Example #1
0
void up_sigdeliver(void)
{
  _TCB  *rtcb = (_TCB*)g_readytorun.head;
  uint32_t regs[XCPTCONTEXT_REGS];
  sig_deliver_t sigdeliver;

  /* Save the errno.  This must be preserved throughout the signal handling
   * so that the user code final gets the correct errno value (probably
   * EINTR).
   */

  int saved_errno = rtcb->pterrno;

  up_ledon(LED_SIGNAL);

  sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
        rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
  ASSERT(rtcb->xcp.sigdeliver != NULL);

  /* Save the real return state on the stack. */

  up_copystate(regs, rtcb->xcp.regs);
  regs[REG_PC]         = rtcb->xcp.saved_pc;
  regs[REG_PRIMASK]    = rtcb->xcp.saved_primask;
  regs[REG_XPSR]       = rtcb->xcp.saved_xpsr;

  /* Get a local copy of the sigdeliver function pointer. We do this so that
   * we can nullify the sigdeliver function pointer in the TCB and accept
   * more signal deliveries while processing the current pending signals.
   */

  sigdeliver           = rtcb->xcp.sigdeliver;
  rtcb->xcp.sigdeliver = NULL;

  /* Then restore the task interrupt state */

  irqrestore((uint16_t)regs[REG_PRIMASK]);

  /* Deliver the signals */

  sigdeliver(rtcb);

  /* Output any debug messages BEFORE restoring errno (because they may
   * alter errno), then disable interrupts again and restore the original
   * errno that is needed by the user logic (it is probably EINTR).
   */

  sdbg("Resuming\n");
  (void)irqsave();
  rtcb->pterrno = saved_errno;

  /* Then restore the correct state for this thread of
   * execution.
   */

  up_ledoff(LED_SIGNAL);
  up_fullcontextrestore(regs);
}
Example #2
0
void up_sigdeliver(void)
{
#ifndef CONFIG_DISABLE_SIGNALS
  struct tcb_s  *rtcb = this_task();
  uint32_t regs[XCPTCONTEXT_REGS];
  sig_deliver_t sigdeliver;

  /* Save the errno.  This must be preserved throughout the signal handling
   * so that the user code final gets the correct errno value (probably
   * EINTR).
   */

  int saved_errno = rtcb->pterrno;

  board_autoled_on(LED_SIGNAL);

  sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
        rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
  ASSERT(rtcb->xcp.sigdeliver != NULL);

  /* Save the real return state on the stack. */

  up_copystate(regs, rtcb->xcp.regs);
  regs[REG_PC] = rtcb->xcp.saved_pc;
  regs[REG_SR] = rtcb->xcp.saved_sr;

  /* Get a local copy of the sigdeliver function pointer.  We do this so
   * that we can nullify the sigdeliver function pointer in the TCB and
   * accept more signal deliveries while processing the current pending
   * signals.
   */

  sigdeliver           = rtcb->xcp.sigdeliver;
  rtcb->xcp.sigdeliver = NULL;

  /* Then restore the task interrupt state. */

  up_irq_restore(regs[REG_SR] & 0x000000f0);

  /* Deliver the signals */

  sigdeliver(rtcb);

  /* Output any debug messages BEFORE restoring errno (because they may
   * alter errno), then disable interrupts again and restore the original
   * errno that is needed by the user logic (it is probably EINTR).
   */

  sinfo("Resuming\n");
  (void)up_irq_save();
  rtcb->pterrno = saved_errno;

  /* Then restore the correct state for this thread of execution. */

  board_autoled_off(LED_SIGNAL);
  up_fullcontextrestore(regs);
#endif
}
void up_release_pending(void)
{
  struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;

  slldbg("From TCB=%p\n", rtcb);

  /* Merge the g_pendingtasks list into the g_readytorun task list */

  /* sched_lock(); */
  if (sched_mergepending())
    {
      /* The currently active task has changed!  We will need to
       * switch contexts.  First check if we are operating in
       * interrupt context:
       */

      if (current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the current_regs into the OLD rtcb.
           */

           up_copystate(rtcb->xcp.regs, current_regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;
          slldbg("New Active Task TCB=%p\n", rtcb);

          /* Then switch contexts */

          current_regs = rtcb->xcp.regs;
        }

      /* Copy the exception context into the TCB of the task that
       * was currently active. if up_saveusercontext returns a non-zero
       * value, then this is really the previously running task
       * restarting!
       */

      else if (!up_saveusercontext(rtcb->xcp.regs))
        {
          /* Restore the exception context of the rtcb at the (new) head
           * of the g_readytorun task list.
           */

          rtcb = (struct tcb_s*)g_readytorun.head;
          slldbg("New Active Task TCB=%p\n", rtcb);

