Example #1
0
/*
 * Puts negative of 'p1' in 'p2'
 */
void Vector_Oppose(Value *p1, Value *p2, unsigned len)
{
  unsigned i;

  for (i = 0; i < len; ++i)
    value_oppose(p2[i], p1[i]);
}
static void
oppose_constraint (CloogMatrix *m, int row)
{
  int k;

  /* Do not oppose the first column: it is the eq/ineq one.  */
  for (k = 1; k < m->NbColumns; k++)
    value_oppose (m->p[row][k], m->p[row][k]);
}
Example #3
0
/* 
 * Reduce a vector by dividing it by GCD and making sure its pos-th 
 * element is positive.    
 */
void Vector_Normalize_Positive(Value *p,int length,int pos) {
  
  Value gcd;
  int i;
  
  value_init(gcd);
  Vector_Gcd(p,length,&gcd);
  if (value_neg_p(p[pos]))
    value_oppose(gcd,gcd);
  if(value_notone_p(gcd))
    Vector_AntiScale(p, p, gcd, length);
  value_clear(gcd);
} /* Vector_Normalize_Positive */
void
ppl_set_coef_gmp (ppl_Linear_Expression_t e, ppl_dimension_type i, Value x)
{
  Value v0, v1;
  ppl_Coefficient_t c;

  value_init (v0);
  value_init (v1);
  ppl_new_Coefficient (&c);

  ppl_Linear_Expression_coefficient (e, i, c);
  ppl_Coefficient_to_mpz_t (c, v1);
  value_oppose (v1, v1);
  value_assign (v0, x);
  value_addto (v0, v0, v1);
  ppl_assign_Coefficient_from_mpz_t (c, v0);
  ppl_Linear_Expression_add_to_coefficient (e, i, c);

  value_clear (v0);
  value_clear (v1);
  ppl_delete_Coefficient (c);
}
void
ppl_set_inhomogeneous_gmp (ppl_Linear_Expression_t e, Value x)
{
  Value v0, v1;
  ppl_Coefficient_t c;

  value_init (v0);
  value_init (v1);
  ppl_new_Coefficient (&c);

  ppl_Linear_Expression_inhomogeneous_term (e, c);
  ppl_Coefficient_to_mpz_t (c, v1);
  value_oppose (v1, v1);
  value_assign (v0, x);
  value_addto (v0, v0, v1);
  ppl_assign_Coefficient_from_mpz_t (c, v0);
  ppl_Linear_Expression_add_to_inhomogeneous (e, c);

  value_clear (v0);
  value_clear (v1);
  ppl_delete_Coefficient (c);
}
Example #6
0
/* Compute integer hull of truncated linear cone C, i.e., of C with
 * the origin removed.
 * Here, we do this by first computing the Hilbert basis of C
 * and then discarding elements from this basis that are rational
 * overconvex combinations of other elements in the basis.
 */
Matrix *Cone_Hilbert_Integer_Hull(Polyhedron *C,
				  struct barvinok_options *options)
{
    int i, j, k;
    Matrix *hilbert = Cone_Hilbert_Basis(C, options->MaxRays);
    Matrix *rays, *hull;
    unsigned dim = C->Dimension;
    Value tmp;
    unsigned MaxRays = options->MaxRays;

    /* When checking for redundant points below, we want to
     * check if there are any _rational_ solutions.
     */
    POL_UNSET(options->MaxRays, POL_INTEGER);

    POL_ENSURE_VERTICES(C);
    rays = Matrix_Alloc(C->NbRays-1, C->Dimension);
    for (i = 0, j = 0; i < C->NbRays; ++i) {
	if (value_notzero_p(C->Ray[i][1+C->Dimension]))
	    continue;
	Vector_Copy(C->Ray[i]+1, rays->p[j++], C->Dimension);
    }

    /* We only sort the pointers into the big Value array */
    qsort(rays->p, rays->NbRows, sizeof(Value *), lex_cmp);
    qsort(hilbert->p, hilbert->NbRows, sizeof(Value *), lex_cmp);

    /* Remove rays from Hilbert basis */
    for (i = 0, j = 0, k = 0; i < hilbert->NbRows && j < rays->NbRows; ++i) {
	if (Vector_Equal(hilbert->p[i], rays->p[j], C->Dimension))
	    ++j;
	else
	    hilbert->p[k++] = hilbert->p[i];
    }
    hilbert->NbRows = k;

