Example #1
0
static void *
uio_int_handler(void *arg)
{
	int ret;
	void *(*ufunc)(void *);
	void *uarg;
	tsem_t *uio_sem;
	int *exit_flag;
	if (arg) {
		void **args = arg;
		ufunc = args[0];
		uarg = args[1];
		uio_sem = args[2];
		exit_flag = args[3];
	} else {
		ufunc = uarg = NULL;
		return NULL;
	}

	logd("%s start\n", __FUNCTION__);

	while (uiomux && !*exit_flag) {
		logd("wait for an interrupt...\n");
		ret = uiomux_sleep(uiomux, VPU_UIO);
		if (ret < 0) {
			break;
		}
		logd("got an interrupt! (%d)\n", ret);
		if (ufunc)
			ufunc(uarg);
	}
	free (arg);
	return NULL;
}
Example #2
0
/*ARGSUSED1*/
void key (unsigned char key, int x, int y) {
    switch (key) {
    case 'b': bfunc(); break;
    case 'c': cfunc(); break;
    case 'l': lfunc(); break;
    case 't': tfunc(); break;
    case 'f': ffunc(); break;
    case 'n': nfunc(); break;
    case 'u': ufunc(); break;
    case 'U': Ufunc(); break;
    case 'p': pfunc(); break;
    case 'P': Pfunc(); break;
    case 'w': wfunc(); break;
    case 'x': xfunc(); break;
    case 'X': Xfunc(); break;
    case 'y': yfunc(); break;
    case '\033': exit(EXIT_SUCCESS); break;
    default: break;
    }
}
Example #3
0
THD_3dim_dataset * MAKER_4D_to_typed_fim( THD_3dim_dataset * old_dset ,
                                          char * new_prefix , int new_datum ,
                                          int ignore , int detrend ,
                                          generic_func * user_func ,
                                          void * user_data )
{
   THD_3dim_dataset * new_dset ;  /* output dataset */

   byte    ** bptr = NULL ;  /* one of these will be the array of */
   short   ** sptr = NULL ;  /* pointers to input dataset sub-bricks */
   float   ** fptr = NULL ;  /* (depending on input datum type) */
   complex ** cptr = NULL ;

   float * fxar = NULL ;  /* array loaded from input dataset */
   float * fac  = NULL ;  /* array of brick scaling factors */
   float * fout = NULL ;  /* will be array of output floats */
   float * dtr  = NULL ;  /* will be array of detrending coeff */

   float val , d0fac , d1fac , x0,x1;
   double tzero=0 , tdelta , ts_mean , ts_slope ;
   int   ii , old_datum , nuse , use_fac , iz,izold, nxy,nvox , nbad ;
   register int kk ;

   void (*ufunc)(double,double,int,float *,double,double,void *,float *)
     = (void (*)(double,double,int,float *,double,double,void *,float *)) user_func ;

   /*----------------------------------------------------------*/
   /*----- Check inputs to see if they are reasonable-ish -----*/

   if( ! ISVALID_3DIM_DATASET(old_dset) ) return NULL ;

   if( new_datum >= 0         &&
       new_datum != MRI_byte  &&
       new_datum != MRI_short &&
       new_datum != MRI_float   ) return NULL ;

   if( user_func == NULL ) return NULL ;

   if( ignore < 0 ) ignore = 0 ;

   /*--------- set up pointers to each sub-brick in the input dataset ---------*/

   old_datum = DSET_BRICK_TYPE( old_dset , 0 ) ;   /* get old dataset datum */
   nuse      = DSET_NUM_TIMES(old_dset) - ignore ; /* # of points on time axis */
   if( nuse < 2 ) return NULL ;

   if( new_datum < 0 ) new_datum = old_datum ;   /* output datum = input */
   if( new_datum == MRI_complex ) return NULL ;  /* but complex = bad news */

   DSET_load( old_dset ) ;  /* must be in memory before we get pointers to it */

   kk = THD_count_databricks( old_dset->dblk ) ;  /* check if it was */
   if( kk < DSET_NVALS(old_dset) ){               /* loaded correctly */
      DSET_unload( old_dset ) ;
      return NULL ;
   }

   switch( old_datum ){  /* pointer type depends on input datum type */

      default:                      /** don't know what to do **/
         DSET_unload( old_dset ) ;
         return NULL ;