           /* Then switch contexts */

          up_fullcontextrestore(rtcb->xcp.regs);
        }
    }
}
Example #4
0
void up_savestate(uint32_t *regs)
{
  uint8_t cpl;
  uint8_t rpl;

  /* First, just copy all of the registers */

  up_copystate(regs, (uint32_t*)current_regs);

  /* The RES_SP and REG_SS values will not be saved by the interrupt handling
   * logic if there is no change in privilege level.  In that case, we will
   * have to "fudge" those values here.  For now, just overwrite the REG_SP
   * and REG_SS values with what we believe to be correct.  Obviously, this
   * will have to change in the future to support multi-segment operation.
   *
   * Check for a change in privilege level.
   */

  rpl = regs[REG_CS] & 3;
  cpl = up_getcs() & 3;
  DEBUGASSERT(rpl >= cpl);

  if (rpl == cpl)
    {
      /* No priority change, SP and SS are not present in the stack frame.
       *
       * The value saved in the REG_ESP will be the stackpointer value prior to
       * the execution of the PUSHA.  It will point at REG_IRQNO.
       */

      regs[REG_SP] = current_regs[REG_ESP] + 4*BOTTOM_NOPRIO;
      regs[REG_SS] = up_getss();
    }
  else
    {
      DEBUGASSERT(regs[REG_SP] == current_regs[REG_ESP] + 4*BOTTOM_PRIO);
    }
}
Example #5
0
void up_block_task(struct tcb_s *tcb, tstate_t task_state)
{
  struct tcb_s *rtcb = this_task();
  bool switch_needed;

  /* Verify that the context switch can be performed */

  DEBUGASSERT((tcb->task_state >= FIRST_READY_TO_RUN_STATE) &&
              (tcb->task_state <= LAST_READY_TO_RUN_STATE));

  /* Remove the tcb task from the ready-to-run list.  If we
   * are blocking the task at the head of the task list (the
   * most likely case), then a context switch to the next
   * ready-to-run task is needed. In this case, it should
   * also be true that rtcb == tcb.
   */

  switch_needed = sched_removereadytorun(tcb);

  /* Add the task to the specified blocked task list */

  sched_addblocked(tcb, (tstate_t)task_state);

  /* If there are any pending tasks, then add them to the ready-to-run
   * task list now
   */

  if (g_pendingtasks.head)
    {
      switch_needed |= sched_mergepending();
    }

  /* Now, perform the context switch if one is needed */

  if (switch_needed)
    {
      /* Update scheduler parameters */

      sched_suspend_scheduler(rtcb);

      /* Are we in an interrupt handler? */

      if (g_current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the g_current_regs into the OLD rtcb.
           */

          up_copystate(rtcb->xcp.regs, g_current_regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

          /* Reset scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts.  Any necessary address environment
           * changes will be made when the interrupt returns.
           */

          g_current_regs = rtcb->xcp.regs;
        }

      /* Copy the user C context into the TCB at the (old) head of the
       * ready-to-run Task list. if up_saveusercontext returns a non-zero
       * value, then this is really the previously running task restarting!
       */

      else if (!up_saveusercontext(rtcb->xcp.regs))
        {
          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

#ifdef CONFIG_ARCH_ADDRENV
         /* Make sure that the address environment for the previously
          * running task is closed down gracefully (data caches dump,
          * MMU flushed) and set up the address environment for the new
          * thread at the head of the ready-to-run list.
          */

         (void)group_addrenv(rtcb);
#endif
          /* Reset scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts */

          up_fullcontextrestore(rtcb->xcp.regs);
        }
    }
}
Example #6
0
void up_sigdeliver(void)
{
  _TCB  *rtcb = (_TCB*)g_readytorun.head;
#if 0
  uint32_t regs[XCPTCONTEXT_REGS+3];  /* Why +3? See below */
#else
  uint32_t regs[XCPTCONTEXT_REGS];
#endif
  sig_deliver_t sigdeliver;

  /* Save the errno.  This must be preserved throughout the signal handling
   * so that the user code final gets the correct errno value (probably EINTR).
   */

  int saved_errno = rtcb->pterrno;

  up_ledon(LED_SIGNAL);

  sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
        rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
  ASSERT(rtcb->xcp.sigdeliver != NULL);

  /* Save the real return state on the stack. */

  up_copystate(regs, rtcb->xcp.regs);
  regs[REG_PC]         = rtcb->xcp.saved_pc;
  regs[REG_SR]         = rtcb->xcp.saved_sr;

  /* Get a local copy of the sigdeliver function pointer. We do this so that
   * we can nullify the sigdeliver function pointer in the TCB and accept
   * more signal deliveries while processing the current pending signals.
   */

  sigdeliver           = rtcb->xcp.sigdeliver;
  rtcb->xcp.sigdeliver = NULL;