    /* Now remove points that are overconvex combinations of other points */
    value_init(tmp);
    for (i = 0; hilbert->NbRows > 1 && i < hilbert->NbRows; ++i) {
	Matrix *LP;
	Vector *obj;
	int nray = rays->NbRows;
	int npoint = hilbert->NbRows;
	enum lp_result result;

	LP = Matrix_Alloc(dim + 1 + nray + (npoint-1), 2 + nray + (npoint-1));
	for (j = 0; j < dim; ++j) {
	    for (k = 0; k < nray; ++k)
		value_assign(LP->p[j][k+1], rays->p[k][j]);
	    for (k = 0; k < npoint; ++k) {
		if (k == i)
		    value_oppose(LP->p[j][1+nray+npoint-1], hilbert->p[k][j]);
		else
		    value_assign(LP->p[j][1+nray+k-(k>i)], hilbert->p[k][j]);
	    }
	}
	value_set_si(LP->p[dim][0], 1);
	for (k = 0; k < nray+npoint-1; ++k)
	    value_set_si(LP->p[dim][1+k], 1);
	value_set_si(LP->p[dim][LP->NbColumns-1], -1);
	for (k = 0; k < LP->NbColumns-2; ++k) {
	    value_set_si(LP->p[dim+1+k][0], 1);
	    value_set_si(LP->p[dim+1+k][1+k], 1);
	}

	/* Somewhat arbitrary objective function. */
	obj = Vector_Alloc(LP->NbColumns-1);
	value_set_si(obj->p[0], 1);
	value_set_si(obj->p[obj->Size-1], 1);

	result = constraints_opt(LP, obj->p, obj->p[0], lp_min, &tmp,
				 options);

	/* If the LP is not empty, the point can be discarded */
	if (result != lp_empty) {
	    hilbert->NbRows--;
	    if (i < hilbert->NbRows)
		hilbert->p[i] = hilbert->p[hilbert->NbRows];
	    --i;
	}

	Matrix_Free(LP);
	Vector_Free(obj);
    }
    value_clear(tmp);

    hull = Matrix_Alloc(rays->NbRows + hilbert->NbRows, dim+1);
    for (i = 0; i < rays->NbRows; ++i) {
	Vector_Copy(rays->p[i], hull->p[i], dim);
	value_set_si(hull->p[i][dim], 1);
    }
    for (i = 0; i < hilbert->NbRows; ++i) {
	Vector_Copy(hilbert->p[i], hull->p[rays->NbRows+i], dim);
	value_set_si(hull->p[rays->NbRows+i][dim], 1);
    }
    Matrix_Free(rays);
    Matrix_Free(hilbert);

    options->MaxRays = MaxRays;
    return hull;
}
Example #7
0
/*
 * Given a rational matrix 'Mat'(k x k), compute its inverse rational matrix 
 * 'MatInv' k x k.
 * The output is 1,
 * if 'Mat' is non-singular (invertible), otherwise the output is 0. Note:: 
 * (1) Matrix 'Mat' is modified during the inverse operation.
 * (2) Matrix 'MatInv' must be preallocated before passing into this function.
 */
int Matrix_Inverse(Matrix *Mat,Matrix *MatInv ) {
  
  int i, k, j, c;
  Value x, gcd, piv;
  Value m1,m2;
  Value *den;
  
  if(Mat->NbRows != Mat->NbColumns) {
   fprintf(stderr,"Trying to invert a non-square matrix !\n");
    return 0;
  }
  
  /* Initialize all the 'Value' variables */
  value_init(x);  value_init(gcd); value_init(piv);
  value_init(m1); value_init(m2);

  k = Mat->NbRows; 

  /* Initialise MatInv */
  Vector_Set(MatInv->p[0],0,k*k);

  /* Initialize 'MatInv' to Identity matrix form. Each diagonal entry is set*/
  /* to 1. Last column of each row (denominator of each entry in a row) is  */
  /* also set to 1.                                                         */ 
  for(i=0;i<k;++i) {
    value_set_si(MatInv->p[i][i],1);	
    /* value_set_si(MatInv->p[i][k],1);	/* denum */
  }  
  /* Apply Gauss-Jordan elimination method on the two matrices 'Mat' and  */
  /* 'MatInv' in parallel.                                                */
  for(i=0;i<k;++i) {
    
    /* Check if the diagonal entry (new pivot) is non-zero or not */
    if(value_zero_p(Mat->p[i][i])) {   	
      
      /* Search for a non-zero pivot down the column(i) */
      for(j=i;j<k;++j)      
	if(value_notzero_p(Mat->p[j][i]))
	  break;
      