      /** create array of pointers into old dataset sub-bricks **/

      /*--------- input is bytes ----------*/
      /* voxel #i at time #k is bptr[k][i] */
      /* for i=0..nvox-1 and k=0..nuse-1.  */

      case MRI_byte:
         bptr = (byte **) malloc( sizeof(byte *) * nuse ) ;
         if( bptr == NULL ) return NULL ;
         for( kk=0 ; kk < nuse ; kk++ )
            bptr[kk] = (byte *) DSET_ARRAY(old_dset,kk+ignore) ;
      break ;

      /*--------- input is shorts ---------*/
      /* voxel #i at time #k is sptr[k][i] */
      /* for i=0..nvox-1 and k=0..nuse-1.  */

      case MRI_short:
         sptr = (short **) malloc( sizeof(short *) * nuse ) ;
         if( sptr == NULL ) return NULL ;
         for( kk=0 ; kk < nuse ; kk++ )
            sptr[kk] = (short *) DSET_ARRAY(old_dset,kk+ignore) ;
      break ;

      /*--------- input is floats ---------*/
      /* voxel #i at time #k is fptr[k][i] */
      /* for i=0..nvox-1 and k=0..nuse-1.  */

      case MRI_float:
         fptr = (float **) malloc( sizeof(float *) * nuse ) ;
         if( fptr == NULL ) return NULL ;
         for( kk=0 ; kk < nuse ; kk++ )
            fptr[kk] = (float *) DSET_ARRAY(old_dset,kk+ignore) ;
      break ;

      /*--------- input is complex ---------*/
      /* voxel #i at time #k is cptr[k][i]  */
      /* for i=0..nvox-1 and k=0..nuse-1.   */

      case MRI_complex:
         cptr = (complex **) malloc( sizeof(complex *) * nuse ) ;
         if( cptr == NULL ) return NULL ;
         for( kk=0 ; kk < nuse ; kk++ )
            cptr[kk] = (complex *) DSET_ARRAY(old_dset,kk+ignore) ;
      break ;

   } /* end of switch on input type */

   /*---- allocate space for 1 voxel timeseries ----*/

   fxar = (float *) malloc( sizeof(float) * nuse ) ;   /* voxel timeseries */
   if( fxar == NULL ){ FREE_WORKSPACE ; return NULL ; }

   /*--- get scaling factors for sub-bricks ---*/

   fac = (float *) malloc( sizeof(float) * nuse ) ;   /* factors */
   if( fac == NULL ){ FREE_WORKSPACE ; return NULL ; }

   use_fac = 0 ;
   for( kk=0 ; kk < nuse ; kk++ ){
      fac[kk] = DSET_BRICK_FACTOR(old_dset,kk+ignore) ;
      if( fac[kk] != 0.0 ) use_fac++ ;
      else                 fac[kk] = 1.0 ;
   }
   if( !use_fac ) FREEUP(fac) ;

   /*--- setup for detrending ---*/

   dtr = (float *) malloc( sizeof(float) * nuse ) ;
   if( dtr == NULL ){ FREE_WORKSPACE ; return NULL ; }

   d0fac = 1.0 / nuse ;
   d1fac = 12.0 / nuse / (nuse*nuse - 1.0) ;
   for( kk=0 ; kk < nuse ; kk++ )
      dtr[kk] = kk - 0.5 * (nuse-1) ;  /* linear trend, orthogonal to 1 */

   /*---------------------- make a new dataset ----------------------*/

   new_dset = EDIT_empty_copy( old_dset ) ; /* start with copy of old one */

   /*-- edit some of its internal parameters --*/

   ii = EDIT_dset_items(
           new_dset ,
              ADN_prefix      , new_prefix ,           /* filename prefix */
              ADN_malloc_type , DATABLOCK_MEM_MALLOC , /* store in memory */
              ADN_datum_all   , new_datum ,            /* atomic datum */
              ADN_nvals       , 1 ,                    /* # sub-bricks */
              ADN_ntt         , 0 ,                    /* # time points */
              ADN_type        , ISHEAD(old_dset)       /* dataset type */
                                 ? HEAD_FUNC_TYPE
                                 : GEN_FUNC_TYPE ,
              ADN_func_type   , FUNC_FIM_TYPE ,        /* function type */
           ADN_none ) ;

   if( ii != 0 ){
      ERROR_message("Error creating dataset '%s'",new_prefix) ;
      THD_delete_3dim_dataset( new_dset , False ) ;  /* some error above */
      FREE_WORKSPACE ; return NULL ;
   }