  /* Then restore the task interrupt state */

  irqrestore(regs[REG_SR]);

  /* Deliver the signals */

  sigdeliver(rtcb);

  /* Output any debug messages BEFORE restoring errno (because they may
   * alter errno), then disable interrupts again and restore the original
   * errno that is needed by the user logic (it is probably EINTR).
   */

  sdbg("Resuming\n");
  (void)irqsave();
  rtcb->pterrno = saved_errno;

  /* Then restore the correct state for this thread of execution. This is an
   * unusual case that must be handled by up_fullcontextresore. This case is
   * unusal in two ways:
   *
   *   1. It is not a context switch between threads.  Rather, up_fullcontextrestore
   *      must behave more it more like a longjmp within the same task, using
   *      he same stack.
   *   2. In this case, up_fullcontextrestore is called with r12 pointing to
   *      a register save area on the stack to be destroyed.  This is
   *      dangerous because there is the very real possibility that the new
   *      stack pointer might overlap with the register save area and hat stack
   *      usage in up_fullcontextrestore might corrupt the register save data
   *      before the state is restored.  At present, there does not appear to
   *      be any stack overlap problems.  If there were, then adding 3 words
   *      to the size of register save structure size will protect its contents.
   */

  up_ledoff(LED_SIGNAL);
  up_fullcontextrestore(regs);
}
Example #7
0
void up_schedule_sigaction(FAR _TCB *tcb, sig_deliver_t sigdeliver)
{
  /* Refuse to handle nested signal actions */

  dbg("tcb=0x%p sigdeliver=0x%06x\n", tcb, (uint32_t)sigdeliver);

  if (!tcb->xcp.sigdeliver)
    {
      irqstate_t flags;

      /* Make sure that interrupts are disabled */

      flags = irqsave();

      /* First, handle some special cases when the signal is
       * being delivered to the currently executing task.
       */

      dbg("rtcb=0x%p current_regs=0x%p\n", g_readytorun.head, current_regs);

      if (tcb == (FAR _TCB*)g_readytorun.head)
        {
          /* CASE 1:  We are not in an interrupt handler and
           * a task is signalling itself for some reason.
           */

          if (!current_regs)
            {
              /* In this case just deliver the signal now. */

              sigdeliver(tcb);
            }

          /* CASE 2:  We are in an interrupt handler AND the interrupted
           * task is the same as the one that must receive the signal, then
           * we will have to modify the return state as well as the state
           * in the TCB.
           */

          else
            {
              FAR uint32_t *current_pc  = (FAR uint32_t*)&current_regs[REG_PC];

              /* Save the return address and interrupt state. These will be
               * restored by the signal trampoline after the signals have
               * been delivered.
               */

              tcb->xcp.sigdeliver     = sigdeliver;
              tcb->xcp.saved_pc       = *current_pc;
              tcb->xcp.saved_i        = current_regs[REG_FLAGS];

              /* Then set up to vector to the trampoline with interrupts
               * disabled
               */

              *current_pc             = (uint32_t)up_sigdeliver;
              current_regs[REG_FLAGS] = 0;

              /* And make sure that the saved context in the TCB is the
               * same as the interrupt return context.
               */

              up_copystate(tcb->xcp.regs, current_regs);
            }
        }

      /* Otherwise, we are (1) signaling a task is not running from an
       * interrupt handler or (2) we are not in an interrupt handler
       * and the running task is signalling some non-running task.
       */

      else
        {
          FAR uint32_t *saved_pc     = (FAR uint32_t*)&tcb->xcp.regs[REG_PC];

          /* Save the return lr and cpsr and one scratch register
           * These will be restored by the signal trampoline after
           * the signals have been delivered.
           */

          tcb->xcp.sigdeliver      = sigdeliver;
          tcb->xcp.saved_pc        = *saved_pc;
          tcb->xcp.saved_i         = tcb->xcp.regs[REG_FLAGS];

          /* Then set up to vector to the trampoline with interrupts
           * disabled
           */

          *saved_pc                = (uint32_t)up_sigdeliver;
          tcb->xcp.regs[REG_FLAGS] = 0;
        }

      irqrestore(flags);
    }
}
void up_unblock_task(struct tcb_s *tcb)
{
  struct tcb_s *rtcb = this_task();

  /* Verify that the context switch can be performed */

  ASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) &&
         (tcb->task_state <= LAST_BLOCKED_STATE));

  /* Remove the task from the blocked task list */

  sched_removeblocked(tcb);

  /* Add the task in the correct location in the prioritized
   * ready-to-run task list
   */

  if (sched_addreadytorun(tcb))
    {
      /* The currently active task has changed! We need to do
       * a context switch to the new task.
       */