      /* If no non-zero pivot is found, the matrix 'Mat' is non-invertible */
      /* Return 0.                                                         */
      if(j==k) {
	
	/* Clear all the 'Value' variables */
	value_clear(x);  value_clear(gcd); value_clear(piv);
	value_clear(m1); value_clear(m2);
	return 0;
      }	
      
      /* Exchange the rows, row(i) and row(j) so that the diagonal element */
      /* Mat->p[i][i] (pivot) is non-zero. Repeat the same operations on    */
      /* matrix 'MatInv'.                                                   */
      for(c=0;c<k;++c) {

	/* Interchange rows, row(i) and row(j) of matrix 'Mat'    */
	value_assign(x,Mat->p[j][c]);
	value_assign(Mat->p[j][c],Mat->p[i][c]);
	value_assign(Mat->p[i][c],x);
	
	/* Interchange rows, row(i) and row(j) of matrix 'MatInv' */
	value_assign(x,MatInv->p[j][c]);
	value_assign(MatInv->p[j][c],MatInv->p[i][c]);
	value_assign(MatInv->p[i][c],x);
      }
    }
    
    /* Make all the entries in column(i) of matrix 'Mat' zero except the */
    /* diagonal entry. Repeat the same sequence of operations on matrix  */
    /* 'MatInv'.                                                         */
    for(j=0;j<k;++j) {
      if (j==i) continue;	         /* Skip the pivot */
      value_assign(x,Mat->p[j][i]);
      if(value_notzero_p(x)) {
	value_assign(piv,Mat->p[i][i]);
	value_gcd(gcd, x, piv);
	if (value_notone_p(gcd) ) {
	  value_divexact(x, x, gcd);
	  value_divexact(piv, piv, gcd);
	}
	for(c=((j>i)?i:0);c<k;++c) {
	  value_multiply(m1,piv,Mat->p[j][c]);
	  value_multiply(m2,x,Mat->p[i][c]);
	  value_subtract(Mat->p[j][c],m1,m2); 
	}
	for(c=0;c<k;++c) {
	  value_multiply(m1,piv,MatInv->p[j][c]);
	  value_multiply(m2,x,MatInv->p[i][c]);
	  value_subtract(MatInv->p[j][c],m1,m2);
	}
	      
	/* Simplify row(j) of the two matrices 'Mat' and 'MatInv' by */
	/* dividing the rows with the common GCD.                     */
	Vector_Gcd(&MatInv->p[j][0],k,&m1);
	Vector_Gcd(&Mat->p[j][0],k,&m2);
	value_gcd(gcd, m1, m2);
	if(value_notone_p(gcd)) {
	  for(c=0;c<k;++c) {
	    value_divexact(Mat->p[j][c], Mat->p[j][c], gcd);
	    value_divexact(MatInv->p[j][c], MatInv->p[j][c], gcd);
	  }
	}
      }
    }
  }
  
  /* Find common denom for each row */ 
   den = (Value *)malloc(k*sizeof(Value));
   value_set_si(x,1);
   for(j=0 ; j<k ; ++j) {
     value_init(den[j]);
     value_assign(den[j],Mat->p[j][j]);
     
     /* gcd is always positive */
     Vector_Gcd(&MatInv->p[j][0],k,&gcd);
     value_gcd(gcd, gcd, den[j]);
     if (value_neg_p(den[j])) 
       value_oppose(gcd,gcd); /* make denominator positive */
     if (value_notone_p(gcd)) {
       for (c=0; c<k; c++) 
	 value_divexact(MatInv->p[j][c], MatInv->p[j][c], gcd); /* normalize */
       value_divexact(den[j], den[j], gcd);
     }  
     value_gcd(gcd, x, den[j]);
     value_divexact(m1, den[j], gcd);
     value_multiply(x,x,m1);
   }
   if (value_notone_p(x)) 
     for(j=0 ; j<k ; ++j) {       
       for (c=0; c<k; c++) {
	 value_division(m1,x,den[j]);
	 value_multiply(MatInv->p[j][c],MatInv->p[j][c],m1);  /* normalize */
       }
     }

   /* Clear all the 'Value' variables */
   for(j=0 ; j<k ; ++j) {
     value_clear(den[j]);
   }  
   value_clear(x);  value_clear(gcd); value_clear(piv);
   value_clear(m1); value_clear(m2);
   free(den);
   
   return 1;
} /* Matrix_Inverse */
Example #8
0
/* 
 * Basic hermite engine 
 */
static int hermite(Matrix *H,Matrix *U,Matrix *Q) {
  
  int nc, nr, i, j, k, rank, reduced, pivotrow;
  Value pivot,x,aux;
  Value *temp1, *temp2;
  