   /*------ make floating point output brick
            (only at the end will scale to byte or shorts) ------*/

   nvox = old_dset->daxes->nxx * old_dset->daxes->nyy * old_dset->daxes->nzz ;

   fout = (float *) malloc( sizeof(float) * nvox ) ;  /* ptr to brick */

   if( fout == NULL ){
      THD_delete_3dim_dataset( new_dset , False ) ;
      FREE_WORKSPACE ; return NULL ;
   }

   /*----- set up to find time at each voxel -----*/

   tdelta = old_dset->taxis->ttdel ;
   if( DSET_TIMEUNITS(old_dset) == UNITS_MSEC_TYPE ) tdelta *= 0.001 ;
   if( tdelta == 0.0 ) tdelta = 1.0 ;

   izold  = -666 ;
   nxy    = old_dset->daxes->nxx * old_dset->daxes->nyy ;

   /*----------------------------------------------------*/
   /*----- Setup has ended.  Now do some real work. -----*/

   /* start notification */

#if 0
   user_func(  0.0 , 0.0 , nvox , NULL,0.0,0.0 , user_data , NULL ) ;
#else
   ufunc(  0.0 , 0.0 , nvox , NULL,0.0,0.0 , user_data , NULL ) ;
#endif

   /***** loop over voxels *****/

   for( ii=0 ; ii < nvox ; ii++  ){  /* 1 time series at a time */

      /*** load data from input dataset, depending on type ***/

      switch( old_datum ){

         /*** input = bytes ***/

         case MRI_byte:
            for( kk=0 ; kk < nuse ; kk++ ) fxar[kk] = bptr[kk][ii] ;
         break ;

         /*** input = shorts ***/

         case MRI_short:
            for( kk=0 ; kk < nuse ; kk++ ) fxar[kk] = sptr[kk][ii] ;
         break ;

         /*** input = floats ***/

         case MRI_float:
            for( kk=0 ; kk < nuse ; kk++ ) fxar[kk] = fptr[kk][ii] ;
         break ;

         /*** input = complex (note we use absolute value) ***/

         case MRI_complex:
            for( kk=0 ; kk < nuse ; kk++ ) fxar[kk] = CABS(cptr[kk][ii]) ;
         break ;

      } /* end of switch over input type */

      /*** scale? ***/

      if( use_fac )
         for( kk=0 ; kk < nuse ; kk++ ) fxar[kk] *= fac[kk] ;

      /** compute mean and slope **/

      x0 = x1 = 0.0 ;
      for( kk=0 ; kk < nuse ; kk++ ){
         x0 += fxar[kk] ; x1 += fxar[kk] * dtr[kk] ;
      }

      x0 *= d0fac ; x1 *= d1fac ;  /* factors to remove mean and trend */

      ts_mean  = x0 ;
      ts_slope = x1 / tdelta ;

      /** detrend? **/

      if( detrend )
         for( kk=0 ; kk < nuse ; kk++ ) fxar[kk] -= (x0 + x1 * dtr[kk]) ;

      /** compute start time of this timeseries **/

      iz = ii / nxy ;    /* which slice am I in? */

      if( iz != izold ){          /* in a new slice? */
         tzero = THD_timeof( ignore ,
                             old_dset->daxes->zzorg
                           + iz*old_dset->daxes->zzdel , old_dset->taxis ) ;
         izold = iz ;

         if( DSET_TIMEUNITS(old_dset) == UNITS_MSEC_TYPE ) tzero *= 0.001 ;
      }

      /*** compute output ***/

#if 0
      user_func( tzero,tdelta , nuse,fxar,ts_mean,ts_slope , user_data , fout+ii ) ;
#else
      ufunc( tzero,tdelta , nuse,fxar,ts_mean,ts_slope , user_data , fout+ii ) ;
#endif

