Example #1
0
template<typename PointT, typename NormalT> bool
pcl::NormalSpaceSampling<PointT, NormalT>::initCompute ()
{
  if (!FilterIndices<PointT>::initCompute ())
    return false;

  // If sample size is 0 or if the sample size is greater then input cloud size then return entire copy of cloud
  if (sample_ >= input_->size ())
  {
    PCL_ERROR ("[NormalSpaceSampling::initCompute] Requested more samples than the input cloud size: %d vs %lu\n",
               sample_, input_->size ());
    return false;
  }

  boost::mt19937 rng (static_cast<unsigned int> (seed_));
  boost::uniform_int<unsigned int> uniform_distrib (0, unsigned (input_->size ()));
  delete rng_uniform_distribution_;
  rng_uniform_distribution_ = new boost::variate_generator<boost::mt19937, boost::uniform_int<unsigned int> > (rng, uniform_distrib);

  return (true);
}
Example #2
0
File: mls.hpp Project: Cakem1x/pcl
template <typename PointInT, typename PointOutT> void
pcl::MovingLeastSquares<PointInT, PointOutT>::process (PointCloudOut &output)
{
  // Reset or initialize the collection of indices
  corresponding_input_indices_.reset (new PointIndices);

  // Check if normals have to be computed/saved
  if (compute_normals_)
  {
    normals_.reset (new NormalCloud);
    // Copy the header
    normals_->header = input_->header;
    // Clear the fields in case the method exits before computation
    normals_->width = normals_->height = 0;
    normals_->points.clear ();
  }


  // Copy the header
  output.header = input_->header;
  output.width = output.height = 0;
  output.points.clear ();

  if (search_radius_ <= 0 || sqr_gauss_param_ <= 0)
  {
    PCL_ERROR ("[pcl::%s::process] Invalid search radius (%f) or Gaussian parameter (%f)!\n", getClassName ().c_str (), search_radius_, sqr_gauss_param_);
    return;
  }

  // Check if distinct_cloud_ was set
  if (upsample_method_ == DISTINCT_CLOUD && !distinct_cloud_)
  {
    PCL_ERROR ("[pcl::%s::process] Upsample method was set to DISTINCT_CLOUD, but no distinct cloud was specified.\n", getClassName ().c_str ());
    return;
  }

  if (!initCompute ())
    return;


  // Initialize the spatial locator
  if (!tree_)
  {
    KdTreePtr tree;
    if (input_->isOrganized ())
      tree.reset (new pcl::search::OrganizedNeighbor<PointInT> ());
    else
      tree.reset (new pcl::search::KdTree<PointInT> (false));
    setSearchMethod (tree);
  }

  // Send the surface dataset to the spatial locator
  tree_->setInputCloud (input_);

  switch (upsample_method_)
  {
    // Initialize random number generator if necessary
    case (RANDOM_UNIFORM_DENSITY):
    {
      rng_alg_.seed (static_cast<unsigned> (std::time (0)));
      float tmp = static_cast<float> (search_radius_ / 2.0f);
      boost::uniform_real<float> uniform_distrib (-tmp, tmp);
      rng_uniform_distribution_.reset (new boost::variate_generator<boost::mt19937&, boost::uniform_real<float> > (rng_alg_, uniform_distrib));

      break;
    }
    case (VOXEL_GRID_DILATION):
    case (DISTINCT_CLOUD):
      {
      break;
      }
    default:
      break;
  }

  mls_results_.resize (input_->size ());
  // Perform the actual surface reconstruction
  performProcessing (output);

  if (compute_normals_)
  {
    normals_->height = 1;
    normals_->width = static_cast<uint32_t> (normals_->size ());

    for (unsigned int i = 0; i < output.size (); ++i)
    {
      typedef typename pcl::traits::fieldList<PointOutT>::type FieldList;
      pcl::for_each_type<FieldList> (SetIfFieldExists<PointOutT, float> (output.points[i], "normal_x", normals_->points[i].normal_x));
      pcl::for_each_type<FieldList> (SetIfFieldExists<PointOutT, float> (output.points[i], "normal_y", normals_->points[i].normal_y));
      pcl::for_each_type<FieldList> (SetIfFieldExists<PointOutT, float> (output.points[i], "normal_z", normals_->points[i].normal_z));
      pcl::for_each_type<FieldList> (SetIfFieldExists<PointOutT, float> (output.points[i], "curvature", normals_->points[i].curvature));
    }

  }

  // Set proper widths and heights for the clouds
  output.height = 1;
  output.width = static_cast<uint32_t> (output.size ());

  deinitCompute ();
}