SHM_DEVICES", "");
    }
    if (!(dev_type_bitmap & UCS_BIT(UCT_DEVICE_TYPE_NET))) {
        ucp_config_modify(config, "NET_DEVICES", "");
    }

    status = ucp_init(&params, config, &context);
    if (status != UCS_OK) {
        printf("<Failed to create UCP context>\n");
        goto out_release_config;
    }

    if ((print_opts & PRINT_MEM_MAP) && (mem_size != NULL)) {
        ucp_mem_print_info(mem_size, context, stdout);
    }

    if (print_opts & PRINT_UCP_CONTEXT) {
        ucp_context_print_info(context, stdout);
        print_resource_usage(&usage, "UCP context");
    }

    if (!(print_opts & (PRINT_UCP_WORKER|PRINT_UCP_EP))) {
        goto out_cleanup_context;
    }

    worker_params.field_mask  = UCP_WORKER_PARAM_FIELD_THREAD_MODE;
    worker_params.thread_mode = UCS_THREAD_MODE_MULTI;

    get_resource_usage(&usage);

    status = ucp_worker_create(context, &worker_params, &worker);
    if (status != UCS_OK) {
        printf("<Failed to create UCP worker>\n");
        goto out_cleanup_context;
    }

    if (print_opts & PRINT_UCP_WORKER) {
        ucp_worker_print_info(worker, stdout);
        print_resource_usage(&usage, "UCP worker");
    }

    if (print_opts & PRINT_UCP_EP) {
        status = ucp_worker_get_address(worker, &address, &address_length);
        if (status != UCS_OK) {
            printf("<Failed to get UCP worker address>\n");
            goto out_destroy_worker;
        }

        ep_params             = *base_ep_params;

        ep_params.field_mask |= UCP_EP_PARAM_FIELD_REMOTE_ADDRESS;
        ep_params.address     = address;

        status = ucp_ep_create(worker, &ep_params, &ep);
        ucp_worker_release_address(worker, address);
        if (status != UCS_OK) {
            printf("<Failed to create UCP endpoint>\n");
            goto out_destroy_worker;
        }

        ucp_ep_print_info(ep, stdout);

        status_ptr = ucp_disconnect_nb(ep);
        if (UCS_PTR_IS_PTR(status_ptr)) {
            do {
                ucp_worker_progress(worker);
                status = ucp_request_test(status_ptr, NULL);
            } while (status == UCS_INPROGRESS);
            ucp_request_release(status_ptr);
        }
    }

out_destroy_worker:
    ucp_worker_destroy(worker);
out_cleanup_context:
    ucp_cleanup(context);
out_release_config:
    ucp_config_release(config);
}
Example #13
0
int progress(int server, int msg_size)
{
    int flag = 1;
    int recvd = 0, sent = 0;
    struct ucx_context *sreq = NULL, *rreq = NULL;
    struct epoll_event events[2];
    int ret;

    if( server ){
        sreq = launch_send(msg_size);
        if( !sreq ){
            /* inline send */
            sent = 1;
        }
    }

    progress_calls++;

    while (flag) {
        int i;
        ucs_status_t status;

        status = ucp_worker_arm(ucp_worker);

        if (status == UCS_ERR_BUSY) { /* some events are arrived already */
            struct ucx_context *tmp;
            ucp_worker_progress(ucp_worker);

            progress_count++;

            tmp = launch_recv();
            rreq = (rreq) ? rreq : tmp;
            ret = 0;
            goto progress;
        } else if ( UCS_OK != status ){
            abort();
        }

        ret = epoll_wait(epoll_fd_local, events, 2, -1);
        if ( 0 > ret ) {
            if (errno == EINTR) {
                continue;
            } else {
                abort();
            }
        }

        ucp_worker_progress(ucp_worker);

        progress_count++;

        for(i=0; i<ret; i++){
            if( events[i].data.fd == epoll_fd){
                struct ucx_context *tmp;
                tmp = launch_recv();
                rreq = (rreq) ? rreq : tmp;
                continue;
            }

            if( events[i].data.fd == signal_pipe[0]){
                char buf;
                read(signal_pipe[0], &buf, sizeof(buf));
                continue;
            }
        }

progress:
        if( sreq ){
            if( sreq->completed ){
                if( !same_buf ){
                    free(sreq->buf);
                }
                sreq->completed = 0;
                ucp_request_release(sreq);
                sreq = NULL;
                sent = 1;
            }
        }
        if( rreq ){
            if( rreq->completed ){
                if( !same_buf ) {
                    free(rreq->buf);
                }
                rreq->completed = 0;
                ucp_request_release(rreq);
                rreq = NULL;

                recvd = 1;
                if( !server ){
                    sreq = launch_send(msg_size);
                    if( !sreq ){
                        /* inline send */
                        sent = 1;
                    }
                }
            }
        }

        if( recvd && sent ){
            flag = 0;
        }

        if( sreq || rreq ){
            activate_progress();
        }
    }
}
Example #14
0
static int connect_server()
{
    ucp_tag_recv_info_t info_tag;
    ucp_tag_message_h msg_tag;
    ucs_status_t status;
    ucp_ep_params_t ep_params;
    struct msg *msg = 0;
    struct ucx_context *request = 0;

    /* Receive client UCX address */
    do {
        /* Following blocked methods used to polling internal file descriptor
         * to make CPU idle and don't spin loop
         */

        /* Progressing before probe to update the state */
        ucp_worker_progress(ucp_worker);

        /* Probing incoming events in non-block mode */
        msg_tag = ucp_tag_probe_nb(ucp_worker, tag, tag_mask, 1, &info_tag);
    } while (msg_tag == NULL);

    msg = malloc(info_tag.length);
    if (!msg) {
        fprintf(stderr, "unable to allocate memory\n");
        abort();
    }
    request = ucp_tag_msg_recv_nb(ucp_worker, msg, info_tag.length,
                                  ucp_dt_make_contig(1), msg_tag, recv_handle);

    if (UCS_PTR_IS_ERR(request)) {
        fprintf(stderr, "unable to receive UCX address message (%s)\n",
                ucs_status_string(UCS_PTR_STATUS(request)));
        free(msg);
        abort();
    } else {
        wait(ucp_worker, request);
        request->completed = 0;
        ucp_request_release(request);
        printf("UCX address message was received\n");
    }

    peer_addr = malloc(msg->data_len);
    if (!peer_addr) {
        fprintf(stderr, "unable to allocate memory for peer address\n");
        free(msg);
        abort();
    }

    peer_addr_len = msg->data_len;
    memcpy(peer_addr, msg->data, peer_addr_len);

    free(msg);

    /* Send test string to client */
    ep_params.field_mask = UCP_EP_PARAM_FIELD_REMOTE_ADDRESS;
    ep_params.address    = peer_addr;

    status = ucp_ep_create(ucp_worker, &ep_params, &rem_ep);
    if (status != UCS_OK) {
        abort();
    }
}