      /* Update scheduler parameters */

      sched_suspend_scheduler(rtcb);

      /* Are we in an interrupt handler? */

      if (current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the current_regs into the OLD rtcb.
           */

          up_copystate(rtcb->xcp.regs, current_regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts.  Any necessary address environment
           * changes will be made when the interrupt returns.
           */

          current_regs = rtcb->xcp.regs;
        }

      /* We are not in an interrupt handler.  Copy the user C context
       * into the TCB of the task that was previously active.  if
       * up_saveusercontext returns a non-zero value, then this is really the
       * previously running task restarting!
       */

      else if (!up_saveusercontext(rtcb->xcp.regs))
        {
          /* Restore the exception context of the new task that is ready to
           * run (probably tcb).  This is the new rtcb at the head of the
           * ready-to-run task list.
           */

          rtcb = this_task();

#ifdef CONFIG_ARCH_ADDRENV
         /* Make sure that the address environment for the previously
          * running task is closed down gracefully (data caches dump,
          * MMU flushed) and set up the address environment for the new
          * thread at the head of the ready-to-run list.
          */

         (void)group_addrenv(rtcb);
#endif
          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts */

          up_fullcontextrestore(rtcb->xcp.regs);
        }
    }
}
Example #9
0
void up_sigdeliver(void)
{
  struct tcb_s *rtcb = this_task();
  uint32_t regs[XCPTCONTEXT_REGS];
  sig_deliver_t sigdeliver;

  /* Save the errno.  This must be preserved throughout the signal handling
   * so that the user code final gets the correct errno value (probably
   * EINTR).
   */

  int saved_errno = rtcb->pterrno;

  board_autoled_on(LED_SIGNAL);

  sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
        rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
  ASSERT(rtcb->xcp.sigdeliver != NULL);

  /* Save the real return state on the stack. */

  up_copystate(regs, rtcb->xcp.regs);
  regs[REG_EPC]        = rtcb->xcp.saved_epc;
  regs[REG_STATUS]     = rtcb->xcp.saved_status;

  /* Get a local copy of the sigdeliver function pointer. We do this so that
   * we can nullify the sigdeliver function pointer in the TCB and accept
   * more signal deliveries while processing the current pending signals.
   */

  sigdeliver           = rtcb->xcp.sigdeliver;
  rtcb->xcp.sigdeliver = NULL;

  /* Then restore the task interrupt state */

  up_irq_restore((irqstate_t)regs[REG_STATUS]);

  /* Deliver the signals */

  sigdeliver(rtcb);

  /* Output any debug messages BEFORE restoring errno (because they may
   * alter errno), then disable interrupts again and restore the original
   * errno that is needed by the user logic (it is probably EINTR).
   */

  sinfo("Resuming EPC: %08x STATUS: %08x\n", regs[REG_EPC], regs[REG_STATUS]);

  (void)up_irq_save();
  rtcb->pterrno = saved_errno;

  /* Then restore the correct state for this thread of
   * execution.
   */

  board_autoled_off(LED_SIGNAL);
  up_fullcontextrestore(regs);

  /* up_fullcontextrestore() should not return but could if the software
   * interrupts are disabled.
   */

  PANIC();
}
Example #10
0
void up_sigdeliver(void)
{
#ifndef CONFIG_DISABLE_SIGNALS
  FAR struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
  chipreg_t regs[XCPTCONTEXT_REGS];
  FAR uint32_t *regs32 = (FAR uint32_t*)regs;
  sig_deliver_t sigdeliver;

  /* Save the errno.  This must be preserved throughout the signal handling
   * so that the user code final gets the correct errno value (probably
   * EINTR).
   */

  int saved_errno = rtcb->pterrno;

  board_led_on(LED_SIGNAL);

  sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
        rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
  ASSERT(rtcb->xcp.sigdeliver != NULL);

  /* Save the real return state on the stack. */

  up_copystate(regs, rtcb->xcp.regs);
  regs32[REG_PC/2] = rtcb->xcp.saved_pc;
  regs[REG_FLAGS]  = rtcb->xcp.saved_i;

  /* Get a local copy of the sigdeliver function pointer. We do this so
   * that we can nullify the sigdeliver function point in the TCB and
   * accept more signal deliveries while processing the current pending
   * signals.
   */

  sigdeliver           = (sig_deliver_t)rtcb->xcp.sigdeliver;
  rtcb->xcp.sigdeliver = NULL;

  /* Then restore the task interrupt state. */

  if ((regs[REG_FLAGS] & Z16F_CNTRL_FLAGS_IRQE) != 0)
    {
       EI();
    }

  /* Deliver the signals */

  sigdeliver(rtcb);