  /*                     T                     -1   T */
  /* Computes form: A = Q H  and U A = H  and U  = Q  */
  
  if (!H) { 
    errormsg1("Domlib", "nullH", "hermite: ? Null H");
    return -1;
  }
  nc = H->NbColumns;
  nr = H->NbRows;
  temp1 = (Value *) malloc(nc * sizeof(Value));
  temp2 = (Value *) malloc(nr * sizeof(Value));
  if (!temp1 ||!temp2) {
    errormsg1("Domlib", "outofmem", "out of memory space");
    return -1;
  }
  
  /* Initialize all the 'Value' variables */
  value_init(pivot); value_init(x); 
  value_init(aux);   
  for(i=0;i<nc;i++)
    value_init(temp1[i]);
  for(i=0;i<nr;i++)
    value_init(temp2[i]);
  
#ifdef DEBUG
  fprintf(stderr,"Start  -----------\n");
  Matrix_Print(stderr,0,H);
#endif
  for (k=0, rank=0; k<nc && rank<nr; k=k+1) {
    reduced = 1;	/* go through loop the first time */
#ifdef DEBUG
    fprintf(stderr, "Working on col %d.  Rank=%d ----------\n", k+1, rank+1);
#endif
    while (reduced) {
      reduced=0;
      
      /* 1. find pivot row */
      value_absolute(pivot,H->p[rank][k]);
      
      /* the kth-diagonal element */
      pivotrow = rank;
      
      /* find the row i>rank with smallest nonzero element in col k */
      for (i=rank+1; i<nr; i++) {
	value_absolute(x,H->p[i][k]);
	if (value_notzero_p(x) &&
	    (value_lt(x,pivot) || value_zero_p(pivot))) {
	  value_assign(pivot,x);
	  pivotrow = i;
	}
      }
      
      /* 2. Bring pivot to diagonal (exchange rows pivotrow and rank) */
      if (pivotrow != rank) {
	Vector_Exchange(H->p[pivotrow],H->p[rank],nc);
	if (U)
	  Vector_Exchange(U->p[pivotrow],U->p[rank],nr);
	if (Q)
	  Vector_Exchange(Q->p[pivotrow],Q->p[rank],nr);

#ifdef DEBUG
	fprintf(stderr,"Exchange rows %d and %d  -----------\n", rank+1, pivotrow+1);
	Matrix_Print(stderr,0,H);
#endif
      }
      value_assign(pivot,H->p[rank][k]);	/* actual ( no abs() ) pivot */
      
      /* 3. Invert the row 'rank' if pivot is negative */
      if (value_neg_p(pivot)) {
	value_oppose(pivot,pivot); /* pivot = -pivot */
	for (j=0; j<nc; j++)
	  value_oppose(H->p[rank][j],H->p[rank][j]);
	
	/* H->p[rank][j] = -(H->p[rank][j]); */
	if (U)
	  for (j=0; j<nr; j++)
	    value_oppose(U->p[rank][j],U->p[rank][j]);
	
	/* U->p[rank][j] = -(U->p[rank][j]); */
	if (Q)
	  for (j=0; j<nr; j++)
	    value_oppose(Q->p[rank][j],Q->p[rank][j]);
	
	/* Q->p[rank][j] = -(Q->p[rank][j]); */
#ifdef DEBUG
	fprintf(stderr,"Negate row %d  -----------\n", rank+1);
	Matrix_Print(stderr,0,H);
#endif

      }      
      if (value_notzero_p(pivot)) {
	
	/* 4. Reduce the column modulo the pivot */
	/*    This eventually zeros out everything below the */
	/*    diagonal and produces an upper triangular matrix */
	
	for (i=rank+1;i<nr;i++) {
	  value_assign(x,H->p[i][k]);
	  if (value_notzero_p(x)) {	    
	    value_modulus(aux,x,pivot);
	    
	    /* floor[integer division] (corrected for neg x) */
	    if (value_neg_p(x) && value_notzero_p(aux)) {
	      
	      /* x=(x/pivot)-1; */
	      value_division(x,x,pivot);
	      value_decrement(x,x);
	    }	
	    else 
	      value_division(x,x,pivot);
	    for (j=0; j<nc; j++) {
	      value_multiply(aux,x,H->p[rank][j]);
	      value_subtract(H->p[i][j],H->p[i][j],aux);
	    }
	    