   } /* end of outer loop over 1 voxels at a time */

   DSET_unload( old_dset ) ;  /* don't need this no more */

   /* end notification */

#if 0
   user_func( 0.0 , 0.0 , 0 , NULL,0.0,0.0 , user_data , NULL ) ;
#else
   ufunc( 0.0 , 0.0 , 0 , NULL,0.0,0.0 , user_data , NULL ) ;
#endif

   nbad = thd_floatscan( nvox , fout ) ;  /* 08 Aug 2000 */
   if( nbad > 0 )
      fprintf(stderr,
              "++ Warning: %d bad floats computed in MAKER_4D_to_typed_fim\n\a",
              nbad ) ;

   /*------------------------------------------------------------*/
   /*------- The output is now in fout[ii], ii=0..nvox-1.
             We must now put this into the output dataset -------*/

   switch( new_datum ){

      /*** output is floats is the simplest:
           we just have to attach the fout brick to the dataset ***/

      case MRI_float:
         EDIT_substitute_brick( new_dset , 0 , MRI_float , fout ) ;
         fout = NULL ;  /* so it won't be freed later */
      break ;

      /*** output is shorts:
           we have to create a scaled sub-brick from fout ***/

      case MRI_short:{
         short * bout ;
         float sfac ;

         /*-- get output sub-brick --*/

         bout = (short *) malloc( sizeof(short) * nvox ) ;
         if( bout == NULL ){
            fprintf(stderr,
             "\nFinal malloc error in MAKER_4D_to_fim - is memory exhausted?\n\a");
            EXIT(1) ;
         }

         /*-- find scaling and then scale --*/

         sfac = MCW_vol_amax( nvox,1,1 , MRI_float , fout ) ;
         if( sfac > 0.0 ){
            sfac = 32767.0 / sfac ;
            EDIT_coerce_scale_type( nvox,sfac ,
                                    MRI_float,fout , MRI_short,bout ) ;
            sfac = 1.0 / sfac ;
         }

         /*-- put output brick into dataset, and store scale factor --*/

         EDIT_substitute_brick( new_dset , 0 , MRI_short , bout ) ;
         EDIT_dset_items( new_dset , ADN_brick_fac , &sfac , ADN_none ) ;
      }
      break ;

      /*** output is bytes (byte = unsigned char)
           we have to create a scaled sub-brick from fout ***/

      case MRI_byte:{
         byte * bout ;
         float sfac ;

         /*-- get output sub-brick --*/

         bout = (byte *) malloc( sizeof(byte) * nvox ) ;
         if( bout == NULL ){
            fprintf(stderr,
             "\nFinal malloc error in MAKER_4D_to_fim - is memory exhausted?\n\a");
            EXIT(1) ;
         }

         /*-- find scaling and then scale --*/

         sfac = MCW_vol_amax( nvox,1,1 , MRI_float , fout ) ;
         if( sfac > 0.0 ){
            sfac = 255.0 / sfac ;
            EDIT_coerce_scale_type( nvox,sfac ,
                                    MRI_float,fout , MRI_byte,bout ) ;
            sfac = 1.0 / sfac ;
         }

         /*-- put output brick into dataset, and store scale factor --*/

         EDIT_substitute_brick( new_dset , 0 , MRI_byte , bout ) ;
         EDIT_dset_items( new_dset , ADN_brick_fac , &sfac , ADN_none ) ;
      }
      break ;

   } /* end of switch on output data type */

   /*-------------- Cleanup and go home ----------------*/

   FREE_WORKSPACE ;
   return new_dset ;
}
Example #4
0
double MathFunction::Evaluate(double t, int diff) const //if diff=1, then differentiate w.r.t. time
{
    //t .. time or input parameter
    double val = 0;
    switch (funcmode)
    {
    case TMFempty: //no function
    {
        //val = 0;
        break;
    }
    case TMFpolynomial: //polynomial, coeffs contain polynomial coeffs a_1 * 1 + a_2 * t + a_3 * t^2 + ...
    {
        //if (t > 1) t = 1; //hack!!!!