  /* Output any debug messages BEFORE restoring errno (because they may
   * alter errno), then disable interrupts again and restore the original
   * errno that is needed by the user logic (it is probably EINTR).
   */

  sdbg("Resuming\n");
  (void)irqsave();
  rtcb->pterrno = saved_errno;

  /* Then restore the correct state for this thread of execution. */

  board_led_off(LED_SIGNAL);
  SIGNAL_RETURN(regs);
#endif
}
Example #11
0
void up_release_pending(void)
{
  struct tcb_s *rtcb = this_task();

  sinfo("From TCB=%p\n", rtcb);

  /* Merge the g_pendingtasks list into the ready-to-run task list */

  /* sched_lock(); */
  if (sched_mergepending())
    {
      /* The currently active task has changed!  We will need to switch
       * contexts.
       *
       * Update scheduler parameters.
       */

      sched_suspend_scheduler(rtcb);

      /* Are we operating in interrupt context? */

      if (g_current_regs)
        {
          /* Yes, then we have to do things differently.
           * Just copy the g_current_regs into the OLD rtcb.
           */

           up_copystate(rtcb->xcp.regs, g_current_regs);

          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts.  Any necessary address environment
           * changes will be made when the interrupt returns.
           */

          g_current_regs = rtcb->xcp.regs;
        }

      /* Copy the exception context into the TCB of the task that
       * was currently active. if up_saveusercontext returns a non-zero
       * value, then this is really the previously running task
       * restarting!
       */

      else if (!up_saveusercontext(rtcb->xcp.regs))
        {
          /* Restore the exception context of the rtcb at the (new) head
           * of the ready-to-run task list.
           */

          rtcb = this_task();

#ifdef CONFIG_ARCH_ADDRENV
          /* Make sure that the address environment for the previously
           * running task is closed down gracefully (data caches dump,
           * MMU flushed) and set up the address environment for the new
           * thread at the head of the ready-to-run list.
           */

          (void)group_addrenv(rtcb);
#endif
          /* Update scheduler parameters */

          sched_resume_scheduler(rtcb);

          /* Then switch contexts */

          up_fullcontextrestore(rtcb->xcp.regs);
        }
    }
}
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
  /* Verify that the caller is sane */

  if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
      tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > 0
      || priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
      || priority > SCHED_PRIORITY_MAX
#endif
    )
    {
       PANIC();
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
      bool switch_needed;

      slldbg("TCB=%p PRI=%d\n", tcb, priority);

      /* Remove the tcb task from the ready-to-run list.
       * sched_removereadytorun will return true if we just
       * remove the head of the ready to run list.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Setup up the new task priority */

      tcb->sched_priority = (uint8_t)priority;

      /* Return the task to the specified blocked task list.
       * sched_addreadytorun will return true if the task was
       * added to the new list.  We will need to perform a context
       * switch only if the EXCLUSIVE or of the two calls is non-zero
       * (i.e., one and only one the calls changes the head of the
       * ready-to-run list).
       */

      switch_needed ^= sched_addreadytorun(tcb);

      /* Now, perform the context switch if one is needed */

      if (switch_needed)
        {
          /* If we are going to do a context switch, then now is the right
           * time to add any pending tasks back into the ready-to-run list.
           * task list now
           */

          if (g_pendingtasks.head)
            {
              sched_mergepending();
            }

          /* Update scheduler parameters */

          sched_suspend_scheduler(rtcb);

         /* Are we in an interrupt handler? */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_copystate(rtcb->xcp.regs, current_regs);

              /* Restore the exception context of the rtcb at the (new) head
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Update scheduler parameters */

              sched_resume_scheduler(rtcb);

              /* Then switch contexts.  Any necessary address environment
               * changes will be made when the interrupt returns.
               */

              current_regs = rtcb->xcp.regs;
            }

          /* Copy the exception context into the TCB at the (old) head of the
           * g_readytorun Task list. if up_saveusercontext returns a non-zero
           * value, then this is really the previously running task restarting!
           */

          else if (!up_saveusercontext(rtcb->xcp.regs))
            {
              /* Restore the exception context of the rtcb at the (new) head
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

#ifdef CONFIG_ARCH_ADDRENV
              /* Make sure that the address environment for the previously
               * running task is closed down gracefully (data caches dump,
               * MMU flushed) and set up the address environment for the new
               * thread at the head of the ready-to-run list.
               */

              (void)group_addrenv(rtcb);
#endif
              /* Update scheduler parameters */

              sched_resume_scheduler(rtcb);

              /* Then switch contexts */

              up_fullcontextrestore(rtcb->xcp.regs);
            }
        }
    }
}
Example #13
0
int up_swint0(int irq, FAR void *context)
{
  uint32_t *regs = (uint32_t*)context;