	    /* U->p[i][j] -= (x * U->p[rank][j]); */
	    if (U)
	      for (j=0; j<nr; j++) {
		value_multiply(aux,x,U->p[rank][j]);
		value_subtract(U->p[i][j],U->p[i][j],aux);
	      }
	    
	    /* Q->p[rank][j] += (x * Q->p[i][j]); */
	    if (Q)
	      for(j=0;j<nr;j++) {
		value_addmul(Q->p[rank][j], x, Q->p[i][j]);
	      }
	    reduced = 1;

#ifdef DEBUG
	    fprintf(stderr,
		    "row %d = row %d - %d row %d -----------\n", i+1, i+1, x, rank+1);
	    Matrix_Print(stderr,0,H);
#endif
	
	  } /* if (x) */
	} /* for (i) */
      } /* if (pivot != 0) */
    } /* while (reduced) */
    
    /* Last finish up this column */
    /* 5. Make pivot column positive (above pivot row) */
    /*    x should be zero for i>k */
    
    if (value_notzero_p(pivot)) {
      for (i=0; i<rank; i++) {
	value_assign(x,H->p[i][k]);
	if (value_notzero_p(x)) { 	  
	  value_modulus(aux,x,pivot);
	  
	  /* floor[integer division] (corrected for neg x) */
	  if (value_neg_p(x) && value_notzero_p(aux)) {
	    value_division(x,x,pivot);
	    value_decrement(x,x);
	    
	    /* x=(x/pivot)-1; */
	  }
	  else
	    value_division(x,x,pivot);
	  
	  /* H->p[i][j] -= x * H->p[rank][j]; */
	  for (j=0; j<nc; j++) {
	    value_multiply(aux,x,H->p[rank][j]);
	    value_subtract(H->p[i][j],H->p[i][j],aux);
	  }
	  
	  /* U->p[i][j] -= x * U->p[rank][j]; */
	  if (U)
	    for (j=0; j<nr; j++) {
	      value_multiply(aux,x,U->p[rank][j]);
	      value_subtract(U->p[i][j],U->p[i][j],aux);
	    }
	  
	  /* Q->p[rank][j] += x * Q->p[i][j]; */
	  if (Q)
	    for (j=0; j<nr; j++) {
	      value_addmul(Q->p[rank][j], x, Q->p[i][j]);
	    }  
#ifdef DEBUG
	  fprintf(stderr,
		  "row %d = row %d - %d row %d -----------\n", i+1, i+1, x, rank+1);
	  Matrix_Print(stderr,0,H);
#endif
	} /* if (x) */
      } /* for (i) */
      rank++;
    } /* if (pivot!=0) */
  } /* for (k) */
  
  /* Clear all the 'Value' variables */
  value_clear(pivot); value_clear(x); 
  value_clear(aux); 
  for(i=0;i<nc;i++)
    value_clear(temp1[i]);
  for(i=0;i<nr;i++)
    value_clear(temp2[i]);
  free(temp2);
  free(temp1);
  return rank;
} /* Hermite */ 
Example #9
0
/* GaussSimplify --
   Given Mat1, a matrix of equalities, performs Gaussian elimination.
   Find a minimum basis, Returns the rank.
   Mat1 is context, Mat2 is reduced in context of Mat1
*/
int GaussSimplify(Matrix *Mat1,Matrix *Mat2) {
  
  int NbRows = Mat1->NbRows;
  int NbCols = Mat1->NbColumns;
  int *column_index;
  int i, j, k, n, t, pivot, Rank; 
  Value gcd, tmp, *cp; 
  
  column_index=(int *)malloc(NbCols * sizeof(int));
  if (!column_index) {
    errormsg1("GaussSimplify", "outofmem", "out of memory space\n");
    Pol_status = 1;
    return 0;
  }
  
  /* Initialize all the 'Value' variables */
  value_init(gcd); value_init(tmp);
  
  Rank=0;
  for (j=0; j<NbCols; j++) {		  /* for each column starting at */ 
    for (i=Rank; i<NbRows; i++)		  /* diagonal, look down to find */
      if (value_notzero_p(Mat1->p[i][j])) /* the first non-zero entry    */
	break;	                         
    if (i!=NbRows) {			  /* was one found ? */
      if (i!=Rank)			  /* was it found below the diagonal?*/
	Vector_Exchange(Mat1->p[Rank],Mat1->p[i],NbCols);
      
