static int __save_stack_trace_reliable(struct stack_trace *trace,
				       struct task_struct *task)
{
	struct unwind_state state;
	struct pt_regs *regs;
	unsigned long addr;

	for (unwind_start(&state, task, NULL, NULL); !unwind_done(&state);
	     unwind_next_frame(&state)) {

		regs = unwind_get_entry_regs(&state);
		if (regs) {
			/*
			 * Kernel mode registers on the stack indicate an
			 * in-kernel interrupt or exception (e.g., preemption
			 * or a page fault), which can make frame pointers
			 * unreliable.
			 */
			if (!user_mode(regs))
				return -EINVAL;

			/*
			 * The last frame contains the user mode syscall
			 * pt_regs.  Skip it and finish the unwind.
			 */
			unwind_next_frame(&state);
			if (!unwind_done(&state)) {
				STACKTRACE_DUMP_ONCE(task);
				return -EINVAL;
			}
			break;
		}

		addr = unwind_get_return_address(&state);

		/*
		 * A NULL or invalid return address probably means there's some
		 * generated code which __kernel_text_address() doesn't know
		 * about.
		 */
		if (!addr) {
			STACKTRACE_DUMP_ONCE(task);
			return -EINVAL;
		}

		if (save_stack_address(trace, addr, false))
			return -EINVAL;
	}

	/* Check for stack corruption */
	if (unwind_error(&state)) {
		STACKTRACE_DUMP_ONCE(task);
		return -EINVAL;
	}

	if (trace->nr_entries < trace->max_entries)
		trace->entries[trace->nr_entries++] = ULONG_MAX;

	return 0;
}
Example #2
0
void __unwind_start(struct unwind_state *state, struct task_struct *task,
		    struct pt_regs *regs, unsigned long *first_frame)
{
	unsigned long *bp;

	memset(state, 0, sizeof(*state));
	state->task = task;
	state->got_irq = (regs);

	/* Don't even attempt to start from user mode regs: */
	if (regs && user_mode(regs)) {
		state->stack_info.type = STACK_TYPE_UNKNOWN;
		return;
	}

	bp = get_frame_pointer(task, regs);

	/* Initialize stack info and make sure the frame data is accessible: */
	get_stack_info(bp, state->task, &state->stack_info,
		       &state->stack_mask);
	update_stack_state(state, bp);

	/*
	 * The caller can provide the address of the first frame directly
	 * (first_frame) or indirectly (regs->sp) to indicate which stack frame
	 * to start unwinding at.  Skip ahead until we reach it.
	 */
	while (!unwind_done(state) &&
	       (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
			state->bp < first_frame))
		unwind_next_frame(state);
}
Example #3
0
void __unwind_start(struct unwind_state *state, struct task_struct *task,
		    struct pt_regs *regs, unsigned long *first_frame)
{
	unsigned long *bp, *frame;
	size_t len;

	memset(state, 0, sizeof(*state));
	state->task = task;

	/* don't even attempt to start from user mode regs */
	if (regs && user_mode(regs)) {
		state->stack_info.type = STACK_TYPE_UNKNOWN;
		return;
	}

	/* set up the starting stack frame */
	bp = get_frame_pointer(task, regs);
	regs = decode_frame_pointer(bp);
	if (regs) {
		state->regs = regs;
		frame = (unsigned long *)regs;
		len = sizeof(*regs);
	} else {
		state->bp = bp;
		frame = bp;
		len = FRAME_HEADER_SIZE;
	}

	/* initialize stack info and make sure the frame data is accessible */
	get_stack_info(frame, state->task, &state->stack_info,
		       &state->stack_mask);
	update_stack_state(state, frame, len);

	/*
	 * The caller can provide the address of the first frame directly
	 * (first_frame) or indirectly (regs->sp) to indicate which stack frame
	 * to start unwinding at.  Skip ahead until we reach it.
	 */
	while (!unwind_done(state) &&
	       (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
			state->bp < first_frame))
		unwind_next_frame(state);
}
static void __save_stack_trace(struct stack_trace *trace,
			       struct task_struct *task, struct pt_regs *regs,
			       bool nosched)
{
	struct unwind_state state;
	unsigned long addr;

	if (regs)
		save_stack_address(trace, regs->ip, nosched);