  DEBUGASSERT(regs && regs == current_regs);

  /* Software interrupt 0 is invoked with REG_A0 (REG_R4) = system call
   * command and REG_A1-3 and REG_T0-2 (REG_R5-10) = variable number of
   * arguments depending on the system call.
   */

#ifdef DEBUG_SWINT0
  swidbg("Entry: regs: %p cmd: %d\n", regs, regs[REG_R4]);
  up_registerdump(regs);
#endif

  /* Handle the SWInt according to the command in $4 */

  switch (regs[REG_R4])
    {
      /* R4=SYS_restore_context: This a restore context command:
       *
       *   void up_fullcontextrestore(uint32_t *restoreregs) __attribute__ ((noreturn));
       *
       * At this point, the following values are saved in context:
       *
       *   R4 = SYS_restore_context
       *   R5 = restoreregs
       *
       * In this case, we simply need to set current_regs to restore register
       * area referenced in the saved R1. context == current_regs is the normal
       * exception return.  By setting current_regs = context[R1], we force
       * the return to the saved context referenced in R1.
       */

      case SYS_restore_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0);
          current_regs = (uint32_t*)regs[REG_A1];
        }
        break;

      /* R4=SYS_switch_context: This a switch context command:
       *
       *   void up_switchcontext(uint32_t *saveregs, uint32_t *restoreregs);
       *
       * At this point, the following values are saved in context:
       *
       *   R4 = SYS_switch_context
       *   R5 = saveregs
       *   R6 = restoreregs
       *
       * In this case, we save the context registers to the save register
       * area reference by the saved contents of R5 and then set
       * current_regs to to the save register area referenced by the saved
       * contents of R6.
       */

      case SYS_switch_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0 && regs[REG_A2] != 0);
          up_copystate((uint32_t*)regs[REG_A1], regs);
          current_regs = (uint32_t*)regs[REG_A2];
        }
        break;

      /* This is not an architecture-specify system call.  If NuttX is built
       * as a standalone kernel with a system call interface, then all of the
       * additional system calls must be handled as in the default case.
       */

      default:
#ifdef CONFIG_NUTTX_KERNEL
        dispatch_syscall(regs);
#else
        slldbg("ERROR: Bad SYS call: %d\n", regs[REG_A0]);
#endif
        break;
    }

  /* Report what happened.  That might difficult in the case of a context switch */

#ifdef DEBUG_SWINT0
  if (regs != current_regs)
    {
      swidbg("SWInt Return: Context switch!\n");
      up_registerdump(current_regs);
    }
  else
    {
      swidbg("SWInt Return: %d\n", regs[REG_V0]);
    }
#endif

  /* Clear the pending software interrupt 0 */
 
  up_clrpend_irq(PIC32MX_IRQSRC_CS0);
  
  return OK;
}
Example #14
0
void up_block_task(struct tcb_s *tcb, tstate_t task_state)
{
  /* Verify that the context switch can be performed */

  if ((tcb->task_state < FIRST_READY_TO_RUN_STATE) ||
      (tcb->task_state > LAST_READY_TO_RUN_STATE))
    {
      PANIC(OSERR_BADBLOCKSTATE);
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
      bool switch_needed;

      /* Remove the tcb task from the ready-to-run list.  If we
       * are blocking the task at the head of the task list (the
       * most likely case), then a context switch to the next
       * ready-to-run task is needed. In this case, it should
       * also be true that rtcb == tcb.
       */

      switch_needed = sched_removereadytorun(tcb);

      /* Add the task to the specified blocked task list */

      sched_addblocked(tcb, (tstate_t)task_state);

      /* If there are any pending tasks, then add them to the g_readytorun
       * task list now
       */

      if (g_pendingtasks.head)
        {
          switch_needed |= sched_mergepending();
        }

      /* Now, perform the context switch if one is needed */

      if (switch_needed)
        {
          /* Are we in an interrupt handler? */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_copystate(rtcb->xcp.regs, current_regs);

              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              current_regs = rtcb->xcp.regs;
            }

          /* Copy the user C context into the TCB at the (old) head of the
           * g_readytorun Task list. if up_saveusercontext returns a non-zero
           * value, then this is really the previously running task restarting!
           */

          else if (!up_saveusercontext(rtcb->xcp.regs))
            {
              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              up_fullcontextrestore(rtcb->xcp.regs);
            }
        }
    }
}
Example #15
0
int up_swint0(int irq, FAR void *context)
{
  uint32_t *regs = (uint32_t*)context;
  uint32_t cause;

  DEBUGASSERT(regs && regs == current_regs);