      /* Normalize the pivot row */
      Vector_Gcd(Mat1->p[Rank],NbCols,&gcd);
      
      /* If (gcd >= 2) */
      value_set_si(tmp,2);
      if (value_ge(gcd,tmp)) {
	cp = Mat1->p[Rank];
        for (k=0; k<NbCols; k++,cp++)
          value_division(*cp,*cp,gcd);		
      }
      if (value_neg_p(Mat1->p[Rank][j])) {
	cp = Mat1->p[Rank];
	for (k=0; k<NbCols; k++,cp++)
	  value_oppose(*cp,*cp);
      }
      /* End of normalize */
      pivot=i;
      for (i=0;i<NbRows;i++)	/* Zero out the rest of the column */
	if (i!=Rank) {
	  if (value_notzero_p(Mat1->p[i][j])) {
	    Value a, a1, a2, a1abs, a2abs;
	    value_init(a); value_init(a1); value_init(a2);
            value_init(a1abs); value_init(a2abs);
            value_assign(a1,Mat1->p[i][j]);
            value_absolute(a1abs,a1);
            value_assign(a2,Mat1->p[Rank][j]); 
            value_absolute(a2abs,a2);
            value_gcd(a, a1abs, a2abs);
	    value_divexact(a1, a1, a);
	    value_divexact(a2, a2, a);
	    value_oppose(a1,a1);
	    Vector_Combine(Mat1->p[i],Mat1->p[Rank],Mat1->p[i],a2, 
			   a1,NbCols);
	    Vector_Normalize(Mat1->p[i],NbCols);
	    value_clear(a); value_clear(a1); value_clear(a2);
            value_clear(a1abs); value_clear(a2abs);
          }
	}
      column_index[Rank]=j;
      Rank++;
    }
  } /* end of Gauss elimination */


  if (Mat2) {  /* Mat2 is a transformation matrix  (i,j->f(i,j))....
		  can't scale it because can't scale both sides of -> */
    /* normalizes an affine transformation        */
    /* priority of forms                          */
    /*    1. i' -> i                (identity)    */
    /*    2. i' -> i + constant     (uniform)     */
    /*    3. i' -> constant         (broadcast)   */
    /*    4. i' -> j                (permutation) */
    /*    5. i' -> j + constant     (      )      */
    /*    6. i' -> i + j + constant (non-uniform) */
    for (k=0; k<Rank; k++) {
      j = column_index[k];
      for (i=0; i<(Mat2->NbRows-1);i++) {   /* all but the last row 0...0 1 */
	if ((i!=j) && value_notzero_p(Mat2->p[i][j])) {
	  
	  /* Remove dependency of i' on j */
          Value a, a1, a1abs, a2, a2abs;
	  value_init(a); value_init(a1); value_init(a2);
          value_init(a1abs); value_init(a2abs);
	  value_assign(a1,Mat2->p[i][j]);
	  value_absolute(a1abs,a1);
	  value_assign(a2,Mat1->p[k][j]);
	  value_absolute(a2abs,a2);
	  value_gcd(a, a1abs, a2abs);
	  value_divexact(a1, a1, a);
	  value_divexact(a2, a2, a);
	  value_oppose(a1,a1);
	  if (value_one_p(a2)) {
            Vector_Combine(Mat2->p[i],Mat1->p[k],Mat2->p[i],a2,
			   a1,NbCols);
	    
	    /* Vector_Normalize(Mat2->p[i],NbCols); -- can't do T        */
	  } /* otherwise, can't do it without mult lhs prod (2i,3j->...) */
	  value_clear(a); value_clear(a1); value_clear(a2);
          value_clear(a1abs); value_clear(a2abs);
                
	}
        else if ((i==j) && value_zero_p(Mat2->p[i][j])) {
	  
	  /* 'i' does not depend on j */
	  for (n=j+1; n < (NbCols-1); n++) {
	    if (value_notzero_p(Mat2->p[i][n])) { /* i' depends on some n */
	      value_set_si(tmp,1);
              Vector_Combine(Mat2->p[i],Mat1->p[k],Mat2->p[i],tmp,
			     tmp,NbCols);
	      break;
	    }  /* if 'i' depends on just a constant, then leave it alone.*/
	  }
        }
      }
    }
    