	for (unwind_start(&state, task, regs, NULL); !unwind_done(&state);
	     unwind_next_frame(&state)) {
		addr = unwind_get_return_address(&state);
		if (!addr || save_stack_address(trace, addr, nosched))
			break;
	}

	if (trace->nr_entries < trace->max_entries)
		trace->entries[trace->nr_entries++] = ULONG_MAX;
}
Example #5
0
void __unwind_start(struct unwind_state *state, struct task_struct *task,
		    struct pt_regs *regs, unsigned long *first_frame)
{
	memset(state, 0, sizeof(*state));

	state->task = task;
	state->sp   = first_frame;

	get_stack_info(first_frame, state->task, &state->stack_info,
		       &state->stack_mask);

	/*
	 * The caller can provide the address of the first frame directly
	 * (first_frame) or indirectly (regs->sp) to indicate which stack frame
	 * to start unwinding at.  Skip ahead until we reach it.
	 */
	if (!unwind_done(state) &&
	    (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
	    !__kernel_text_address(*first_frame)))
		unwind_next_frame(state);
}
Example #6
0
void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
			unsigned long *stack, char *log_lvl)
{
	struct unwind_state state;
	struct stack_info stack_info = {0};
	unsigned long visit_mask = 0;
	int graph_idx = 0;

	printk("%sCall Trace:\n", log_lvl);

	unwind_start(&state, task, regs, stack);
	stack = stack ? : get_stack_pointer(task, regs);

	/*
	 * Iterate through the stacks, starting with the current stack pointer.
	 * Each stack has a pointer to the next one.
	 *
	 * x86-64 can have several stacks:
	 * - task stack
	 * - interrupt stack
	 * - HW exception stacks (double fault, nmi, debug, mce)
	 *
	 * x86-32 can have up to three stacks:
	 * - task stack
	 * - softirq stack
	 * - hardirq stack
	 */
	for (regs = NULL; stack; stack = stack_info.next_sp) {
		const char *stack_name;

		/*
		 * If we overflowed the task stack into a guard page, jump back
		 * to the bottom of the usable stack.
		 */
		if (task_stack_page(task) - (void *)stack < PAGE_SIZE)
			stack = task_stack_page(task);

		if (get_stack_info(stack, task, &stack_info, &visit_mask))
			break;

		stack_name = stack_type_name(stack_info.type);
		if (stack_name)
			printk("%s <%s>\n", log_lvl, stack_name);

		/*
		 * Scan the stack, printing any text addresses we find.  At the
		 * same time, follow proper stack frames with the unwinder.
		 *
		 * Addresses found during the scan which are not reported by
		 * the unwinder are considered to be additional clues which are
		 * sometimes useful for debugging and are prefixed with '?'.
		 * This also serves as a failsafe option in case the unwinder
		 * goes off in the weeds.
		 */
		for (; stack < stack_info.end; stack++) {
			unsigned long real_addr;
			int reliable = 0;
			unsigned long addr = READ_ONCE_NOCHECK(*stack);
			unsigned long *ret_addr_p =
				unwind_get_return_address_ptr(&state);

			if (!__kernel_text_address(addr))
				continue;

			/*
			 * Don't print regs->ip again if it was already printed
			 * by __show_regs() below.
			 */
			if (regs && stack == &regs->ip) {
				unwind_next_frame(&state);
				continue;
			}

			if (stack == ret_addr_p)
				reliable = 1;

			/*
			 * When function graph tracing is enabled for a
			 * function, its return address on the stack is
			 * replaced with the address of an ftrace handler
			 * (return_to_handler).  In that case, before printing
			 * the "real" address, we want to print the handler
			 * address as an "unreliable" hint that function graph
			 * tracing was involved.
			 */
			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
							  addr, stack);
			if (real_addr != addr)
				printk_stack_address(addr, 0, log_lvl);
			printk_stack_address(real_addr, reliable, log_lvl);

			if (!reliable)
				continue;

			/*
			 * Get the next frame from the unwinder.  No need to
			 * check for an error: if anything goes wrong, the rest
			 * of the addresses will just be printed as unreliable.
			 */
			unwind_next_frame(&state);

			/* if the frame has entry regs, print them */
			regs = unwind_get_entry_regs(&state);
			if (regs)
				__show_regs(regs, 0);
		}

		if (stack_name)
			printk("%s </%s>\n", log_lvl, stack_name);
	}
}