  /* Software interrupt 0 is invoked with REG_A0 (REG_R4) = system call
   * command and REG_A1-3 and REG_T0-2 (REG_R5-10) = variable number of
   * arguments depending on the system call.
   */

#ifdef CONFIG_DEBUG_SYSCALL
  swidbg("Entry: regs: %p cmd: %d\n", regs, regs[REG_R4]);
  up_registerdump(regs);
#endif

  /* Handle the SWInt according to the command in $4 */

  switch (regs[REG_R4])
    {
      /* R4=SYS_restore_context: This a restore context command:
       *
       *   void up_fullcontextrestore(uint32_t *restoreregs) noreturn_function;
       *
       * At this point, the following values are saved in context:
       *
       *   R4 = SYS_restore_context
       *   R5 = restoreregs
       *
       * In this case, we simply need to set current_regs to restore register
       * area referenced in the saved R1. context == current_regs is the normal
       * exception return.  By setting current_regs = context[R1], we force
       * the return to the saved context referenced in R1.
       */

      case SYS_restore_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0);
          current_regs = (uint32_t*)regs[REG_A1];
        }
        break;

      /* R4=SYS_switch_context: This a switch context command:
       *
       *   void up_switchcontext(uint32_t *saveregs, uint32_t *restoreregs);
       *
       * At this point, the following values are saved in context:
       *
       *   R4 = SYS_switch_context
       *   R5 = saveregs
       *   R6 = restoreregs
       *
       * In this case, we save the context registers to the save register
       * area reference by the saved contents of R5 and then set
       * current_regs to to the save register area referenced by the saved
       * contents of R6.
       */

      case SYS_switch_context:
        {
          DEBUGASSERT(regs[REG_A1] != 0 && regs[REG_A2] != 0);
          up_copystate((uint32_t*)regs[REG_A1], regs);
          current_regs = (uint32_t*)regs[REG_A2];
        }
        break;

      /* R0=SYS_syscall_return: This a switch context command:
       *
       *   void up_sycall_return(void);
       *
       * At this point, the following values are saved in context:
       *
       *   R0 = SYS_syscall_return
       *
       * We need to restore the saved return address and return in
       * unprivileged thread mode.
       */

#ifdef CONFIG_BUILD_KERNEL
      case SYS_syscall_return:
        {
          struct tcb_s *rtcb = sched_self();
          int index = (int)rtcb->xcp.nsyscalls - 1;

          /* Make sure that there is a saved syscall return address. */

          DEBUGASSERT(index >= 0);

          /* Setup to return to the saved syscall return address in
           * the original mode.
           */

          current_regs[REG_EPC] = rtcb->xcp.syscall[index].sysreturn;
#error "Missing logic -- need to restore the original mode"
          rtcb->xcp.nsyscalls   = index;
        }
        break;
#endif

      /* This is not an architecture-specify system call.  If NuttX is built
       * as a standalone kernel with a system call interface, then all of the
       * additional system calls must be handled as in the default case.
       */

      default:
        {
#ifdef CONFIG_BUILD_KERNEL
          FAR struct tcb_s *rtcb = sched_self();
          int index = rtcb->xcp.nsyscalls;

          /* Verify that the SYS call number is within range */

          DEBUGASSERT(current_regs[REG_A0] < SYS_maxsyscall);

          /* Make sure that we got here that there is a no saved syscall
           * return address.  We cannot yet handle nested system calls.
           */

          DEBUGASSERT(index < CONFIG_SYS_NNEST);

          /* Setup to return to dispatch_syscall in privileged mode. */

          rtcb->xcpsyscall[index].sysreturn = regs[REG_EPC];
#error "Missing logic -- Need to save mode"
          rtcb->xcp.nsyscalls  = index + 1;

          regs[REG_EPC] = (uint32_t)dispatch_syscall;
#error "Missing logic -- Need to set privileged mode"

          /* Offset R0 to account for the reserved values */

          current_regs[REG_R0] -= CONFIG_SYS_RESERVED;
#else
          slldbg("ERROR: Bad SYS call: %d\n", regs[REG_A0]);
#endif
        }
        break;
    }

  /* Report what happened.  That might difficult in the case of a context switch */

#ifdef CONFIG_DEBUG_SYSCALL
  if (regs != current_regs)
    {
      swidbg("SWInt Return: Context switch!\n");
      up_registerdump((const uint32_t*)current_regs);
    }
  else
    {
      swidbg("SWInt Return: %d\n", regs[REG_V0]);
    }
#endif

  /* Clear the pending software interrupt 0 in the PIC32 interrupt block */

  up_clrpend_irq(PIC32MX_IRQSRC_CS0);