    /* Check last row of transformation Mat2 */
    for (j=0; j<(NbCols-1); j++)
      if (value_notzero_p(Mat2->p[Mat2->NbRows-1][j])) {
	errormsg1("GaussSimplify", "corrtrans", "Corrupted transformation\n");
	break;
      }
    
    if (value_notone_p(Mat2->p[Mat2->NbRows-1][NbCols-1])) {
      errormsg1("GaussSimplify", "corrtrans", "Corrupted transformation\n");
    }
  }
  value_clear(gcd); value_clear(tmp);
  free(column_index);
  return Rank;
} /* GaussSimplify */
Example #10
0
/* INDEX  = 1 .... Dimension      */
int PolyhedronLTQ (Polyhedron *Pol1,Polyhedron *Pol2,int INDEX, int PDIM, int NbMaxConstrs) { 
  
  int res, dim, i, j, k;
  Polyhedron *Q1, *Q2, *Q3, *Q4, *Q;
  Matrix *Mat;

  if (Pol1->next || Pol2->next) {
    errormsg1("PolyhedronLTQ", "compoly", "Can only compare polyhedra");
    return 0;
  }
  if (Pol1->Dimension != Pol2->Dimension) {
    errormsg1("PolyhedronLTQ","diffdim","Polyhedra are not same dimension");
    return 0;
  }
  dim = Pol1->Dimension+2;

  POL_ENSURE_FACETS(Pol1);
  POL_ENSURE_VERTICES(Pol1);
  POL_ENSURE_FACETS(Pol2);
  POL_ENSURE_VERTICES(Pol2);
  
#ifdef DEBUG
  fprintf(stdout, "P1\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Pol1);
  fprintf(stdout, "P2\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Pol2);
#endif
  
  /* Create the Line to add */
  k = Pol1->Dimension-INDEX+1-PDIM;
  Mat = Matrix_Alloc(k,dim);
  Vector_Set(Mat->p_Init,0,dim*k);
  for(j=0,i=INDEX;j<k;i++,j++)
    value_set_si(Mat->p[j][i],1);
  
  Q1 = AddRays(Mat->p[0],k,Pol1,NbMaxConstrs);
  Q2 = AddRays(Mat->p[0],k,Pol2,NbMaxConstrs);

#ifdef DEBUG
  fprintf(stdout, "Q1\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Q1);
  fprintf(stdout, "Q2\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Q2);
#endif
  
  Matrix_Free(Mat);
  Q  = DomainIntersection(Q1,Q2,NbMaxConstrs);
  
#ifdef DEBUG
  fprintf(stdout, "Q\n");
  Polyhedron_Print(stdout,P_VALUE_FMT,Q);
#endif
  
  Domain_Free(Q1);
  Domain_Free(Q2);
  
  if (emptyQ(Q)) res = 0;	/* not comparable */
  else {
    Q1 = DomainIntersection(Pol1,Q,NbMaxConstrs);
    Q2 = DomainIntersection(Pol2,Q,NbMaxConstrs);
    
#ifdef DEBUG
    fprintf(stdout, "Q1\n");
    Polyhedron_Print(stdout,P_VALUE_FMT,Q1);
    fprintf(stdout, "Q2\n");
    Polyhedron_Print(stdout,P_VALUE_FMT,Q2);
#endif

    k = Q1->NbConstraints + Q2->NbConstraints;
    Mat = Matrix_Alloc(k, dim);
    Vector_Set(Mat->p_Init,0,k*dim);
    
    /* First compute surrounding polyhedron */    
    j=0;
    for (i=0; i<Q1->NbConstraints; i++) {
      if ((value_one_p(Q1->Constraint[i][0])) && (value_pos_p(Q1->Constraint[i][INDEX]))) {
	
	/* keep Q1's lower bounds */
	for (k=0; k<dim; k++) 
	  value_assign(Mat->p[j][k],Q1->Constraint[i][k]);
	j++;
      }
    }
    for (i=0; i<Q2->NbConstraints; i++) {
      if ((value_one_p(Q2->Constraint[i][0])) && (value_neg_p(Q2->Constraint[i][INDEX]))) {
	
	/* and keep Q2's upper bounds */
	for (k=0; k<dim; k++) 
	  value_assign(Mat->p[j][k],Q2->Constraint[i][k]);
	j++;
      }
    }
    Q4 = AddConstraints(Mat->p[0], j, Q, NbMaxConstrs);
    Matrix_Free(Mat);
    
#ifdef debug
    fprintf(stderr, "Q4 surrounding polyhedron\n");
    Polyhderon_Print(stderr,P_VALUE_FMT, Q4);
#endif