        if (vectime.Length() == 2)
        {
            if (t < vectime(1)) t = vectime(1);
            else if (t > vectime(2)) t = vectime(2);
        }

        double pt = 1;
        if (!diff)
        {
            for (int i=1; i <= coeff.Length(); i++)
            {
                val += coeff(i) * pt;
                pt *= t;
            }
        }
        else if (diff==1) //a_2 * 1 + a_3 * 2* t + a_4 * 3* t^2 + ...
        {
            for (int i=2; i <= coeff.Length(); i++)
            {
                val += coeff(i) * pt * ((double)i-1);
                pt *= t;
            }
        }
        break;
    }
    case TMFpiecewiseconst: //time points, not interpolated, differentiation not possible
    {
        if (vectime.Length() != 0 && !diff)
        {
            int index = 1;
            index = FindIndexPiecewise(t);
            val = valX(index);
        }
        break;
    }
    case TMFpiecewiselinear: //time points linearly interpolated
    {
        if (vectime.Length() != 0 && !diff)
        {
            int index = 1;
            index = FindIndexPiecewise(t);
            val = InterpolatePiecewise(t, index);
        }
        break;
    }
    case TMFpiecewisequad: //time points quadratic interpolated, not yet implemented!
    {
        if (vectime.Length() != 0)
        {
            int i = 1;

            while (i <= vectime.Length() && t > vectime(i)) {
                i++;
            }

            if (i > vectime.Length())
            {
                i = vectime.Length();

                if (diff)
                    val = valY(i); //vel
                else
                    val = valX(i); //pos
            }
            else
            {
                double t1 = 0, t2;
                double x1 = 0;
                double x2 = 0;
                double v1 = 0;
                double v2 = 0;

                if (i >= 2)
                {
                    t1 = vectime(i-1);
                    x1 = valX(i-1); //pos
                    v1 = valY(i-1); //vel
                }
                double dt = vectime(i)-t1;
                if (dt <= 0) dt = 1;

                x2 = valX(i); //pos
                v2 = valY(i); //vel
                t2 = vectime(i);

                if (diff)
                    val = (1.-(t-t1)/dt)*v1 + (1.+(t-t2)/dt)*v2; //linearly interpolate velocity
                else
                {
                    val = x1 + (t-t1)*v1 + 0.5*(v2-v1)*Sqr(t-t1)/dt; //linearly interpolate velocity
                }
            }
        }
        break;
    }
    case TMFharmonic: //harmonic function
    {
        if (valX.Length() != 0 && valX.Length() == valY.Length() && valX.Length() == valZ.Length())
        {
            val = 0;
            for (int i=1; i <= valX.Length(); i++)
            {
                if (!diff)
                    val += valZ(i)*sin(valX(i)*t+valY(i));
                else
                    val += valZ(i)*valX(i)*cos(valX(i)*t+valY(i));
            }
        }
        break;
    }
    case TMFsin:
    {
        //input variable:t
        //Evaluate val = coeff(1) * Sin(coeff(2)*t + coeff(3))

        val = coeff(1) * sin(coeff(2)*t + coeff(3));

        break;
    }
    case TMFcos: //***
    {
        //input variable:t
        val = coeff(1) * cos(coeff(2)*t + coeff(3));

        break;
    }
    case TMFstaticDynamicFricion: //***
    {
        assert(0 && "ERROR in mathfunc.cpp: SetStaticDynamicFricionFunction not anymore supported by MathFunction, use TMFExpression instead!");

        ////input variable: velocity
        //if(coeff(3) > 0.0 && fabs(t) <= coeff(3))
        //{
        //	val = coeff(4)/(coeff(3))*t;
        //}else
        //{
        //	//if(-1e-10<t && t<1e-10)t=0.0;
        //	val = coeff(1)*Sgn(t) + coeff(2)*t;
        //}
        //break;
    }
    case TMFuserdefined: //***
    {
        val = ufunc(t,coeff);
        break;
    }
    case TMFexpression:
    {
        //val = mbsPI->EvaluateParsedFunction1D(parsedFunctionExpression, parsedFunctionVariables, t);               //$JG2013-4-29: old slow code of YV
        val = pf.Evaluate(t);                        //$JG2013-4-29: new code, faster: Parsed function is only evaluated, not interpreted!
        break;
    }
    default:
        ;
    }
    return val;
}