Example #1
0
/** From Numerical Recipes in C.

    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
    x1 = Q / A
    x2 = C / Q
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
    SkASSERT(roots);

    if (A == 0) {
        return valid_unit_divide(-C, B, roots);
    }

    SkScalar* r = roots;

    SkScalar R = B*B - 4*A*C;
    if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
        return 0;
    }
    R = SkScalarSqrt(R);

    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
    r += valid_unit_divide(Q, A, r);
    r += valid_unit_divide(C, Q, r);
    if (r - roots == 2) {
        if (roots[0] > roots[1])
            SkTSwap<SkScalar>(roots[0], roots[1]);
        else if (roots[0] == roots[1])  // nearly-equal?
            r -= 1; // skip the double root
    }
    return (int)(r - roots);
}
Example #2
0
/** From Numerical Recipes in C.

    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
    x1 = Q / A
    x2 = C / Q
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
    SkASSERT(roots);

    if (A == 0) {
        return valid_unit_divide(-C, B, roots);
    }

    SkScalar* r = roots;

    SkScalar R = B*B - 4*A*C;
    if (R < 0 || !SkScalarIsFinite(R)) {  // complex roots
        // if R is infinite, it's possible that it may still produce
        // useful results if the operation was repeated in doubles
        // the flipside is determining if the more precise answer
        // isn't useful because surrounding machinery (e.g., subtracting
        // the axis offset from C) already discards the extra precision
        // more investigation and unit tests required...
        return 0;
    }
    R = SkScalarSqrt(R);

    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
    r += valid_unit_divide(Q, A, r);
    r += valid_unit_divide(C, Q, r);
    if (r - roots == 2) {
        if (roots[0] > roots[1])
            SkTSwap<SkScalar>(roots[0], roots[1]);
        else if (roots[0] == roots[1])  // nearly-equal?
            r -= 1; // skip the double root
    }
    return (int)(r - roots);
}
/** Quad'(t) = At + B, where
    A = 2(a - 2b + c)
    B = 2(b - a)
    Solve for t, only if it fits between 0 < t < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
{
    /*  At + B == 0
        t = -B / A
    */
#ifdef SK_SCALAR_IS_FIXED
    return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue);
#else
    return valid_unit_divide(a - b, a - b - b + c, tValue);
#endif
}
/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
 */
int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5])
{
    SkASSERT(src);
    SkASSERT(dst);
    
    SkScalar a = src[0].fX;
    SkScalar b = src[1].fX;
    SkScalar c = src[2].fX;
    
    if (is_not_monotonic(a, b, c)) {
        SkScalar tValue;
        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
            SkChopQuadAt(src, dst, tValue);
            flatten_double_quad_extrema(&dst[0].fX);
            return 1;
        }
        // if we get here, we need to force dst to be monotonic, even though
        // we couldn't compute a unit_divide value (probably underflow).
        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    }
    dst[0].set(a, src[0].fY);
    dst[1].set(b, src[1].fY);
    dst[2].set(c, src[2].fY);
    return 0;
}
Example #5
0
/** Quad'(t) = At + B, where
    A = 2(a - 2b + c)
    B = 2(b - a)
    Solve for t, only if it fits between 0 < t < 1
*/
int SkDQuad::FindExtrema(const double src[], double tValue[1]) {
    /*  At + B == 0
        t = -B / A
    */
    double a = src[0];
    double b = src[2];
    double c = src[4];
    return valid_unit_divide(a - b, a - b - b + c, tValue);
}
Example #6
0
//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
//  F''(t)  = 2 (a - 2b + c)
//
//  A = 2 (b - a)
//  B = 2 (a - 2b + c)
//
//  Maximum curvature for a quadratic means solving
//  Fx' Fx'' + Fy' Fy'' = 0
//
//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
//
SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
    SkScalar    Ax = src[1].fX - src[0].fX;
    SkScalar    Ay = src[1].fY - src[0].fY;
    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    SkScalar    t = 0;  // 0 means don't chop

    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
    return t;
}
/** From Numerical Recipes in C.

    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
    x1 = Q / A
    x2 = C / Q
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
{
    SkASSERT(roots);

    if (A == 0)
        return valid_unit_divide(-C, B, roots);

    SkScalar* r = roots;

#ifdef SK_SCALAR_IS_FLOAT
    float R = B*B - 4*A*C;
    if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
        return 0;
    }
    R = sk_float_sqrt(R);
#else
    Sk64    RR, tmp;

    RR.setMul(B,B);
    tmp.setMul(A,C);
    tmp.shiftLeft(2);
    RR.sub(tmp);
    if (RR.isNeg())
        return 0;
    SkFixed R = RR.getSqrt();
#endif