    /* if surrounding polyhedron is empty, D1>D2 */
    if (emptyQ(Q4)) {
      res = 1;
      
#ifdef debug
      fprintf(stderr, "Surrounding polyhedron is empty\n");
#endif
      goto LTQdone2; 
    }
    
    /* Test if Q1 < Q2 */      
    /* Build a constraint array for >= Q1 and <= Q2 */
    Mat = Matrix_Alloc(2,dim);
    Vector_Set(Mat->p_Init,0,2*dim);
    
    /* Choose a contraint from Q1 */
    for (i=0; i<Q1->NbConstraints; i++) {
      if (value_zero_p(Q1->Constraint[i][0])) {
	
	/* Equality */
	if (value_zero_p(Q1->Constraint[i][INDEX])) {
	  
	  /* Ignore side constraint (they are in Q) */
	  continue;
	}
	else if (value_neg_p(Q1->Constraint[i][INDEX])) {
	  
	  /* copy -constraint to Mat */
	  value_set_si(Mat->p[0][0],1);
	  for (k=1; k<dim; k++)
	    value_oppose(Mat->p[0][k],Q1->Constraint[i][k]);
	}
	else {
	  
	  /* Copy constraint to Mat */
	  
	  value_set_si(Mat->p[0][0],1);
	  for (k=1; k<dim; k++)
	    value_assign(Mat->p[0][k],Q1->Constraint[i][k]);
	}
      }
      else if(value_neg_p(Q1->Constraint[i][INDEX])) {
	
	/* Upper bound -- make a lower bound from it */
	value_set_si(Mat->p[0][0],1);
	for (k=1; k<dim; k++)
	  value_oppose(Mat->p[0][k],Q1->Constraint[i][k]);
      }
      else {	
	
	/* Lower or side bound -- ignore it */
	continue;
      }
      
      /* Choose a constraint from Q2 */
      for (j=0; j<Q2->NbConstraints; j++) {
	if (value_zero_p(Q2->Constraint[j][0])) {   /* equality */
	  if (value_zero_p(Q2->Constraint[j][INDEX])) {
	    
	    /* Ignore side constraint (they are in Q) */
	    continue;
	  }
	  else if (value_pos_p(Q2->Constraint[j][INDEX])) {
	    
	    /* Copy -constraint to Mat */
	    value_set_si(Mat->p[1][0],1);
	    for (k=1; k<dim; k++)
	      value_oppose(Mat->p[1][k],Q2->Constraint[j][k]);
	  }
	  else {
	    
	    /* Copy constraint to Mat */
	    value_set_si(Mat->p[1][0],1);
	    for (k=1; k<dim; k++)
	      value_assign(Mat->p[1][k],Q2->Constraint[j][k]);
	  };
	}
	else if (value_pos_p(Q2->Constraint[j][INDEX])) {
	  
	  /* Lower bound -- make an upper bound from it */
	  value_set_si(Mat->p[1][0],1);
	  for(k=1;k<dim;k++)
	    value_oppose(Mat->p[1][k],Q2->Constraint[j][k]);
	}
	else {
	  
	  /* Upper or side bound -- ignore it */
	  continue;
	};
	
#ifdef DEBUG
	fprintf(stdout, "i=%d j=%d M=\n", i+1, j+1);
	Matrix_Print(stdout,P_VALUE_FMT,Mat);
#endif
	
	/* Add Mat to Q and see if anything is made */
	Q3 = AddConstraints(Mat->p[0],2,Q,NbMaxConstrs);

#ifdef DEBUG
	fprintf(stdout, "Q3\n");
	Polyhedron_Print(stdout,P_VALUE_FMT,Q3);
#endif
	
	if (!emptyQ(Q3)) { 
	  Domain_Free(Q3);
	  
#ifdef DEBUG
	  fprintf(stdout, "not empty\n");
#endif
	  res = -1;
	  goto LTQdone;
	}
#ifdef DEBUG
	fprintf(stdout,"empty\n");	
#endif
	Domain_Free(Q3);
      } /* end for j */
    } /* end for i */
    res = 1;
LTQdone:
    Matrix_Free(Mat);
LTQdone2: 
    Domain_Free(Q4);
    Domain_Free(Q1);
    Domain_Free(Q2);
  }
  Domain_Free(Q);
  
#ifdef DEBUG
  fprintf(stdout, "res = %d\n", res);
#endif
  
  return res;
} /* PolyhedronLTQ */