  /* And reset the software interrupt bit in the MIPS CAUSE register */

  cause  = cp0_getcause();
  cause &= ~CP0_CAUSE_IP0;
  cp0_putcause(cause);

  return OK;
}
Example #16
0
void up_unblock_task(struct tcb_s *tcb)
{
  /* Verify that the context switch can be performed */

  if ((tcb->task_state < FIRST_BLOCKED_STATE) ||
      (tcb->task_state > LAST_BLOCKED_STATE))
    {
      PANIC(OSERR_BADUNBLOCKSTATE);
    }
  else
    {
      struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;

      /* Remove the task from the blocked task list */

      sched_removeblocked(tcb);

      /* Reset its timeslice.  This is only meaningful for round
       * robin tasks but it doesn't here to do it for everything
       */

#if CONFIG_RR_INTERVAL > 0
      tcb->timeslice = CONFIG_RR_INTERVAL / MSEC_PER_TICK;
#endif

      /* Add the task in the correct location in the prioritized
       * g_readytorun task list
       */

      if (sched_addreadytorun(tcb))
        {
          /* The currently active task has changed! We need to do
           * a context switch to the new task.
           *
           * Are we in an interrupt handler? 
           */

          if (current_regs)
            {
              /* Yes, then we have to do things differently.
               * Just copy the current_regs into the OLD rtcb.
               */

               up_copystate(rtcb->xcp.regs, current_regs);

              /* Restore the exception context of the rtcb at the (new) head 
               * of the g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              current_regs = rtcb->xcp.regs;
            }

          /* We are not in an interrupt handler.  Copy the user C context
           * into the TCB of the task that was previously active.  if 
           * up_saveusercontext returns a non-zero value, then this is really the
           * previously running task restarting!
           */

          else if (!up_saveusercontext(rtcb->xcp.regs))
            {
              /* Restore the exception context of the new task that is ready to
               * run (probably tcb).  This is the new rtcb at the head of the
               * g_readytorun task list.
               */

              rtcb = (struct tcb_s*)g_readytorun.head;

              /* Then switch contexts */

              up_fullcontextrestore(rtcb->xcp.regs);
            }
        }
    }
}
void up_schedule_sigaction(struct tcb_s *tcb, sig_deliver_t sigdeliver)
{
  irqstate_t flags;

  sinfo("tcb=0x%p sigdeliver=0x%p\n", tcb, sigdeliver);

  /* Make sure that interrupts are disabled */

  flags = enter_critical_section();

  /* Refuse to handle nested signal actions */

  if (!tcb->xcp.sigdeliver)
    {
      /* First, handle some special cases when the signal is
       * being delivered to the currently executing task.
       */

      sinfo("rtcb=0x%p g_current_regs=0x%p\n", this_task(), g_current_regs);

      if (tcb == this_task())
        {
          /* CASE 1:  We are not in an interrupt handler and
           * a task is signalling itself for some reason.
           */

          if (!g_current_regs)
            {
              /* In this case just deliver the signal now. */

              sigdeliver(tcb);
            }

          /* CASE 2:  We are in an interrupt handler AND the
           * interrupted task is the same as the one that
           * must receive the signal, then we will have to modify
           * the return state as well as the state in the TCB.
           */

          else
            {
              /* Save the return PC and SR and one scratch register
               * These will be restored by the signal trampoline after
               * the signals have been delivered.
               */

              tcb->xcp.sigdeliver   = sigdeliver;
              tcb->xcp.saved_pc     = g_current_regs[REG_PC];
              tcb->xcp.saved_sr     = g_current_regs[REG_SR];

              /* Then set up to vector to the trampoline with interrupts
               * disabled
               */

              g_current_regs[REG_PC]  = (uint32_t)up_sigdeliver;
              g_current_regs[REG_SR] |= 0x000000f0;

              /* And make sure that the saved context in the TCB
               * is the same as the interrupt return context.
               */

              up_copystate(tcb->xcp.regs, g_current_regs);
            }
        }

      /* Otherwise, we are (1) signaling a task is not running
       * from an interrupt handler or (2) we are not in an
       * interrupt handler and the running task is signalling
       * some non-running task.
       */

      else
        {
          /* Save the return PC and SR and one scratch register
           * These will be restored by the signal trampoline after
           * the signals have been delivered.
           */

          tcb->xcp.sigdeliver    = sigdeliver;
          tcb->xcp.saved_pc      = tcb->xcp.regs[REG_PC];
          tcb->xcp.saved_sr      = tcb->xcp.regs[REG_SR];

          /* Then set up to vector to the trampoline with interrupts
           * disabled
           */

          tcb->xcp.regs[REG_PC]  = (uint32_t)up_sigdeliver;
          tcb->xcp.regs[REG_SR] |= 0x000000f0 ;
        }
    }

  leave_critical_section(flags);
}