    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
    r += valid_unit_divide(Q, A, r);
    r += valid_unit_divide(C, Q, r);
    if (r - roots == 2)
    {
        if (roots[0] > roots[1])
            SkTSwap<SkScalar>(roots[0], roots[1]);
        else if (roots[0] == roots[1])  // nearly-equal?
            r -= 1; // skip the double root
    }
    return (int)(r - roots);
}
//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
//  F''(t)  = 2 (a - 2b + c)
//
//  A = 2 (b - a)
//  B = 2 (a - 2b + c)
//
//  Maximum curvature for a quadratic means solving
//  Fx' Fx'' + Fy' Fy'' = 0
//
//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
//
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
{
    SkScalar    Ax = src[1].fX - src[0].fX;
    SkScalar    Ay = src[1].fY - src[0].fY;
    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    SkScalar    t = 0;  // 0 means don't chop

#ifdef SK_SCALAR_IS_FLOAT
    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
#else
    // !!! should I use SkFloat here? seems like it
    Sk64    numer, denom, tmp;

    numer.setMul(Ax, -Bx);
    tmp.setMul(Ay, -By);
    numer.add(tmp);

    if (numer.isPos())  // do nothing if numer <= 0
    {
        denom.setMul(Bx, Bx);
        tmp.setMul(By, By);
        denom.add(tmp);
        SkASSERT(!denom.isNeg());
        if (numer < denom)
        {
            t = numer.getFixedDiv(denom);
            SkASSERT(t >= 0 && t <= SK_Fixed1);     // assert that we're numerically stable (ha!)
            if ((unsigned)t >= SK_Fixed1)           // runtime check for numerical stability
                t = 0;  // ignore the chop
        }
    }
#endif

    if (t == 0)
    {
        memcpy(dst, src, 3 * sizeof(SkPoint));
        return 1;
    }
    else
    {
        SkChopQuadAt(src, dst, t);
        return 2;
    }
}
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
{
#ifdef SK_DEBUG
    {
        for (int i = 0; i < roots - 1; i++)
        {
            SkASSERT(is_unit_interval(tValues[i]));
            SkASSERT(is_unit_interval(tValues[i+1]));
            SkASSERT(tValues[i] < tValues[i+1]);
        }
    }
#endif

    if (dst)
    {
        if (roots == 0) // nothing to chop
            memcpy(dst, src, 4*sizeof(SkPoint));
        else
        {
            SkScalar    t = tValues[0];
            SkPoint     tmp[4];

            for (int i = 0; i < roots; i++)
            {
                SkChopCubicAt(src, dst, t);
                if (i == roots - 1)
                    break;

                dst += 3;
                // have src point to the remaining cubic (after the chop)
                memcpy(tmp, dst, 4 * sizeof(SkPoint));
                src = tmp;

                // watch out in case the renormalized t isn't in range
                if (!valid_unit_divide(tValues[i+1] - tValues[i],
                                       SK_Scalar1 - tValues[i], &t)) {
                    // if we can't, just create a degenerate cubic
                    dst[4] = dst[5] = dst[6] = src[3];
                    break;
                }
            }
        }
    }
}
/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
 */
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
{
    SkASSERT(src);
    SkASSERT(dst);
    
#if 0
    static bool once = true;
    if (once)
    {
        once = false;
        SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
        SkPoint d[6];
        
        int n = SkChopQuadAtYExtrema(s, d);
        SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
    }
#endif
    
    SkScalar a = src[0].fY;
    SkScalar b = src[1].fY;
    SkScalar c = src[2].fY;
    
    if (is_not_monotonic(a, b, c))
    {
        SkScalar    tValue;
        if (valid_unit_divide(a - b, a - b - b + c, &tValue))
        {
            SkChopQuadAt(src, dst, tValue);
            flatten_double_quad_extrema(&dst[0].fY);
            return 1;
        }
        // if we get here, we need to force dst to be monotonic, even though
        // we couldn't compute a unit_divide value (probably underflow).
        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    }
    dst[0].set(src[0].fX, a);
    dst[1].set(src[1].fX, b);
    dst[2].set(src[2].fX, c);
    return 0;
}
Example #11
0
/** Quad'(t) = At + B, where
    A = 2(a - 2b + c)
    B = 2(b - a)
    Solve for t, only if it fits between 0 < t < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
    /*  At + B == 0
        t = -B / A
    */
    return valid_unit_divide(a - b, a - b - b + c, tValue);
}
Example #12
0
/** Quad'(t) = At + B, where
    A = 2(a - 2b + c)
    B = 2(b - a)
    Solve for t, only if it fits between 0 < t < 1
*/
int SkDQuad::FindExtrema(double a, double b, double c, double tValue[1]) {
    /*  At + B == 0
        t = -B / A
    */
    return valid_unit_divide(a - b, a - b - b + c, tValue);
}